hello-algo/docs/chapter_hashing/hash_collision.md
2024-04-13 21:17:44 +08:00

3131 lines
117 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
comments: true
---
# 6.2   哈希冲突
上一节提到,**通常情况下哈希函数的输入空间远大于输出空间**,因此理论上哈希冲突是不可避免的。比如,输入空间为全体整数,输出空间为数组容量大小,则必然有多个整数映射至同一桶索引。
哈希冲突会导致查询结果错误,严重影响哈希表的可用性。为了解决该问题,每当遇到哈希冲突时,我们就进行哈希表扩容,直至冲突消失为止。此方法简单粗暴且有效,但效率太低,因为哈希表扩容需要进行大量的数据搬运与哈希值计算。为了提升效率,我们可以采用以下策略。
1. 改良哈希表数据结构,**使得哈希表可以在出现哈希冲突时正常工作**。
2. 仅在必要时,即当哈希冲突比较严重时,才执行扩容操作。
哈希表的结构改良方法主要包括“链式地址”和“开放寻址”。
## 6.2.1   链式地址
在原始哈希表中,每个桶仅能存储一个键值对。<u>链式地址separate chaining</u>将单个元素转换为链表,将键值对作为链表节点,将所有发生冲突的键值对都存储在同一链表中。图 6-5 展示了一个链式地址哈希表的例子。
![链式地址哈希表](hash_collision.assets/hash_table_chaining.png){ class="animation-figure" }
<p align="center"> 图 6-5 &nbsp; 链式地址哈希表 </p>
基于链式地址实现的哈希表的操作方法发生了以下变化。
- **查询元素**:输入 `key` ,经过哈希函数得到桶索引,即可访问链表头节点,然后遍历链表并对比 `key` 以查找目标键值对。
- **添加元素**:首先通过哈希函数访问链表头节点,然后将节点(键值对)添加到链表中。
- **删除元素**:根据哈希函数的结果访问链表头部,接着遍历链表以查找目标节点并将其删除。
链式地址存在以下局限性。
- **占用空间增大**:链表包含节点指针,它相比数组更加耗费内存空间。
- **查询效率降低**:因为需要线性遍历链表来查找对应元素。
以下代码给出了链式地址哈希表的简单实现,需要注意两点。
- 使用列表(动态数组)代替链表,从而简化代码。在这种设定下,哈希表(数组)包含多个桶,每个桶都是一个列表。
- 以下实现包含哈希表扩容方法。当负载因子超过 $\frac{2}{3}$ 时,我们将哈希表扩容至原先的 $2$ 倍。
=== "Python"
```python title="hash_map_chaining.py"
class HashMapChaining:
"""链式地址哈希表"""
def __init__(self):
"""构造方法"""
self.size = 0 # 键值对数量
self.capacity = 4 # 哈希表容量
self.load_thres = 2.0 / 3.0 # 触发扩容的负载因子阈值
self.extend_ratio = 2 # 扩容倍数
self.buckets = [[] for _ in range(self.capacity)] # 桶数组
def hash_func(self, key: int) -> int:
"""哈希函数"""
return key % self.capacity
def load_factor(self) -> float:
"""负载因子"""
return self.size / self.capacity
def get(self, key: int) -> str | None:
"""查询操作"""
index = self.hash_func(key)
bucket = self.buckets[index]
# 遍历桶,若找到 key ,则返回对应 val
for pair in bucket:
if pair.key == key:
return pair.val
# 若未找到 key ,则返回 None
return None
def put(self, key: int, val: str):
"""添加操作"""
# 当负载因子超过阈值时,执行扩容
if self.load_factor() > self.load_thres:
self.extend()
index = self.hash_func(key)
bucket = self.buckets[index]
# 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for pair in bucket:
if pair.key == key:
pair.val = val
return
# 若无该 key ,则将键值对添加至尾部
pair = Pair(key, val)
bucket.append(pair)
self.size += 1
def remove(self, key: int):
"""删除操作"""
index = self.hash_func(key)
bucket = self.buckets[index]
# 遍历桶,从中删除键值对
for pair in bucket:
if pair.key == key:
bucket.remove(pair)
self.size -= 1
break
def extend(self):
"""扩容哈希表"""
# 暂存原哈希表
buckets = self.buckets
# 初始化扩容后的新哈希表
self.capacity *= self.extend_ratio
self.buckets = [[] for _ in range(self.capacity)]
self.size = 0
# 将键值对从原哈希表搬运至新哈希表
for bucket in buckets:
for pair in bucket:
self.put(pair.key, pair.val)
def print(self):
"""打印哈希表"""
for bucket in self.buckets:
res = []
for pair in bucket:
res.append(str(pair.key) + " -> " + pair.val)
print(res)
```
=== "C++"
```cpp title="hash_map_chaining.cpp"
/* 链式地址哈希表 */
class HashMapChaining {
private:
int size; // 键值对数量
int capacity; // 哈希表容量
double loadThres; // 触发扩容的负载因子阈值
int extendRatio; // 扩容倍数
vector<vector<Pair *>> buckets; // 桶数组
public:
/* 构造方法 */
HashMapChaining() : size(0), capacity(4), loadThres(2.0 / 3.0), extendRatio(2) {
buckets.resize(capacity);
}
/* 析构方法 */
~HashMapChaining() {
for (auto &bucket : buckets) {
for (Pair *pair : bucket) {
// 释放内存
delete pair;
}
}
}
/* 哈希函数 */
int hashFunc(int key) {
return key % capacity;
}
/* 负载因子 */
double loadFactor() {
return (double)size / (double)capacity;
}
/* 查询操作 */
string get(int key) {
int index = hashFunc(key);
// 遍历桶,若找到 key ,则返回对应 val
for (Pair *pair : buckets[index]) {
if (pair->key == key) {
return pair->val;
}
}
// 若未找到 key ,则返回空字符串
return "";
}
/* 添加操作 */
void put(int key, string val) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor() > loadThres) {
extend();
}
int index = hashFunc(key);
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for (Pair *pair : buckets[index]) {
if (pair->key == key) {
pair->val = val;
return;
}
}
// 若无该 key ,则将键值对添加至尾部
buckets[index].push_back(new Pair(key, val));
size++;
}
/* 删除操作 */
void remove(int key) {
int index = hashFunc(key);
auto &bucket = buckets[index];
// 遍历桶,从中删除键值对
for (int i = 0; i < bucket.size(); i++) {
if (bucket[i]->key == key) {
Pair *tmp = bucket[i];
bucket.erase(bucket.begin() + i); // 从中删除键值对
delete tmp; // 释放内存
size--;
return;
}
}
}
/* 扩容哈希表 */
void extend() {
// 暂存原哈希表
vector<vector<Pair *>> bucketsTmp = buckets;
// 初始化扩容后的新哈希表
capacity *= extendRatio;
buckets.clear();
buckets.resize(capacity);
size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (auto &bucket : bucketsTmp) {
for (Pair *pair : bucket) {
put(pair->key, pair->val);
// 释放内存
delete pair;
}
}
}
/* 打印哈希表 */
void print() {
for (auto &bucket : buckets) {
cout << "[";
for (Pair *pair : bucket) {
cout << pair->key << " -> " << pair->val << ", ";
}
cout << "]\n";
}
}
};
```
=== "Java"
```java title="hash_map_chaining.java"
/* 链式地址哈希表 */
class HashMapChaining {
int size; // 键值对数量
int capacity; // 哈希表容量
double loadThres; // 触发扩容的负载因子阈值
int extendRatio; // 扩容倍数
List<List<Pair>> buckets; // 桶数组
/* 构造方法 */
public HashMapChaining() {
size = 0;
capacity = 4;
loadThres = 2.0 / 3.0;
extendRatio = 2;
buckets = new ArrayList<>(capacity);
for (int i = 0; i < capacity; i++) {
buckets.add(new ArrayList<>());
}
}
/* 哈希函数 */
int hashFunc(int key) {
return key % capacity;
}
/* 负载因子 */
double loadFactor() {
return (double) size / capacity;
}
/* 查询操作 */
String get(int key) {
int index = hashFunc(key);
List<Pair> bucket = buckets.get(index);
// 遍历桶,若找到 key ,则返回对应 val
for (Pair pair : bucket) {
if (pair.key == key) {
return pair.val;
}
}
// 若未找到 key ,则返回 null
return null;
}
/* 添加操作 */
void put(int key, String val) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor() > loadThres) {
extend();
}
int index = hashFunc(key);
List<Pair> bucket = buckets.get(index);
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for (Pair pair : bucket) {
if (pair.key == key) {
pair.val = val;
return;
}
}
// 若无该 key ,则将键值对添加至尾部
Pair pair = new Pair(key, val);
bucket.add(pair);
size++;
}
/* 删除操作 */
void remove(int key) {
int index = hashFunc(key);
List<Pair> bucket = buckets.get(index);
// 遍历桶,从中删除键值对
for (Pair pair : bucket) {
if (pair.key == key) {
bucket.remove(pair);
size--;
break;
}
}
}
/* 扩容哈希表 */
void extend() {
// 暂存原哈希表
List<List<Pair>> bucketsTmp = buckets;
// 初始化扩容后的新哈希表
capacity *= extendRatio;
buckets = new ArrayList<>(capacity);
for (int i = 0; i < capacity; i++) {
buckets.add(new ArrayList<>());
}
size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (List<Pair> bucket : bucketsTmp) {
for (Pair pair : bucket) {
put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
void print() {
for (List<Pair> bucket : buckets) {
List<String> res = new ArrayList<>();
for (Pair pair : bucket) {
res.add(pair.key + " -> " + pair.val);
}
System.out.println(res);
}
}
}
```
=== "C#"
```csharp title="hash_map_chaining.cs"
/* 链式地址哈希表 */
class HashMapChaining {
int size; // 键值对数量
