hello-algo/zh-hant/docs/chapter_searching/replace_linear_by_hashing.md
Yudong Jin 5f7385c8a3
feat: Traditional Chinese version (#1163)
* First commit

* Update mkdocs.yml

* Translate all the docs to traditional Chinese

* Translate the code files.

* Translate the docker file

* Fix mkdocs.yml

* Translate all the figures from SC to TC

* 二叉搜尋樹 -> 二元搜尋樹

* Update terminology.

* Update terminology

* 构造函数/构造方法 -> 建構子
异或 -> 互斥或

* 擴充套件 -> 擴展

* constant - 常量 - 常數

* 類	-> 類別

* AVL -> AVL 樹

* 數組 -> 陣列

* 係統 -> 系統
斐波那契數列 -> 費波那契數列
運算元量 -> 運算量
引數 -> 參數

* 聯絡 -> 關聯

* 麵試 -> 面試

* 面向物件 -> 物件導向
歸併排序 -> 合併排序
范式 -> 範式

* Fix 算法 -> 演算法

* 錶示 -> 表示
反碼 -> 一補數
補碼 -> 二補數
列列尾部 -> 佇列尾部
區域性性 -> 區域性
一摞 -> 一疊

* Synchronize with main branch

* 賬號 -> 帳號
推匯 -> 推導

* Sync with main branch

* First commit

* Update mkdocs.yml

* Translate all the docs to traditional Chinese

* Translate the code files.

* Translate the docker file

* Fix mkdocs.yml

* Translate all the figures from SC to TC

* 二叉搜尋樹 -> 二元搜尋樹

* Update terminology

* 构造函数/构造方法 -> 建構子
异或 -> 互斥或

* 擴充套件 -> 擴展

* constant - 常量 - 常數

* 類	-> 類別

* AVL -> AVL 樹

* 數組 -> 陣列

* 係統 -> 系統
斐波那契數列 -> 費波那契數列
運算元量 -> 運算量
引數 -> 參數

* 聯絡 -> 關聯

* 麵試 -> 面試

* 面向物件 -> 物件導向
歸併排序 -> 合併排序
范式 -> 範式

* Fix 算法 -> 演算法

* 錶示 -> 表示
反碼 -> 一補數
補碼 -> 二補數
列列尾部 -> 佇列尾部
區域性性 -> 區域性
一摞 -> 一疊

* Synchronize with main branch

* 賬號 -> 帳號
推匯 -> 推導

* Sync with main branch

* Update terminology.md

* 操作数量(num. of operations)-> 操作數量

* 字首和->前綴和

* Update figures

* 歸 -> 迴
記憶體洩漏 -> 記憶體流失

* Fix the bug of the file filter

* 支援 -> 支持
Add zh-Hant/README.md

* Add the zh-Hant chapter covers.
Bug fixes.

* 外掛 -> 擴充功能

* Add the landing page for zh-Hant version

* Unify the font of the chapter covers for the zh, en, and zh-Hant version

* Move zh-Hant/ to zh-hant/

* Translate terminology.md to traditional Chinese
2024-04-06 02:30:11 +08:00

2 KiB
Executable file

雜湊最佳化策略

在演算法題中,我們常透過將線性查詢替換為雜湊查詢來降低演算法的時間複雜度。我們藉助一個演算法題來加深理解。

!!! question

給定一個整數陣列 `nums` 和一個目標元素 `target` ,請在陣列中搜索“和”為 `target` 的兩個元素,並返回它們的陣列索引。返回任意一個解即可。

線性查詢:以時間換空間

考慮直接走訪所有可能的組合。如下圖所示,我們開啟一個兩層迴圈,在每輪中判斷兩個整數的和是否為 target ,若是,則返回它們的索引。

線性查詢求解兩數之和

程式碼如下所示:

[file]{two_sum}-[class]{}-[func]{two_sum_brute_force}

此方法的時間複雜度為 O(n^2) ,空間複雜度為 O(1) ,在大資料量下非常耗時。

雜湊查詢:以空間換時間

考慮藉助一個雜湊表,鍵值對分別為陣列元素和元素索引。迴圈走訪陣列,每輪執行下圖所示的步驟。

  1. 判斷數字 target - nums[i] 是否在雜湊表中,若是,則直接返回這兩個元素的索引。
  2. 將鍵值對 nums[i] 和索引 i 新增進雜湊表。

=== "<1>" 輔助雜湊表求解兩數之和

=== "<2>" two_sum_hashtable_step2

=== "<3>" two_sum_hashtable_step3

實現程式碼如下所示,僅需單層迴圈即可:

[file]{two_sum}-[class]{}-[func]{two_sum_hash_table}

此方法透過雜湊查詢將時間複雜度從 O(n^2) 降至 O(n) ,大幅提升執行效率。

由於需要維護一個額外的雜湊表,因此空間複雜度為 O(n)儘管如此,該方法的整體時空效率更為均衡,因此它是本題的最優解法