mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 20:06:29 +08:00
119 lines
3.7 KiB
Markdown
119 lines
3.7 KiB
Markdown
# 建堆操作 *
|
||
|
||
如果我们想要根据输入列表来生成一个堆,这样的操作被称为「建堆」。
|
||
|
||
## 两种建堆方法
|
||
|
||
### 借助入堆方法实现
|
||
|
||
最直接地,考虑借助「元素入堆」方法,先建立一个空堆,**再将列表元素依次入堆即可**。
|
||
|
||
### 基于堆化操作实现
|
||
|
||
然而,**存在一种更加高效的建堆方法**。设元素数量为 $n$ ,我们先将列表所有元素原封不动添加进堆,**然后迭代地对各个结点执行「从顶至底堆化」**。当然,**无需对叶结点执行堆化**,因为其没有子结点。
|
||
|
||
=== "Java"
|
||
|
||
```java title="my_heap.java"
|
||
[class]{MaxHeap}-[func]{MaxHeap}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="my_heap.cpp"
|
||
[class]{MaxHeap}-[func]{MaxHeap}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="my_heap.py"
|
||
[class]{MaxHeap}-[func]{__init__}
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="my_heap.go"
|
||
[class]{maxHeap}-[func]{newMaxHeap}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="my_heap.js"
|
||
[class]{MaxHeap}-[func]{constructor}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="my_heap.ts"
|
||
[class]{MaxHeap}-[func]{constructor}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="my_heap.c"
|
||
[class]{maxHeap}-[func]{newMaxHeap}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="my_heap.cs"
|
||
[class]{MaxHeap}-[func]{MaxHeap}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="my_heap.swift"
|
||
[class]{MaxHeap}-[func]{init}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="my_heap.zig"
|
||
[class]{MaxHeap}-[func]{init}
|
||
```
|
||
|
||
## 复杂度分析
|
||
|
||
对于第一种建堆方法,元素入堆的时间复杂度为 $O(\log n)$ ,而平均长度为 $\frac{n}{2}$ ,因此该方法的总体时间复杂度为 $O(n \log n)$ 。
|
||
|
||
那么,第二种建堆方法的时间复杂度是多少呢?我们来展开推算一下。
|
||
|
||
- 完全二叉树中,设结点总数为 $n$ ,则叶结点数量为 $(n + 1) / 2$ ,其中 $/$ 为向下整除。因此在排除叶结点后,需要堆化结点数量为 $(n - 1)/2$ ,即为 $O(n)$ ;
|
||
- 从顶至底堆化中,每个结点最多堆化至叶结点,因此最大迭代次数为二叉树高度 $O(\log n)$ ;
|
||
|
||
将上述两者相乘,可得时间复杂度为 $O(n \log n)$ 。然而,该估算结果仍不够准确,因为我们没有考虑到 **二叉树底层结点远多于顶层结点** 的性质。
|
||
|
||
下面我们来尝试展开计算。为了减小计算难度,我们假设树是一个「完美二叉树」,该假设不会影响计算结果的正确性。设二叉树(即堆)结点数量为 $n$ ,树高度为 $h$ 。上文提到,**结点堆化最大迭代次数等于该结点到叶结点的距离,而这正是“结点高度”**。因此,我们将各层的“结点数量 $\times$ 结点高度”求和,即可得到所有结点的堆化的迭代次数总和。
|
||
|
||
$$
|
||
T(h) = 2^0h + 2^1(h-1) + 2^2(h-2) + \cdots + 2^{(h-1)}\times1
|
||
$$
|
||
|
||
![完美二叉树的各层结点数量](build_heap.assets/heapify_operations_count.png)
|
||
|
||
化简上式需要借助中学的数列知识,先对 $T(h)$ 乘以 $2$ ,易得
|
||
|
||
$$
|
||
\begin{aligned}
|
||
T(h) & = 2^0h + 2^1(h-1) + 2^2(h-2) + \cdots + 2^{h-1}\times1 \newline
|
||
2 T(h) & = 2^1h + 2^2(h-1) + 2^3(h-2) + \cdots + 2^{h}\times1 \newline
|
||
\end{aligned}
|
||
$$
|
||
|
||
**使用错位相减法**,令下式 $2 T(h)$ 减去上式 $T(h)$ ,可得
|
||
|
||
$$
|
||
2T(h) - T(h) = T(h) = -2^0h + 2^1 + 2^2 + \cdots + 2^{h-1} + 2^h
|
||
$$
|
||
|
||
观察上式,$T(h)$ 是一个等比数列,可直接使用求和公式,得到时间复杂度为
|
||
|
||
$$
|
||
\begin{aligned}
|
||
T(h) & = 2 \frac{1 - 2^h}{1 - 2} - h \newline
|
||
& = 2^{h+1} - h \newline
|
||
& = O(2^h)
|
||
\end{aligned}
|
||
$$
|
||
|
||
进一步地,高度为 $h$ 的完美二叉树的结点数量为 $n = 2^{h+1} - 1$ ,易得复杂度为 $O(2^h) = O(n)$。以上推算表明,**输入列表并建堆的时间复杂度为 $O(n)$ ,非常高效**。
|