int capacity; // 哈希表容量
double loadThres; // 触发扩容的负载因子阈值
int extendRatio; // 扩容倍数
List<List<Pair>> buckets; // 桶数组
/* 构造方法 */
public HashMapChaining() {
size = 0;
capacity = 4;
loadThres = 2.0 / 3.0;
extendRatio = 2;
buckets = new List<List<Pair>>(capacity);
for (int i = 0; i < capacity; i++) {
buckets.Add([]);
}
}
/* 哈希函数 */
int HashFunc(int key) {
return key % capacity;
}
/* 负载因子 */
double LoadFactor() {
return (double)size / capacity;
}
/* 查询操作 */
public string? Get(int key) {
int index = HashFunc(key);
// 遍历桶若找到 key 则返回对应 val
foreach (Pair pair in buckets[index]) {
if (pair.key == key) {
return pair.val;
}
}
// 若未找到 key 则返回 null
return null;
}
/* 添加操作 */
public void Put(int key, string val) {
// 当负载因子超过阈值时执行扩容
if (LoadFactor() > loadThres) {
Extend();
}
int index = HashFunc(key);
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
foreach (Pair pair in buckets[index]) {
if (pair.key == key) {
pair.val = val;
return;
}
}
// 若无该 key ,则将键值对添加至尾部
buckets[index].Add(new Pair(key, val));
size++;
}
/* 删除操作 */
public void Remove(int key) {
int index = HashFunc(key);
// 遍历桶,从中删除键值对
foreach (Pair pair in buckets[index].ToList()) {
if (pair.key == key) {
buckets[index].Remove(pair);
size--;
break;
}
}
}
/* 扩容哈希表 */
void Extend() {
// 暂存原哈希表
List<List<Pair>> bucketsTmp = buckets;
// 初始化扩容后的新哈希表
capacity *= extendRatio;
buckets = new List<List<Pair>>(capacity);
for (int i = 0; i < capacity; i++) {
buckets.Add([]);
}
size = 0;
// 将键值对从原哈希表搬运至新哈希表
foreach (List<Pair> bucket in bucketsTmp) {
foreach (Pair pair in bucket) {
Put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
public void Print() {
foreach (List<Pair> bucket in buckets) {
List<string> res = [];
foreach (Pair pair in bucket) {
res.Add(pair.key + " -> " + pair.val);
}
foreach (string kv in res) {
Console.WriteLine(kv);
}
}
}
}
```
=== "Go"
```go title="hash_map_chaining.go"
/* 链式地址哈希表 */
type hashMapChaining struct {
size int // 键值对数量
capacity int // 哈希表容量
loadThres float64 // 触发扩容的负载因子阈值
extendRatio int // 扩容倍数
buckets [][]pair // 桶数组
}
/* 构造方法 */
func newHashMapChaining() *hashMapChaining {
buckets := make([][]pair, 4)
for i := 0; i < 4; i++ {
buckets[i] = make([]pair, 0)
}
return &hashMapChaining{
size: 0,
capacity: 4,
loadThres: 2.0 / 3.0,
extendRatio: 2,
buckets: buckets,
}
}
/* 哈希函数 */
func (m *hashMapChaining) hashFunc(key int) int {
return key % m.capacity
}
/* 负载因子 */
func (m *hashMapChaining) loadFactor() float64 {
return float64(m.size) / float64(m.capacity)
}
/* 查询操作 */
func (m *hashMapChaining) get(key int) string {
idx := m.hashFunc(key)
bucket := m.buckets[idx]
// 遍历桶若找到 key 则返回对应 val
for _, p := range bucket {
if p.key == key {
return p.val
}
}
// 若未找到 key 则返回空字符串
return ""
}
/* 添加操作 */
func (m *hashMapChaining) put(key int, val string) {
// 当负载因子超过阈值时执行扩容
if m.loadFactor() > m.loadThres {
m.extend()
}
idx := m.hashFunc(key)
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for i := range m.buckets[idx] {
if m.buckets[idx][i].key == key {
m.buckets[idx][i].val = val
return
}
}
// 若无该 key ,则将键值对添加至尾部
p := pair{
key: key,
val: val,
}
m.buckets[idx] = append(m.buckets[idx], p)
m.size += 1
}
/* 删除操作 */
func (m *hashMapChaining) remove(key int) {
idx := m.hashFunc(key)
// 遍历桶,从中删除键值对
for i, p := range m.buckets[idx] {
if p.key == key {
// 切片删除
m.buckets[idx] = append(m.buckets[idx][:i], m.buckets[idx][i+1:]...)
m.size -= 1
break
}
}
}
/* 扩容哈希表 */
func (m *hashMapChaining) extend() {
// 暂存原哈希表
tmpBuckets := make([][]pair, len(m.buckets))
for i := 0; i < len(m.buckets); i++ {
tmpBuckets[i] = make([]pair, len(m.buckets[i]))
copy(tmpBuckets[i], m.buckets[i])
}
// 初始化扩容后的新哈希表
m.capacity *= m.extendRatio
m.buckets = make([][]pair, m.capacity)
for i := 0; i < m.capacity; i++ {
m.buckets[i] = make([]pair, 0)
}
m.size = 0
// 将键值对从原哈希表搬运至新哈希表
for _, bucket := range tmpBuckets {
for _, p := range bucket {
m.put(p.key, p.val)
}
}
}
/* 打印哈希表 */
func (m *hashMapChaining) print() {
var builder strings.Builder
for _, bucket := range m.buckets {
builder.WriteString("[")
for _, p := range bucket {
builder.WriteString(strconv.Itoa(p.key) + " -> " + p.val + " ")
}
builder.WriteString("]")
fmt.Println(builder.String())
builder.Reset()
}
}
```
=== "Swift"
```swift title="hash_map_chaining.swift"
/* 链式地址哈希表 */
class HashMapChaining {
var size: Int // 键值对数量
var capacity: Int // 哈希表容量
var loadThres: Double // 触发扩容的负载因子阈值
var extendRatio: Int // 扩容倍数
var buckets: [[Pair]] // 桶数组
/* 构造方法 */
init() {
size = 0
capacity = 4
loadThres = 2.0 / 3.0
extendRatio = 2
buckets = Array(repeating: [], count: capacity)
}
/* 哈希函数 */
func hashFunc(key: Int) -> Int {
key % capacity
}
/* 负载因子 */
func loadFactor() -> Double {
Double(size) / Double(capacity)
}
/* 查询操作 */
func get(key: Int) -> String? {
let index = hashFunc(key: key)
let bucket = buckets[index]
// 遍历桶,若找到 key ,则返回对应 val
for pair in bucket {
if pair.key == key {
return pair.val
}
}
// 若未找到 key ,则返回 nil
return nil
}
/* 添加操作 */
func put(key: Int, val: String) {
// 当负载因子超过阈值时,执行扩容
if loadFactor() > loadThres {
extend()
}
let index = hashFunc(key: key)
let bucket = buckets[index]
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for pair in bucket {
if pair.key == key {
pair.val = val
return
}
}
// 若无该 key ,则将键值对添加至尾部
let pair = Pair(key: key, val: val)
buckets[index].append(pair)
size += 1
}
/* 删除操作 */
func remove(key: Int) {
let index = hashFunc(key: key)
let bucket = buckets[index]
// 遍历桶,从中删除键值对
for (pairIndex, pair) in bucket.enumerated() {
if pair.key == key {
buckets[index].remove(at: pairIndex)
size -= 1
break
}
}
}
/* 扩容哈希表 */
func extend() {
// 暂存原哈希表
let bucketsTmp = buckets
// 初始化扩容后的新哈希表
capacity *= extendRatio
buckets = Array(repeating: [], count: capacity)
size = 0
// 将键值对从原哈希表搬运至新哈希表
for bucket in bucketsTmp {
for pair in bucket {
put(key: pair.key, val: pair.val)
}
}
}
/* 打印哈希表 */
func print() {
for bucket in buckets {
let res = bucket.map { "\($0.key) -> \($0.val)" }
Swift.print(res)
}
}
}
```
=== "JS"
```javascript title="hash_map_chaining.js"
/* 链式地址哈希表 */
class HashMapChaining {
#size; // 键值对数量
#capacity; // 哈希表容量
#loadThres; // 触发扩容的负载因子阈值
#extendRatio; // 扩容倍数
#buckets; // 桶数组
/* 构造方法 */
constructor() {
this.#size = 0;
this.#capacity = 4;
this.#loadThres = 2.0 / 3.0;
this.#extendRatio = 2;
this.#buckets = new Array(this.#capacity).fill(null).map((x) => []);
}
/* 哈希函数 */
#hashFunc(key) {
return key % this.#capacity;
}
/* 负载因子 */
#loadFactor() {
return this.#size / this.#capacity;
}
/* 查询操作 */
get(key) {
const index = this.#hashFunc(key);
const bucket = this.#buckets[index];
// 遍历桶,若找到 key ,则返回对应 val
for (const pair of bucket) {
if (pair.key === key) {
return pair.val;
}
}
// 若未找到 key ,则返回 null
return null;
}
/* 添加操作 */
put(key, val) {
// 当负载因子超过阈值时,执行扩容
if (this.#loadFactor() > this.#loadThres) {
this.#extend();
}
const index = this.#hashFunc(key);
const bucket = this.#buckets[index];
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for (const pair of bucket) {
if (pair.key === key) {
