hello-algo/zh-hant/codes/kotlin/chapter_dynamic_programming/min_path_sum.kt
Yudong Jin 5f7385c8a3
feat: Traditional Chinese version (#1163)
* First commit

* Update mkdocs.yml

* Translate all the docs to traditional Chinese

* Translate the code files.

* Translate the docker file

* Fix mkdocs.yml

* Translate all the figures from SC to TC

* 二叉搜尋樹 -> 二元搜尋樹

* Update terminology.

* Update terminology

* 构造函数/构造方法 -> 建構子
异或 -> 互斥或

* 擴充套件 -> 擴展

* constant - 常量 - 常數

* 類	-> 類別

* AVL -> AVL 樹

* 數組 -> 陣列

* 係統 -> 系統
斐波那契數列 -> 費波那契數列
運算元量 -> 運算量
引數 -> 參數

* 聯絡 -> 關聯

* 麵試 -> 面試

* 面向物件 -> 物件導向
歸併排序 -> 合併排序
范式 -> 範式

* Fix 算法 -> 演算法

* 錶示 -> 表示
反碼 -> 一補數
補碼 -> 二補數
列列尾部 -> 佇列尾部
區域性性 -> 區域性
一摞 -> 一疊

* Synchronize with main branch

* 賬號 -> 帳號
推匯 -> 推導

* Sync with main branch

* First commit

* Update mkdocs.yml

* Translate all the docs to traditional Chinese

* Translate the code files.

* Translate the docker file

* Fix mkdocs.yml

* Translate all the figures from SC to TC

* 二叉搜尋樹 -> 二元搜尋樹

* Update terminology

* 构造函数/构造方法 -> 建構子
异或 -> 互斥或

* 擴充套件 -> 擴展

* constant - 常量 - 常數

* 類	-> 類別

* AVL -> AVL 樹

* 數組 -> 陣列

* 係統 -> 系統
斐波那契數列 -> 費波那契數列
運算元量 -> 運算量
引數 -> 參數

* 聯絡 -> 關聯

* 麵試 -> 面試

* 面向物件 -> 物件導向
歸併排序 -> 合併排序
范式 -> 範式

* Fix 算法 -> 演算法

* 錶示 -> 表示
反碼 -> 一補數
補碼 -> 二補數
列列尾部 -> 佇列尾部
區域性性 -> 區域性
一摞 -> 一疊

* Synchronize with main branch

* 賬號 -> 帳號
推匯 -> 推導

* Sync with main branch

* Update terminology.md

* 操作数量(num. of operations)-> 操作數量

* 字首和->前綴和

* Update figures

* 歸 -> 迴
記憶體洩漏 -> 記憶體流失

* Fix the bug of the file filter

* 支援 -> 支持
Add zh-Hant/README.md

* Add the zh-Hant chapter covers.
Bug fixes.

* 外掛 -> 擴充功能

* Add the landing page for zh-Hant version

* Unify the font of the chapter covers for the zh, en, and zh-Hant version

* Move zh-Hant/ to zh-hant/

* Translate terminology.md to traditional Chinese
2024-04-06 02:30:11 +08:00

138 lines
No EOL
3.7 KiB
Kotlin

/**
* File: min_path_sum.kt
* Created Time: 2024-01-25
* Author: curtishd (1023632660@qq.com)
*/
package chapter_dynamic_programming
import java.util.*
import kotlin.math.min
/* 最小路徑和:暴力搜尋 */
fun minPathSumDFS(
grid: Array<Array<Int>>,
i: Int,
j: Int
): Int {
// 若為左上角單元格,則終止搜尋
if (i == 0 && j == 0) {
return grid[0][0]
}
// 若行列索引越界,則返回 +∞ 代價
if (i < 0 || j < 0) {
return Int.MAX_VALUE
}
// 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
val up = minPathSumDFS(grid, i - 1, j)
val left = minPathSumDFS(grid, i, j - 1)
// 返回從左上角到 (i, j) 的最小路徑代價
return (min(left.toDouble(), up.toDouble()) + grid[i][j]).toInt()
}
/* 最小路徑和:記憶化搜尋 */
fun minPathSumDFSMem(
grid: Array<Array<Int>>,
mem: Array<Array<Int>>,
i: Int,
j: Int
): Int {
// 若為左上角單元格,則終止搜尋
if (i == 0 && j == 0) {
return grid[0][0]
}
// 若行列索引越界,則返回 +∞ 代價
if (i < 0 || j < 0) {
return Int.MAX_VALUE
}
// 若已有記錄,則直接返回
if (mem[i][j] != -1) {
return mem[i][j]
}
// 左邊和上邊單元格的最小路徑代價
val up = minPathSumDFSMem(grid, mem, i - 1, j)
val left = minPathSumDFSMem(grid, mem, i, j - 1)
// 記錄並返回左上角到 (i, j) 的最小路徑代價
mem[i][j] = (min(left.toDouble(), up.toDouble()) + grid[i][j]).toInt()
return mem[i][j]
}
/* 最小路徑和:動態規劃 */
fun minPathSumDP(grid: Array<Array<Int>>): Int {
val n = grid.size
val m = grid[0].size
// 初始化 dp 表
val dp = Array(n) { IntArray(m) }
dp[0][0] = grid[0][0]
// 狀態轉移:首行
for (j in 1..<m) {
dp[0][j] = dp[0][j - 1] + grid[0][j]
}
// 狀態轉移:首列
for (i in 1..<n) {
dp[i][0] = dp[i - 1][0] + grid[i][0]
}
// 狀態轉移:其餘行和列
for (i in 1..<n) {
for (j in 1..<m) {
dp[i][j] =
(min(dp[i][j - 1].toDouble(), dp[i - 1][j].toDouble()) + grid[i][j]).toInt()
}
}
return dp[n - 1][m - 1]
}
/* 最小路徑和:空間最佳化後的動態規劃 */
fun minPathSumDPComp(grid: Array<Array<Int>>): Int {
val n = grid.size
val m = grid[0].size
// 初始化 dp 表
val dp = IntArray(m)
// 狀態轉移:首行
dp[0] = grid[0][0]
for (j in 1..<m) {
dp[j] = dp[j - 1] + grid[0][j]
}
// 狀態轉移:其餘行
for (i in 1..<n) {
// 狀態轉移:首列
dp[0] = dp[0] + grid[i][0]
// 狀態轉移:其餘列
for (j in 1..<m) {
dp[j] = (min(dp[j - 1].toDouble(), dp[j].toDouble()) + grid[i][j]).toInt()
}
}
return dp[m - 1]
}
/* Driver Code */
fun main() {
val grid = arrayOf(
arrayOf(1, 3, 1, 5),
arrayOf(2, 2, 4, 2),
arrayOf(5, 3, 2, 1),
arrayOf(4, 3, 5, 2)
)
val n = grid.size
val m = grid[0].size
// 暴力搜尋
var res = minPathSumDFS(grid, n - 1, m - 1)
println("從左上角到右下角的最小路徑和為 $res")
// 記憶化搜尋
val mem = Array(n) { Array(m) { 0 } }
for (row in mem) {
Arrays.fill(row, -1)
}
res = minPathSumDFSMem(grid, mem, n - 1, m - 1)
println("從左上角到右下角的最小路徑和為 $res")
// 動態規劃
res = minPathSumDP(grid)
println("從左上角到右下角的最小路徑和為 $res")
// 空間最佳化後的動態規劃
res = minPathSumDPComp(grid)
println("從左上角到右下角的最小路徑和為 $res")
}