hello-algo/zh-hant/docs/chapter_searching/summary.md
Yudong Jin 5f7385c8a3
feat: Traditional Chinese version (#1163)
* First commit

* Update mkdocs.yml

* Translate all the docs to traditional Chinese

* Translate the code files.

* Translate the docker file

* Fix mkdocs.yml

* Translate all the figures from SC to TC

* 二叉搜尋樹 -> 二元搜尋樹

* Update terminology.

* Update terminology

* 构造函数/构造方法 -> 建構子
异或 -> 互斥或

* 擴充套件 -> 擴展

* constant - 常量 - 常數

* 類	-> 類別

* AVL -> AVL 樹

* 數組 -> 陣列

* 係統 -> 系統
斐波那契數列 -> 費波那契數列
運算元量 -> 運算量
引數 -> 參數

* 聯絡 -> 關聯

* 麵試 -> 面試

* 面向物件 -> 物件導向
歸併排序 -> 合併排序
范式 -> 範式

* Fix 算法 -> 演算法

* 錶示 -> 表示
反碼 -> 一補數
補碼 -> 二補數
列列尾部 -> 佇列尾部
區域性性 -> 區域性
一摞 -> 一疊

* Synchronize with main branch

* 賬號 -> 帳號
推匯 -> 推導

* Sync with main branch

* First commit

* Update mkdocs.yml

* Translate all the docs to traditional Chinese

* Translate the code files.

* Translate the docker file

* Fix mkdocs.yml

* Translate all the figures from SC to TC

* 二叉搜尋樹 -> 二元搜尋樹

* Update terminology

* 构造函数/构造方法 -> 建構子
异或 -> 互斥或

* 擴充套件 -> 擴展

* constant - 常量 - 常數

* 類	-> 類別

* AVL -> AVL 樹

* 數組 -> 陣列

* 係統 -> 系統
斐波那契數列 -> 費波那契數列
運算元量 -> 運算量
引數 -> 參數

* 聯絡 -> 關聯

* 麵試 -> 面試

* 面向物件 -> 物件導向
歸併排序 -> 合併排序
范式 -> 範式

* Fix 算法 -> 演算法

* 錶示 -> 表示
反碼 -> 一補數
補碼 -> 二補數
列列尾部 -> 佇列尾部
區域性性 -> 區域性
一摞 -> 一疊

* Synchronize with main branch

* 賬號 -> 帳號
推匯 -> 推導

* Sync with main branch

* Update terminology.md

* 操作数量(num. of operations)-> 操作數量

* 字首和->前綴和

* Update figures

* 歸 -> 迴
記憶體洩漏 -> 記憶體流失

* Fix the bug of the file filter

* 支援 -> 支持
Add zh-Hant/README.md

* Add the zh-Hant chapter covers.
Bug fixes.

* 外掛 -> 擴充功能

* Add the landing page for zh-Hant version

* Unify the font of the chapter covers for the zh, en, and zh-Hant version

* Move zh-Hant/ to zh-hant/

* Translate terminology.md to traditional Chinese
2024-04-06 02:30:11 +08:00

1.2 KiB

小結

  • 二分搜尋依賴資料的有序性,透過迴圈逐步縮減一半搜尋區間來進行查詢。它要求輸入資料有序,且僅適用於陣列或基於陣列實現的資料結構。
  • 暴力搜尋透過走訪資料結構來定位資料。線性搜尋適用於陣列和鏈結串列,廣度優先搜尋和深度優先搜尋適用於圖和樹。此類演算法通用性好,無須對資料進行預處理,但時間複雜度 O(n) 較高。
  • 雜湊查詢、樹查詢和二分搜尋屬於高效搜尋方法,可在特定資料結構中快速定位目標元素。此類演算法效率高,時間複雜度可達 O(\log n) 甚至 O(1) ,但通常需要藉助額外資料結構。
  • 實際中,我們需要對資料體量、搜尋效能要求、資料查詢和更新頻率等因素進行具體分析,從而選擇合適的搜尋方法。
  • 線性搜尋適用於小型或頻繁更新的資料;二分搜尋適用於大型、排序的資料;雜湊查詢適用於對查詢效率要求較高且無須範圍查詢的資料;樹查詢適用於需要維護順序和支持範圍查詢的大型動態資料。
  • 用雜湊查詢替換線性查詢是一種常用的最佳化執行時間的策略,可將時間複雜度從 O(n) 降至 O(1)