pair.val = val;
return;
}
}
// 若无该 key ,则将键值对添加至尾部
const pair = new Pair(key, val);
bucket.push(pair);
this.#size++;
}
/* 删除操作 */
remove(key) {
const index = this.#hashFunc(key);
let bucket = this.#buckets[index];
// 遍历桶,从中删除键值对
for (let i = 0; i < bucket.length; i++) {
if (bucket[i].key === key) {
bucket.splice(i, 1);
this.#size--;
break;
}
}
}
/* 扩容哈希表 */
#extend() {
// 暂存原哈希表
const bucketsTmp = this.#buckets;
// 初始化扩容后的新哈希表
this.#capacity *= this.#extendRatio;
this.#buckets = new Array(this.#capacity).fill(null).map((x) => []);
this.#size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (const bucket of bucketsTmp) {
for (const pair of bucket) {
this.put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
print() {
for (const bucket of this.#buckets) {
let res = [];
for (const pair of bucket) {
res.push(pair.key + ' -> ' + pair.val);
}
console.log(res);
}
}
}
```
=== "TS"
```typescript title="hash_map_chaining.ts"
/* 链式地址哈希表 */
class HashMapChaining {
#size: number; // 键值对数量
#capacity: number; // 哈希表容量
#loadThres: number; // 触发扩容的负载因子阈值
#extendRatio: number; // 扩容倍数
#buckets: Pair[][]; // 桶数组
/* 构造方法 */
constructor() {
this.#size = 0;
this.#capacity = 4;
this.#loadThres = 2.0 / 3.0;
this.#extendRatio = 2;
this.#buckets = new Array(this.#capacity).fill(null).map((x) => []);
}
/* 哈希函数 */
#hashFunc(key: number): number {
return key % this.#capacity;
}
/* 负载因子 */
#loadFactor(): number {
return this.#size / this.#capacity;
}
/* 查询操作 */
get(key: number): string | null {
const index = this.#hashFunc(key);
const bucket = this.#buckets[index];
// 遍历桶,若找到 key ,则返回对应 val
for (const pair of bucket) {
if (pair.key === key) {
return pair.val;
}
}
// 若未找到 key ,则返回 null
return null;
}
/* 添加操作 */
put(key: number, val: string): void {
// 当负载因子超过阈值时,执行扩容
if (this.#loadFactor() > this.#loadThres) {
this.#extend();
}
const index = this.#hashFunc(key);
const bucket = this.#buckets[index];
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for (const pair of bucket) {
if (pair.key === key) {
pair.val = val;
return;
}
}
// 若无该 key ,则将键值对添加至尾部
const pair = new Pair(key, val);
bucket.push(pair);
this.#size++;
}
/* 删除操作 */
remove(key: number): void {
const index = this.#hashFunc(key);
let bucket = this.#buckets[index];
// 遍历桶,从中删除键值对
for (let i = 0; i < bucket.length; i++) {
if (bucket[i].key === key) {
bucket.splice(i, 1);
this.#size--;
break;
}
}
}
/* 扩容哈希表 */
#extend(): void {
// 暂存原哈希表
const bucketsTmp = this.#buckets;
// 初始化扩容后的新哈希表
this.#capacity *= this.#extendRatio;
this.#buckets = new Array(this.#capacity).fill(null).map((x) => []);
this.#size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (const bucket of bucketsTmp) {
for (const pair of bucket) {
this.put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
print(): void {
for (const bucket of this.#buckets) {
let res = [];
for (const pair of bucket) {
res.push(pair.key + ' -> ' + pair.val);
}
console.log(res);
}
}
}
```
=== "Dart"
```dart title="hash_map_chaining.dart"
/* 链式地址哈希表 */
class HashMapChaining {
late int size; // 键值对数量
late int capacity; // 哈希表容量
late double loadThres; // 触发扩容的负载因子阈值
late int extendRatio; // 扩容倍数
late List<List<Pair>> buckets; // 桶数组
/* 构造方法 */
HashMapChaining() {
size = 0;
capacity = 4;
loadThres = 2.0 / 3.0;
extendRatio = 2;
buckets = List.generate(capacity, (_) => []);
}
/* 哈希函数 */
int hashFunc(int key) {
return key % capacity;
}
/* 负载因子 */
double loadFactor() {
return size / capacity;
}
/* 查询操作 */
String? get(int key) {
int index = hashFunc(key);
List<Pair> bucket = buckets[index];
// 遍历桶,若找到 key ,则返回对应 val
for (Pair pair in bucket) {
if (pair.key == key) {
return pair.val;
}
}
// 若未找到 key ,则返回 null
return null;
}
/* 添加操作 */
void put(int key, String val) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor() > loadThres) {
extend();
}
int index = hashFunc(key);
List<Pair> bucket = buckets[index];
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for (Pair pair in bucket) {
if (pair.key == key) {
pair.val = val;
return;
}
}
// 若无该 key ,则将键值对添加至尾部
Pair pair = Pair(key, val);
bucket.add(pair);
size++;
}
/* 删除操作 */
void remove(int key) {
int index = hashFunc(key);
List<Pair> bucket = buckets[index];
// 遍历桶,从中删除键值对
for (Pair pair in bucket) {
if (pair.key == key) {
bucket.remove(pair);
size--;
break;
}
}
}
/* 扩容哈希表 */
void extend() {
// 暂存原哈希表
List<List<Pair>> bucketsTmp = buckets;
// 初始化扩容后的新哈希表
capacity *= extendRatio;
buckets = List.generate(capacity, (_) => []);
size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (List<Pair> bucket in bucketsTmp) {
for (Pair pair in bucket) {
put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
void printHashMap() {
for (List<Pair> bucket in buckets) {
List<String> res = [];
for (Pair pair in bucket) {
res.add("${pair.key} -> ${pair.val}");
}
print(res);
}
}
}
```
=== "Rust"
```rust title="hash_map_chaining.rs"
/* 链式地址哈希表 */
struct HashMapChaining {
size: i32,
capacity: i32,
load_thres: f32,
extend_ratio: i32,
buckets: Vec<Vec<Pair>>,
}
impl HashMapChaining {
/* 构造方法 */
fn new() -> Self {
Self {
size: 0,
capacity: 4,
load_thres: 2.0 / 3.0,
extend_ratio: 2,
buckets: vec![vec![]; 4],
}
}
/* 哈希函数 */
fn hash_func(&self, key: i32) -> usize {
key as usize % self.capacity as usize
}
/* 负载因子 */
fn load_factor(&self) -> f32 {
self.size as f32 / self.capacity as f32
}
/* 删除操作 */
fn remove(&mut self, key: i32) -> Option<String> {
let index = self.hash_func(key);
let bucket = &mut self.buckets[index];
// 遍历桶,从中删除键值对
for i in 0..bucket.len() {
if bucket[i].key == key {
let pair = bucket.remove(i);
self.size -= 1;
return Some(pair.val);
}
}
// 若未找到 key ,则返回 None
None
}
/* 扩容哈希表 */
fn extend(&mut self) {
// 暂存原哈希表
let buckets_tmp = std::mem::replace(&mut self.buckets, vec![]);
// 初始化扩容后的新哈希表
self.capacity *= self.extend_ratio;
self.buckets = vec![Vec::new(); self.capacity as usize];
self.size = 0;
// 将键值对从原哈希表搬运至新哈希表
for bucket in buckets_tmp {
for pair in bucket {
self.put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
fn print(&self) {
for bucket in &self.buckets {
let mut res = Vec::new();
for pair in bucket {
res.push(format!("{} -> {}", pair.key, pair.val));
}
println!("{:?}", res);
}
}
/* 添加操作 */
fn put(&mut self, key: i32, val: String) {
// 当负载因子超过阈值时,执行扩容
if self.load_factor() > self.load_thres {
self.extend();
}
let index = self.hash_func(key);
let bucket = &mut self.buckets[index];
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for pair in bucket {
if pair.key == key {
pair.val = val;
return;
}
}
let bucket = &mut self.buckets[index];
// 若无该 key ,则将键值对添加至尾部
let pair = Pair { key, val };
bucket.push(pair);
self.size += 1;
}
/* 查询操作 */
fn get(&self, key: i32) -> Option<&str> {
let index = self.hash_func(key);
let bucket = &self.buckets[index];
// 遍历桶,若找到 key ,则返回对应 val
for pair in bucket {
if pair.key == key {
return Some(&pair.val);
}
}
// 若未找到 key ,则返回 None
None
}
}
```
=== "C"
```c title="hash_map_chaining.c"
/* 链表节点 */
typedef struct Node {
Pair *pair;
struct Node *next;
} Node;
/* 链式地址哈希表 */
typedef struct {
int size; // 键值对数量
int capacity; // 哈希表容量
double loadThres; // 触发扩容的负载因子阈值
int extendRatio; // 扩容倍数
Node **buckets; // 桶数组
} HashMapChaining;
/* 构造函数 */
HashMapChaining *newHashMapChaining() {
HashMapChaining *hashMap = (HashMapChaining *)malloc(sizeof(HashMapChaining));
hashMap->size = 0;
hashMap->capacity = 4;
hashMap->loadThres = 2.0 / 3.0;
hashMap->extendRatio = 2;
hashMap->buckets = (Node **)malloc(hashMap->capacity * sizeof(Node *));
for (int i = 0; i < hashMap->capacity; i++) {
hashMap->buckets[i] = NULL;
}
return hashMap;
}
/* 析构函数 */
void delHashMapChaining(HashMapChaining *hashMap) {
for (int i = 0; i < hashMap->capacity; i++) {
Node *cur = hashMap->buckets[i];
while (cur) {
Node *tmp = cur;
cur = cur->next;
free(tmp->pair);
free(tmp);
}
}
free(hashMap->buckets);
free(hashMap);
}
/* 哈希函数 */
int hashFunc(HashMapChaining *hashMap, int key) {
return key % hashMap->capacity;
}
/* 负载因子 */
double loadFactor(HashMapChaining *hashMap) {
return (double)hashMap->size / (double)hashMap->capacity;
}
/* 查询操作 */
char *get(HashMapChaining *hashMap, int key) {
int index = hashFunc(hashMap, key);
// 遍历桶,若找到 key ,则返回对应 val
Node *cur = hashMap->buckets[index];
while (cur) {
if (cur->pair->key == key) {
return cur->pair->val;
}
cur = cur->next;
}
return ""; // 若未找到 key ,则返回空字符串
}
/* 添加操作 */
void put(HashMapChaining *hashMap, int key, const char *val) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor(hashMap) > hashMap->loadThres) {
extend(hashMap);
}
int index = hashFunc(hashMap, key);
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
Node *cur = hashMap->buckets[index];
while (cur) {
if (cur->pair->key == key) {
strcpy(cur->pair->val, val); // 若遇到指定 key ,则更新对应 val 并返回
return;
}
cur = cur->next;
}
// 若无该 key ,则将键值对添加至链表头部
Pair *newPair = (Pair *)malloc(sizeof(Pair));
newPair->key = key;
strcpy(newPair->val, val);
Node *newNode = (Node *)malloc(sizeof(Node));
newNode->pair = newPair;
newNode->next = hashMap->buckets[index];
hashMap->buckets[index] = newNode;
hashMap->size++;
}
/* 扩容哈希表 */
void extend(HashMapChaining *hashMap) {
// 暂存原哈希表
int oldCapacity = hashMap->capacity;
Node **oldBuckets = hashMap->buckets;
// 初始化扩容后的新哈希表
hashMap->capacity *= hashMap->extendRatio;
hashMap->buckets = (Node **)malloc(hashMap->capacity * sizeof(Node *));
for (int i = 0; i < hashMap->capacity; i++) {
hashMap->buckets[i] = NULL;
}
hashMap->size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (int i = 0; i < oldCapacity; i++) {
Node *cur = oldBuckets[i];
while (cur) {
put(hashMap, cur->pair->key, cur->pair->val);
Node *temp = cur;
cur = cur->next;
// 释放内存
free(temp->pair);
free(temp);
}
}
free(oldBuckets);
}
/* 删除操作 */
void removeItem(HashMapChaining *hashMap, int key) {
int index = hashFunc(hashMap, key);
Node *cur = hashMap->buckets[index];
Node *pre = NULL;
while (cur) {
if (cur->pair->key == key) {
// 从中删除键值对
if (pre) {
pre->next = cur->next;
} else {
hashMap->buckets[index] = cur->next;
}
// 释放内存
free(cur->pair);
free(cur);
hashMap->size--;
return;
}
pre = cur;
cur = cur->next;
}
}
/* 打印哈希表 */
void print(HashMapChaining *hashMap) {
for (int i = 0; i < hashMap->capacity; i++) {
Node *cur = hashMap->buckets[i];
printf("[");
while (cur) {
printf("%d -> %s, ", cur->pair->key, cur->pair->val);
cur = cur->next;
}
printf("]\n");
}
}
```
=== "Kotlin"
```kotlin title="hash_map_chaining.kt"
/* 链式地址哈希表 */
class HashMapChaining {
var size: Int // 键值对数量
var capacity: Int // 哈希表容量
val loadThres: Double // 触发扩容的负载因子阈值
val extendRatio: Int // 扩容倍数
var buckets: MutableList<MutableList<Pair>> // 桶数组
/* 构造方法 */
init {
size = 0
capacity = 4
loadThres = 2.0 / 3.0
extendRatio = 2
buckets = mutableListOf()
for (i in 0..<capacity) {
buckets.add(mutableListOf())
}
}
/* 哈希函数 */
fun hashFunc(key: Int): Int {
return key % capacity
}
/* 负载因子 */
fun loadFactor(): Double {
return (size / capacity).toDouble()
}
/* 查询操作 */
fun get(key: Int): String? {
val index = hashFunc(key)
val bucket = buckets[index]
// 遍历桶若找到 key 则返回对应 val
for (pair in bucket) {
if (pair.key == key) return pair._val
}
// 若未找到 key 则返回 null
return null
}
/* 添加操作 */
fun put(key: Int, _val: String) {
// 当负载因子超过阈值时执行扩容
if (loadFactor() > loadThres) {
extend()
}
val index = hashFunc(key)
val bucket = buckets[index]
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for (pair in bucket) {
if (pair.key == key) {
pair._val = _val
return
}
}
// 若无该 key ,则将键值对添加至尾部
val pair = Pair(key, _val)
bucket.add(pair)
size++
}
/* 删除操作 */
fun remove(key: Int) {
val index = hashFunc(key)
val bucket = buckets[index]
// 遍历桶,从中删除键值对
for (pair in bucket) {
if (pair.key == key) {
bucket.remove(pair)
size--
break
}
}
}
/* 扩容哈希表 */
fun extend() {
// 暂存原哈希表
val bucketsTmp = buckets
// 初始化扩容后的新哈希表
capacity *= extendRatio
// mutablelist 无固定大小
buckets = mutableListOf()
for (i in 0..<capacity) {
buckets.add(mutableListOf())
}
size = 0
// 将键值对从原哈希表搬运至新哈希表
for (bucket in bucketsTmp) {
for (pair in bucket) {
put(pair.key, pair._val)
}
}
}
/* 打印哈希表 */
fun print() {
for (bucket in buckets) {
val res = mutableListOf<String>()
for (pair in bucket) {
val k = pair.key
val v = pair._val
res.add("$k -> $v")
}
println(res)
}
}
}
```
=== "Ruby"
```ruby title="hash_map_chaining.rb"
[class]{HashMapChaining}-[func]{}
```
=== "Zig"
```zig title="hash_map_chaining.zig"
[class]{HashMapChaining}-[func]{}
```
??? pythontutor "可视化运行"
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=class%20Pair%3A%0A%20%20%20%20%22%22%22%E9%94%AE%E5%80%BC%E5%AF%B9%22%22%22%0A%20%20%20%20def%20__init__%28self,%20key%3A%20int,%20val%3A%20str%29%3A%0A%20%20%20%20%20%20%20%20self.key%20%3D%20key%0A%20%20%20%20%20%20%20%20self.val%20%3D%20val%0A%0Aclass%20HashMapChaining%3A%0A%20%20%20%20%22%22%22%E9%93%BE%E5%BC%8F%E5%9C%B0%E5%9D%80%E5%93%88%E5%B8%8C%E8%A1%A8%22%22%22%0A%0A%20%20%20%20def%20__init__%28self%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%9E%84%E9%80%A0%E6%96%B9%E6%B3%95%22%22%22%0A%20%20%20%20%20%20%20%20self.size%20%3D%200%0A%20%20%20%20%20%20%20%20self.capacity%20%3D%204%0A%20%20%20%20%20%20%20%20self.load_thres%20%3D%202.0%20/%203.0%0A%20%20%20%20%20%20%20%20self.extend_ratio%20%3D%202%0A%20%20%20%20%20%20%20%20self.buckets%20%3D%20%5B%5B%5D%20for%20_%20in%20range%28self.capacity%29%5D%0A%0A%20%20%20%20def%20hash_func%28self,%20key%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E5%93%88%E5%B8%8C%E5%87%BD%E6%95%B0%22%22%22%0A%20%20%20%20%20%20%20%20return%20key%20%25%20self.capacity%0A%0A%20%20%20%20def%20load_factor%28self%29%20-%3E%20float%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E8%B4%9F%E8%BD%BD%E5%9B%A0%E5%AD%90%22%22%22%0A%20%20%20%20%20%20%20%20return%20self.size%20/%20self.capacity%0A%0A%20%20%20%20def%20get%28self,%20key%3A%20int%29%20-%3E%20str%20%7C%20None%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%9F%A5%E8%AF%A2%E6%93%8D%E4%BD%9C%22%22%22%0A%20%20%20%20%20%20%20%20index%20%3D%20self.hash_func%28key%29%0A%20%20%20%20%20%20%20%20bucket%20%3D%20self.buckets%5Bindex%5D%0A%20%20%20%20%20%20%20%20for%20pair%20in%20bucket%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20pair.key%20%3D%3D%20key%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20return%20pair.val%0A%20%20%20%20%20%20%20%20return%20None%0A%0A%20%20%20%20def%20put%28self,%20key%3A%20int,%20val%3A%20str%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%B7%BB%E5%8A%A0%E6%93%8D%E4%BD%9C%22%22%22%0A%20%20%20%20%20%20%20%20if%20self.load_factor%28%29%20%3E%20self.load_thres%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20self.extend%28%29%0A%20%20%20%20%20%20%20%20index%20%3D%20self.hash_func%28key%29%0A%20%20%20%20%20%20%20%20bucket%20%3D%20self.buckets%5Bindex%5D%0A%20%20%20%20%20%20%20%20for%20pair%20in%20bucket%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20pair.key%20%3D%3D%20key%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pair.val%20%3D%20val%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20pair%20%3D%20Pair%28key,%20val%29%0A%20%20%20%20%20%20%20%20bucket.append%28pair%29%0A%20%20%20%20%20%20%20%20self.size%20%2B%3D%201%0A%0A%20%20%20%20def%20remove%28self,%20key%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E5%88%A0%E9%99%A4%E6%93%8D%E4%BD%9C%22%22%22%0A%20%20%20%20%20%20%20%20index%20%3D%20self.hash_func%28key%29%0A%20%20%20%20%20%20%20%20bucket%20%3D%20self.buckets%5Bindex%5D%0A%20%20%20%20%20%20%20%20for%20pair%20in%20bucket%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20pair.key%20%3D%3D%20key%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20bucket.remove%28pair%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20self.size%20-%3D%201%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20break%0A%0A%20%20%20%20def%20extend%28self%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%89%A9%E5%AE%B9%E5%93%88%E5%B8%8C%E8%A1%A8%22%22%22%0A%20%20%20%20%20%20%20%20buckets%20%3D%20self.buckets%0A%20%20%20%20%20%20%20%20self.capacity%20*%3D%20self.extend_ratio%0A%20%20%20%20%20%20%20%20self.buckets%20%3D%20%5B%5B%5D%20for%20_%20in%20range%28self.capacity%29%5D%0A%20%20%20%20%20%20%20%20self.size%20%3D%200%0A%20%20%20%20%20%20%20%20for%20bucket%20in%20buckets%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20for%20pair%20in%20bucket%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20self.put%28pair.key,%20pair.val%29%0A%0A%20%20%20%20def%20print%28self%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%89%93%E5%8D%B0%E5%93%88%E5%B8%8C%E8%A1%A8%22%22%22%0A%20%20%20%20%20%20%20%20for%20bucket%20in%20self.buckets%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20res%20%3D%20%5B%5D%0A%20%20%20%20%20%20%20%20%20%20%20%20for%20pair%20in%20bucket%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20res.append%28str%28pair.key%29%20%2B%20%22%20-%3E%20%22%20%2B%20pair.val%29%0A%20%20%20%20%20%20%20%20%20%20%20%20print%28res%29%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%93%88%E5%B8%8C%E8%A1%A8%0A%20%20%20%20hashmap%20%3D%20HashMapChaining%28%29%0A%0A%20%20%20%20%23%20%E6%B7%BB%E5%8A%A0%E6%93%8D%E4%BD%9C%0A%20%20%20%20hashmap.put%2812836,%20%22%E5%B0%8F%E5%93%88%22%29%0A%20%20%20%20hashmap.put%2815937,%20%22%E5%B0%8F%E5%95%B0%22%29%0A%20%20%20%20hashmap.put%2816750,%20%22%E5%B0%8F%E7%AE%97%22%29%0A%20%20%20%20hashmap.put%2813276,%20%22%E5%B0%8F%E6%B3%95%22%29%0A%20%20%20%20hashmap.put%2810583,%20%22%E5%B0%8F%E9%B8%AD%22%29%0A%0A%20%20%20%20%23%20%E6%9F%A5%E8%AF%A2%E6%93%8D%E4%BD%9C%0A%20%20%20%20name%20%3D%20hashmap.get%2813276%29%0A%0A%20%20%20%20%23%20%E5%88%A0%E9%99%A4%E6%93%8D%E4%BD%9C%0A%20%20%20%20hashmap.remove%2812836%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=class%20Pair%3A%0A%20%20%20%20%22%22%22%E9%94%AE%E5%80%BC%E5%AF%B9%22%22%22%0A%20%20%20%20def%20__init__%28self,%20key%3A%20int,%20val%3A%20str%29%3A%0A%20%20%20%20%20%20%20%20self.key%20%3D%20key%0A%20%20%20%20%20%20%20%20self.val%20%3D%20val%0A%0Aclass%20HashMapChaining%3A%0A%20%20%20%20%22%22%22%E9%93%BE%E5%BC%8F%E5%9C%B0%E5%9D%80%E5%93%88%E5%B8%8C%E8%A1%A8%22%22%22%0A%0A%20%20%20%20def%20__init__%28self%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%9E%84%E9%80%A0%E6%96%B9%E6%B3%95%22%22%22%0A%20%20%20%20%20%20%20%20self.size%20%3D%200%0A%20%20%20%20%20%20%20%20self.capacity%20%3D%204%0A%20%20%20%20%20%20%20%20self.load_thres%20%3D%202.0%20/%203.0%0A%20%20%20%20%20%20%20%20self.extend_ratio%20%3D%202%0A%20%20%20%20%20%20%20%20self.buckets%20%3D%20%5B%5B%5D%20for%20_%20in%20range%28self.capacity%29%5D%0A%0A%20%20%20%20def%20hash_func%28self,%20key%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E5%93%88%E5%B8%8C%E5%87%BD%E6%95%B0%22%22%22%0A%20%20%20%20%20%20%20%20return%20key%20%25%20self.capacity%0A%0A%20%20%20%20def%20load_factor%28self%29%20-%3E%20float%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E8%B4%9F%E8%BD%BD%E5%9B%A0%E5%AD%90%22%22%22%0A%20%20%20%20%20%20%20%20return%20self.size%20/%20self.capacity%0A%0A%20%20%20%20def%20get%28self,%20key%3A%20int%29%20-%3E%20str%20%7C%20None%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%9F%A5%E8%AF%A2%E6%93%8D%E4%BD%9C%22%22%22%0A%20%20%20%20%20%20%20%20index%20%3D%20self.hash_func%28key%29%0A%20%20%20%20%20%20%20%20bucket%20%3D%20self.buckets%5Bindex%5D%0A%20%20%20%20%20%20%20%20for%20pair%20in%20bucket%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20pair.key%20%3D%3D%20key%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20return%20pair.val%0A%20%20%20%20%20%20%20%20return%20None%0A%0A%20%20%20%20def%20put%28self,%20key%3A%20int,%20val%3A%20str%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%B7%BB%E5%8A%A0%E6%93%8D%E4%BD%9C%22%22%22%0A%20%20%20%20%20%20%20%20if%20self.load_factor%28%29%20%3E%20self.load_thres%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20self.extend%28%29%0A%20%20%20%20%20%20%20%20index%20%3D%20self.hash_func%28key%29%0A%20%20%20%20%20%20%20%20bucket%20%3D%20self.buckets%5Bindex%5D%0A%20%20%20%20%20%20%20%20for%20pair%20in%20bucket%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20pair.key%20%3D%3D%20key%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pair.val%20%3D%20val%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20pair%20%3D%20Pair%28key,%20val%29%0A%20%20%20%20%20%20%20%20bucket.append%28pair%29%0A%20%20%20%20%20%20%20%20self.size%20%2B%3D%201%0A%0A%20%20%20%20def%20remove%28self,%20key%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E5%88%A0%E9%99%A4%E6%93%8D%E4%BD%9C%22%22%22%0A%20%20%20%20%20%20%20%20index%20%3D%20self.hash_func%28key%29%0A%20%20%20%20%20%20%20%20bucket%20%3D%20self.buckets%5Bindex%5D%0A%20%20%20%20%20%20%20%20for%20pair%20in%20bucket%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20pair.key%20%3D%3D%20key%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20bucket.remove%28pair%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20self.size%20-%3D%201%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20break%0A%0A%20%20%20%20def%20extend%28self%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%89%A9%E5%AE%B9%E5%93%88%E5%B8%8C%E8%A1%A8%22%22%22%0A%20%20%20%20%20%20%20%20buckets%20%3D%20self.buckets%0A%20%20%20%20%20%20%20%20self.capacity%20*%3D%20self.extend_ratio%0A%20%20%20%20%20%20%20%20self.buckets%20%3D%20%5B%5B%5D%20for%20_%20in%20range%28self.capacity%29%5D%0A%20%20%20%20%20%20%20%20self.size%20%3D%200%0A%20%20%20%20%20%20%20%20for%20bucket%20in%20buckets%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20for%20pair%20in%20bucket%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20self.put%28pair.key,%20pair.val%29%0A%0A%20%20%20%20def%20print%28self%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%89%93%E5%8D%B0%E5%93%88%E5%B8%8C%E8%A1%A8%22%22%22%0A%20%20%20%20%20%20%20%20for%20bucket%20in%20self.buckets%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20res%20%3D%20%5B%5D%0A%20%20%20%20%20%20%20%20%20%20%20%20for%20pair%20in%20bucket%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20res.append%28str%28pair.key%29%20%2B%20%22%20-%3E%20%22%20%2B%20pair.val%29%0A%20%20%20%20%20%20%20%20%20%20%20%20print%28res%29%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%93%88%E5%B8%8C%E8%A1%A8%0A%20%20%20%20hashmap%20%3D%20HashMapChaining%28%29%0A%0A%20%20%20%20%23%20%E6%B7%BB%E5%8A%A0%E6%93%8D%E4%BD%9C%0A%20%20%20%20hashmap.put%2812836,%20%22%E5%B0%8F%E5%93%88%22%29%0A%20%20%20%20hashmap.put%2815937,%20%22%E5%B0%8F%E5%95%B0%22%29%0A%20%20%20%20hashmap.put%2816750,%20%22%E5%B0%8F%E7%AE%97%22%29%0A%20%20%20%20hashmap.put%2813276,%20%22%E5%B0%8F%E6%B3%95%22%29%0A%20%20%20%20hashmap.put%2810583,%20%22%E5%B0%8F%E9%B8%AD%22%29%0A%0A%20%20%20%20%23%20%E6%9F%A5%E8%AF%A2%E6%93%8D%E4%BD%9C%0A%20%20%20%20name%20%3D%20hashmap.get%2813276%29%0A%0A%20%20%20%20%23%20%E5%88%A0%E9%99%A4%E6%93%8D%E4%BD%9C%0A%20%20%20%20hashmap.remove%2812836%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全屏观看 ></a></div>
值得注意的是,当链表很长时,查询效率 $O(n)$ 很差。**此时可以将链表转换为“AVL 树”或“红黑树”**,从而将查询操作的时间复杂度优化至 $O(\log n)$ 。
## 6.2.2 &nbsp; 开放寻址
<u>开放寻址open addressing</u>不引入额外的数据结构,而是通过“多次探测”来处理哈希冲突,探测方式主要包括线性探测、平方探测和多次哈希等。
下面以线性探测为例,介绍开放寻址哈希表的工作机制。
### 1. &nbsp; 线性探测
线性探测采用固定步长的线性搜索来进行探测,其操作方法与普通哈希表有所不同。
- **插入元素**:通过哈希函数计算桶索引,若发现桶内已有元素,则从冲突位置向后线性遍历(步长通常为 $1$ ),直至找到空桶,将元素插入其中。
- **查找元素**:若发现哈希冲突,则使用相同步长向后进行线性遍历,直到找到对应元素,返回 `value` 即可;如果遇到空桶,说明目标元素不在哈希表中,返回 `None`
图 6-6 展示了开放寻址(线性探测)哈希表的键值对分布。根据此哈希函数,最后两位相同的 `key` 都会被映射到相同的桶。而通过线性探测,它们被依次存储在该桶以及之下的桶中。
![开放寻址(线性探测)哈希表的键值对分布](hash_collision.assets/hash_table_linear_probing.png){ class="animation-figure" }
<p align="center"> 图 6-6 &nbsp; 开放寻址(线性探测)哈希表的键值对分布 </p>
然而,**线性探测容易产生“聚集现象”**。具体来说,数组中连续被占用的位置越长,这些连续位置发生哈希冲突的可能性越大,从而进一步促使该位置的聚堆生长,形成恶性循环,最终导致增删查改操作效率劣化。
值得注意的是,**我们不能在开放寻址哈希表中直接删除元素**。这是因为删除元素会在数组内产生一个空桶 `None` ,而当查询元素时,线性探测到该空桶就会返回,因此在该空桶之下的元素都无法再被访问到,程序可能误判这些元素不存在,如图 6-7 所示。
![在开放寻址中删除元素导致的查询问题](hash_collision.assets/hash_table_open_addressing_deletion.png){ class="animation-figure" }
<p align="center"> 图 6-7 &nbsp; 在开放寻址中删除元素导致的查询问题 </p>
为了解决该问题,我们可以采用<u>懒删除lazy deletion</u>机制:它不直接从哈希表中移除元素,**而是利用一个常量 `TOMBSTONE` 来标记这个桶**。在该机制下,`None` 和 `TOMBSTONE` 都代表空桶,都可以放置键值对。但不同的是,线性探测到 `TOMBSTONE` 时应该继续遍历,因为其之下可能还存在键值对。
然而,**懒删除可能会加速哈希表的性能退化**。这是因为每次删除操作都会产生一个删除标记,随着 `TOMBSTONE` 的增加,搜索时间也会增加,因为线性探测可能需要跳过多个 `TOMBSTONE` 才能找到目标元素。
为此,考虑在线性探测中记录遇到的首个 `TOMBSTONE` 的索引,并将搜索到的目标元素与该 `TOMBSTONE` 交换位置。这样做的好处是当每次查询或添加元素时,元素会被移动至距离理想位置(探测起始点)更近的桶,从而优化查询效率。
以下代码实现了一个包含懒删除的开放寻址(线性探测)哈希表。为了更加充分地使用哈希表的空间,我们将哈希表看作一个“环形数组”,当越过数组尾部时,回到头部继续遍历。
=== "Python"
```python title="hash_map_open_addressing.py"
class HashMapOpenAddressing:
"""开放寻址哈希表"""
def __init__(self):
"""构造方法"""
self.size = 0 # 键值对数量
self.capacity = 4 # 哈希表容量
self.load_thres = 2.0 / 3.0 # 触发扩容的负载因子阈值
self.extend_ratio = 2 # 扩容倍数
self.buckets: list[Pair | None] = [None] * self.capacity # 桶数组
self.TOMBSTONE = Pair(-1, "-1") # 删除标记
def hash_func(self, key: int) -> int:
"""哈希函数"""
return key % self.capacity
def load_factor(self) -> float:
"""负载因子"""
return self.size / self.capacity
def find_bucket(self, key: int) -> int:
"""搜索 key 对应的桶索引"""
index = self.hash_func(key)
first_tombstone = -1
# 线性探测,当遇到空桶时跳出
while self.buckets[index] is not None:
# 若遇到 key ,返回对应的桶索引
if self.buckets[index].key == key:
# 若之前遇到了删除标记,则将键值对移动至该索引处
if first_tombstone != -1:
self.buckets[first_tombstone] = self.buckets[index]
self.buckets[index] = self.TOMBSTONE
return first_tombstone # 返回移动后的桶索引
return index # 返回桶索引
# 记录遇到的首个删除标记
if first_tombstone == -1 and self.buckets[index] is self.TOMBSTONE:
first_tombstone = index
# 计算桶索引,越过尾部则返回头部
index = (index + 1) % self.capacity
# 若 key 不存在,则返回添加点的索引
return index if first_tombstone == -1 else first_tombstone
def get(self, key: int) -> str:
"""查询操作"""
# 搜索 key 对应的桶索引
index = self.find_bucket(key)
# 若找到键值对,则返回对应 val
if self.buckets[index] not in [None, self.TOMBSTONE]:
return self.buckets[index].val
# 若键值对不存在,则返回 None
return None
def put(self, key: int, val: str):
"""添加操作"""
# 当负载因子超过阈值时,执行扩容
if self.load_factor() > self.load_thres:
self.extend()
# 搜索 key 对应的桶索引
index = self.find_bucket(key)
# 若找到键值对,则覆盖 val 并返回
if self.buckets[index] not in [None, self.TOMBSTONE]:
self.buckets[index].val = val
return
# 若键值对不存在,则添加该键值对
self.buckets[index] = Pair(key, val)
self.size += 1
def remove(self, key: int):
"""删除操作"""
# 搜索 key 对应的桶索引
index = self.find_bucket(key)
# 若找到键值对,则用删除标记覆盖它
if self.buckets[index] not in [None, self.TOMBSTONE]:
self.buckets[index] = self.TOMBSTONE
self.size -= 1
def extend(self):
"""扩容哈希表"""
# 暂存原哈希表
buckets_tmp = self.buckets
# 初始化扩容后的新哈希表
self.capacity *= self.extend_ratio
self.buckets = [None] * self.capacity
self.size = 0
# 将键值对从原哈希表搬运至新哈希表
for pair in buckets_tmp:
if pair not in [None, self.TOMBSTONE]:
self.put(pair.key, pair.val)
def print(self):
"""打印哈希表"""
for pair in self.buckets:
if pair is None:
print("None")
elif pair is self.TOMBSTONE:
print("TOMBSTONE")
else:
print(pair.key, "->", pair.val)
```
=== "C++"
```cpp title="hash_map_open_addressing.cpp"
/* 开放寻址哈希表 */
class HashMapOpenAddressing {
private:
int size; // 键值对数量
int capacity = 4; // 哈希表容量
const double loadThres = 2.0 / 3.0; // 触发扩容的负载因子阈值
const int extendRatio = 2; // 扩容倍数
vector<Pair *> buckets; // 桶数组
Pair *TOMBSTONE = new Pair(-1, "-1"); // 删除标记
public:
/* 构造方法 */
HashMapOpenAddressing() : size(0), buckets(capacity, nullptr) {
}
/* 析构方法 */
~HashMapOpenAddressing() {
for (Pair *pair : buckets) {
if (pair != nullptr && pair != TOMBSTONE) {
delete pair;
}
}
delete TOMBSTONE;
}
/* 哈希函数 */
int hashFunc(int key) {
return key % capacity;
}
/* 负载因子 */
double loadFactor() {
return (double)size / capacity;
}
/* 搜索 key 对应的桶索引 */
int findBucket(int key) {
int index = hashFunc(key);
int firstTombstone = -1;
// 线性探测,当遇到空桶时跳出
while (buckets[index] != nullptr) {
// 若遇到 key ,返回对应的桶索引
if (buckets[index]->key == key) {
// 若之前遇到了删除标记,则将键值对移动至该索引处
if (firstTombstone != -1) {
buckets[firstTombstone] = buckets[index];
buckets[index] = TOMBSTONE;
return firstTombstone; // 返回移动后的桶索引
}
return index; // 返回桶索引
}
// 记录遇到的首个删除标记
if (firstTombstone == -1 && buckets[index] == TOMBSTONE) {
firstTombstone = index;
}
// 计算桶索引,越过尾部则返回头部
index = (index + 1) % capacity;
}
// 若 key 不存在,则返回添加点的索引
return firstTombstone == -1 ? index : firstTombstone;
}
/* 查询操作 */
string get(int key) {
// 搜索 key 对应的桶索引
int index = findBucket(key);
// 若找到键值对,则返回对应 val
if (buckets[index] != nullptr && buckets[index] != TOMBSTONE) {
return buckets[index]->val;
}
// 若键值对不存在,则返回空字符串
return "";
}
/* 添加操作 */
void put(int key, string val) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor() > loadThres) {
extend();
}
// 搜索 key 对应的桶索引
int index = findBucket(key);
// 若找到键值对,则覆盖 val 并返回
if (buckets[index] != nullptr && buckets[index] != TOMBSTONE) {
buckets[index]->val = val;
return;
}
// 若键值对不存在,则添加该键值对
buckets[index] = new Pair(key, val);
size++;
}
/* 删除操作 */
void remove(int key) {
// 搜索 key 对应的桶索引
int index = findBucket(key);
// 若找到键值对,则用删除标记覆盖它
if (buckets[index] != nullptr && buckets[index] != TOMBSTONE) {
delete buckets[index];
buckets[index] = TOMBSTONE;
size--;
}
}
/* 扩容哈希表 */
void extend() {
// 暂存原哈希表
vector<Pair *> bucketsTmp = buckets;
// 初始化扩容后的新哈希表
capacity *= extendRatio;
buckets = vector<Pair *>(capacity, nullptr);
size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (Pair *pair : bucketsTmp) {
if (pair != nullptr && pair != TOMBSTONE) {
put(pair->key, pair->val);
delete pair;
}
}
}
/* 打印哈希表 */
void print() {
for (Pair *pair : buckets) {
if (pair == nullptr) {
cout << "nullptr" << endl;
} else if (pair == TOMBSTONE) {
cout << "TOMBSTONE" << endl;
} else {
cout << pair->key << " -> " << pair->val << endl;
}
}
}
};
```
=== "Java"
```java title="hash_map_open_addressing.java"
/* 开放寻址哈希表 */
class HashMapOpenAddressing {
private int size; // 键值对数量
private int capacity = 4; // 哈希表容量
private final double loadThres = 2.0 / 3.0; // 触发扩容的负载因子阈值
private final int extendRatio = 2; // 扩容倍数
private Pair[] buckets; // 桶数组
private final Pair TOMBSTONE = new Pair(-1, "-1"); // 删除标记
/* 构造方法 */
public HashMapOpenAddressing() {
size = 0;
buckets = new Pair[capacity];
}
/* 哈希函数 */
private int hashFunc(int key) {
return key % capacity;
}
/* 负载因子 */
private double loadFactor() {
return (double) size / capacity;
}
/* 搜索 key 对应的桶索引 */
private int findBucket(int key) {
int index = hashFunc(key);
int firstTombstone = -1;
// 线性探测当遇到空桶时跳出
while (buckets[index] != null) {
// 若遇到 key 返回对应的桶索引
if (buckets[index].key == key) {
// 若之前遇到了删除标记则将键值对移动至该索引处
if (firstTombstone != -1) {
buckets[firstTombstone] = buckets[index];
buckets[index] = TOMBSTONE;
return firstTombstone; // 返回移动后的桶索引
}
return index; // 返回桶索引
}
// 记录遇到的首个删除标记
if (firstTombstone == -1 && buckets[index] == TOMBSTONE) {
firstTombstone = index;
}
// 计算桶索引越过尾部则返回头部
index = (index + 1) % capacity;
}
// key 不存在则返回添加点的索引
return firstTombstone == -1 ? index : firstTombstone;
}
/* 查询操作 */
public String get(int key) {
// 搜索 key 对应的桶索引
int index = findBucket(key);
// 若找到键值对则返回对应 val
if (buckets[index] != null && buckets[index] != TOMBSTONE) {
return buckets[index].val;
}
// 若键值对不存在则返回 null
return null;
}
/* 添加操作 */
public void put(int key, String val) {
// 当负载因子超过阈值时执行扩容
if (loadFactor() > loadThres) {
extend();
}
// 搜索 key 对应的桶索引
int index = findBucket(key);
// 若找到键值对,则覆盖 val 并返回
if (buckets[index] != null && buckets[index] != TOMBSTONE) {
buckets[index].val = val;
return;
}
// 若键值对不存在,则添加该键值对
buckets[index] = new Pair(key, val);
size++;
}
/* 删除操作 */
public void remove(int key) {
// 搜索 key 对应的桶索引
int index = findBucket(key);
// 若找到键值对,则用删除标记覆盖它
if (buckets[index] != null && buckets[index] != TOMBSTONE) {
buckets[index] = TOMBSTONE;
size--;
}
}
/* 扩容哈希表 */
private void extend() {
// 暂存原哈希表
Pair[] bucketsTmp = buckets;
// 初始化扩容后的新哈希表
capacity *= extendRatio;
buckets = new Pair[capacity];
size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (Pair pair : bucketsTmp) {
if (pair != null && pair != TOMBSTONE) {
put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
public void print() {
for (Pair pair : buckets) {
if (pair == null) {
System.out.println("null");
} else if (pair == TOMBSTONE) {
System.out.println("TOMBSTONE");
} else {
System.out.println(pair.key + " -> " + pair.val);
}
}
}
}
```
=== "C#"
```csharp title="hash_map_open_addressing.cs"
/* 开放寻址哈希表 */
class HashMapOpenAddressing {
int size; // 键值对数量
int capacity = 4; // 哈希表容量
double loadThres = 2.0 / 3.0; // 触发扩容的负载因子阈值
int extendRatio = 2; // 扩容倍数
Pair[] buckets; // 桶数组
Pair TOMBSTONE = new(-1, "-1"); // 删除标记
/* 构造方法 */
public HashMapOpenAddressing() {
size = 0;
buckets = new Pair[capacity];
}
/* 哈希函数 */
int HashFunc(int key) {
return key % capacity;
}
/* 负载因子 */
double LoadFactor() {
return (double)size / capacity;
}
/* 搜索 key 对应的桶索引 */
int FindBucket(int key) {
int index = HashFunc(key);
int firstTombstone = -1;
// 线性探测,当遇到空桶时跳出
while (buckets[index] != null) {
// 若遇到 key ,返回对应的桶索引
if (buckets[index].key == key) {
// 若之前遇到了删除标记,则将键值对移动至该索引处
if (firstTombstone != -1) {
buckets[firstTombstone] = buckets[index];
buckets[index] = TOMBSTONE;
return firstTombstone; // 返回移动后的桶索引
}
return index; // 返回桶索引
}
// 记录遇到的首个删除标记
if (firstTombstone == -1 && buckets[index] == TOMBSTONE) {
firstTombstone = index;
}
// 计算桶索引,越过尾部则返回头部
index = (index + 1) % capacity;
}
// 若 key 不存在,则返回添加点的索引
return firstTombstone == -1 ? index : firstTombstone;
}
/* 查询操作 */
public string? Get(int key) {
// 搜索 key 对应的桶索引
int index = FindBucket(key);
// 若找到键值对,则返回对应 val
if (buckets[index] != null && buckets[index] != TOMBSTONE) {
return buckets[index].val;
}
// 若键值对不存在,则返回 null
return null;
}
/* 添加操作 */
public void Put(int key, string val) {
// 当负载因子超过阈值时,执行扩容
if (LoadFactor() > loadThres) {
Extend();
}
// 搜索 key 对应的桶索引
int index = FindBucket(key);
// 若找到键值对,则覆盖 val 并返回
if (buckets[index] != null && buckets[index] != TOMBSTONE) {
buckets[index].val = val;
return;
}
// 若键值对不存在,则添加该键值对
buckets[index] = new Pair(key, val);
size++;
}
/* 删除操作 */
public void Remove(int key) {
// 搜索 key 对应的桶索引
int index = FindBucket(key);
// 若找到键值对,则用删除标记覆盖它
if (buckets[index] != null && buckets[index] != TOMBSTONE) {
buckets[index] = TOMBSTONE;
size--;
}
}
/* 扩容哈希表 */
void Extend() {
// 暂存原哈希表
Pair[] bucketsTmp = buckets;
// 初始化扩容后的新哈希表
capacity *= extendRatio;
buckets = new Pair[capacity];
size = 0;
// 将键值对从原哈希表搬运至新哈希表
foreach (Pair pair in bucketsTmp) {
if (pair != null && pair != TOMBSTONE) {
Put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
public void Print() {
foreach (Pair pair in buckets) {
if (pair == null) {
Console.WriteLine("null");
} else if (pair == TOMBSTONE) {
Console.WriteLine("TOMBSTONE");
} else {
Console.WriteLine(pair.key + " -> " + pair.val);
}
}
}
}
```
=== "Go"
```go title="hash_map_open_addressing.go"
/* 开放寻址哈希表 */
type hashMapOpenAddressing struct {
size int // 键值对数量
capacity int // 哈希表容量
loadThres float64 // 触发扩容的负载因子阈值
extendRatio int // 扩容倍数
buckets []*pair // 桶数组
TOMBSTONE *pair // 删除标记
}
/* 构造方法 */
func newHashMapOpenAddressing() *hashMapOpenAddressing {
return &hashMapOpenAddressing{
size: 0,
capacity: 4,
loadThres: 2.0 / 3.0,
extendRatio: 2,
buckets: make([]*pair, 4),
TOMBSTONE: &pair{-1, "-1"},
}
}
/* 哈希函数 */
func (h *hashMapOpenAddressing) hashFunc(key int) int {
return key % h.capacity // 根据键计算哈希值
}
/* 负载因子 */
func (h *hashMapOpenAddressing) loadFactor() float64 {
return float64(h.size) / float64(h.capacity) // 计算当前负载因子
}
/* 搜索 key 对应的桶索引 */
func (h *hashMapOpenAddressing) findBucket(key int) int {
index := h.hashFunc(key) // 获取初始索引
firstTombstone := -1 // 记录遇到的第一个TOMBSTONE的位置
for h.buckets[index] != nil {
if h.buckets[index].key == key {
if firstTombstone != -1 {
// 若之前遇到了删除标记,则将键值对移动至该索引处
h.buckets[firstTombstone] = h.buckets[index]
h.buckets[index] = h.TOMBSTONE
return firstTombstone // 返回移动后的桶索引
}
return index // 返回找到的索引
}
if firstTombstone == -1 && h.buckets[index] == h.TOMBSTONE {
firstTombstone = index // 记录遇到的首个删除标记的位置
}
index = (index + 1) % h.capacity // 线性探测,越过尾部则返回头部
}
// 若 key 不存在,则返回添加点的索引
if firstTombstone != -1 {
return firstTombstone
}
return index
}
/* 查询操作 */
func (h *hashMapOpenAddressing) get(key int) string {
index := h.findBucket(key) // 搜索 key 对应的桶索引
if h.buckets[index] != nil && h.buckets[index] != h.TOMBSTONE {
return h.buckets[index].val // 若找到键值对,则返回对应 val
}
return "" // 若键值对不存在,则返回 ""
}
/* 添加操作 */
func (h *hashMapOpenAddressing) put(key int, val string) {
if h.loadFactor() > h.loadThres {
h.extend() // 当负载因子超过阈值时,执行扩容
}
index := h.findBucket(key) // 搜索 key 对应的桶索引
if h.buckets[index] == nil || h.buckets[index] == h.TOMBSTONE {
h.buckets[index] = &pair{key, val} // 若键值对不存在,则添加该键值对
h.size++
} else {
h.buckets[index].val = val // 若找到键值对,则覆盖 val
}
}
/* 删除操作 */
func (h *hashMapOpenAddressing) remove(key int) {
index := h.findBucket(key) // 搜索 key 对应的桶索引
if h.buckets[index] != nil && h.buckets[index] != h.TOMBSTONE {
h.buckets[index] = h.TOMBSTONE // 若找到键值对,则用删除标记覆盖它
h.size--
}
}
/* 扩容哈希表 */
func (h *hashMapOpenAddressing) extend() {
oldBuckets := h.buckets // 暂存原哈希表
h.capacity *= h.extendRatio // 更新容量
h.buckets = make([]*pair, h.capacity) // 初始化扩容后的新哈希表
h.size = 0 // 重置大小
// 将键值对从原哈希表搬运至新哈希表
for _, pair := range oldBuckets {
if pair != nil && pair != h.TOMBSTONE {
h.put(pair.key, pair.val)
}
}
}
/* 打印哈希表 */
func (h *hashMapOpenAddressing) print() {
for _, pair := range h.buckets {
if pair == nil {
fmt.Println("nil")
} else if pair == h.TOMBSTONE {
fmt.Println("TOMBSTONE")
} else {
fmt.Printf("%d -> %s\n", pair.key, pair.val)
}
}
}
```
=== "Swift"
```swift title="hash_map_open_addressing.swift"
/* 开放寻址哈希表 */
class HashMapOpenAddressing {
var size: Int // 键值对数量
var capacity: Int // 哈希表容量
var loadThres: Double // 触发扩容的负载因子阈值
var extendRatio: Int // 扩容倍数
var buckets: [Pair?] // 桶数组
var TOMBSTONE: Pair // 删除标记
/* 构造方法 */
init() {
size = 0
capacity = 4
loadThres = 2.0 / 3.0
extendRatio = 2
buckets = Array(repeating: nil, count: capacity)
TOMBSTONE = Pair(key: -1, val: "-1")
}
/* 哈希函数 */
func hashFunc(key: Int) -> Int {
key % capacity
}
/* 负载因子 */
func loadFactor() -> Double {
Double(size) / Double(capacity)
}
/* 搜索 key 对应的桶索引 */
func findBucket(key: Int) -> Int {
var index = hashFunc(key: key)
var firstTombstone = -1
// 线性探测,当遇到空桶时跳出
while buckets[index] != nil {
// 若遇到 key ,返回对应的桶索引
if buckets[index]!.key == key {
// 若之前遇到了删除标记,则将键值对移动至该索引处
if firstTombstone != -1 {
buckets[firstTombstone] = buckets[index]
buckets[index] = TOMBSTONE
return firstTombstone // 返回移动后的桶索引
}
return index // 返回桶索引
}
// 记录遇到的首个删除标记
if firstTombstone == -1 && buckets[index] == TOMBSTONE {
firstTombstone = index
}
// 计算桶索引,越过尾部则返回头部
index = (index + 1) % capacity
}
// 若 key 不存在,则返回添加点的索引
return firstTombstone == -1 ? index : firstTombstone
}
/* 查询操作 */
func get(key: Int) -> String? {
// 搜索 key 对应的桶索引
let index = findBucket(key: key)
// 若找到键值对,则返回对应 val
if buckets[index] != nil, buckets[index] != TOMBSTONE {
return buckets[index]!.val
}
// 若键值对不存在,则返回 null
return nil
}
/* 添加操作 */
func put(key: Int, val: String) {
// 当负载因子超过阈值时,执行扩容
if loadFactor() > loadThres {
extend()
}
// 搜索 key 对应的桶索引
let index = findBucket(key: key)
// 若找到键值对,则覆盖 val 并返回
if buckets[index] != nil, buckets[index] != TOMBSTONE {
buckets[index]!.val = val
return
}
// 若键值对不存在,则添加该键值对
buckets[index] = Pair(key: key, val: val)
size += 1
}
/* 删除操作 */
func remove(key: Int) {
// 搜索 key 对应的桶索引
let index = findBucket(key: key)
// 若找到键值对,则用删除标记覆盖它
if buckets[index] != nil, buckets[index] != TOMBSTONE {
buckets[index] = TOMBSTONE
size -= 1
}
}
/* 扩容哈希表 */
func extend() {
// 暂存原哈希表
let bucketsTmp = buckets
// 初始化扩容后的新哈希表
capacity *= extendRatio
buckets = Array(repeating: nil, count: capacity)
size = 0
// 将键值对从原哈希表搬运至新哈希表
for pair in bucketsTmp {
if let pair, pair != TOMBSTONE {
put(key: pair.key, val: pair.val)
}
}
}
/* 打印哈希表 */
func print() {
for pair in buckets {
if pair == nil {
Swift.print("null")
} else if pair == TOMBSTONE {
Swift.print("TOMBSTONE")
} else {
Swift.print("\(pair!.key) -> \(pair!.val)")
}
}
}
}
```
=== "JS"
```javascript title="hash_map_open_addressing.js"
/* 开放寻址哈希表 */
class HashMapOpenAddressing {
#size; // 键值对数量
#capacity; // 哈希表容量
#loadThres; // 触发扩容的负载因子阈值
#extendRatio; // 扩容倍数
#buckets; // 桶数组
#TOMBSTONE; // 删除标记
/* 构造方法 */
constructor() {
this.#size = 0; // 键值对数量
this.#capacity = 4; // 哈希表容量
this.#loadThres = 2.0 / 3.0; // 触发扩容的负载因子阈值
this.#extendRatio = 2; // 扩容倍数
this.#buckets = Array(this.#capacity).fill(null); // 桶数组
this.#TOMBSTONE = new Pair(-1, '-1'); // 删除标记
}
/* 哈希函数 */
#hashFunc(key) {
return key % this.#capacity;
}
/* 负载因子 */
#loadFactor() {
return this.#size / this.#capacity;
}
/* 搜索 key 对应的桶索引 */
#findBucket(key) {
let index = this.#hashFunc(key);
let firstTombstone = -1;
// 线性探测,当遇到空桶时跳出
while (this.#buckets[index] !== null) {
// 若遇到 key ,返回对应的桶索引
if (this.#buckets[index].key === key) {
// 若之前遇到了删除标记,则将键值对移动至该索引处
if (firstTombstone !== -1) {
this.#buckets[firstTombstone] = this.#buckets[index];
this.#buckets[index] = this.#TOMBSTONE;
return firstTombstone; // 返回移动后的桶索引
}
return index; // 返回桶索引
}
// 记录遇到的首个删除标记
if (
firstTombstone === -1 &&
this.#buckets[index] === this.#TOMBSTONE
) {
firstTombstone = index;
}
// 计算桶索引,越过尾部则返回头部
index = (index + 1) % this.#capacity;
}
// 若 key 不存在,则返回添加点的索引
return firstTombstone === -1 ? index : firstTombstone;
}
/* 查询操作 */
get(key) {
// 搜索 key 对应的桶索引
const index = this.#findBucket(key);
// 若找到键值对,则返回对应 val
if (
this.#buckets[index] !== null &&
this.#buckets[index] !== this.#TOMBSTONE
) {
return this.#buckets[index].val;
}
// 若键值对不存在,则返回 null
return null;
}
/* 添加操作 */
put(key, val) {
// 当负载因子超过阈值时,执行扩容
if (this.#loadFactor() > this.#loadThres) {
this.#extend();
}
// 搜索 key 对应的桶索引
const index = this.#findBucket(key);
// 若找到键值对,则覆盖 val 并返回
if (
this.#buckets[index] !== null &&
this.#buckets[index] !== this.#TOMBSTONE
) {
this.#buckets[index].val = val;
return;
}
// 若键值对不存在,则添加该键值对
this.#buckets[index] = new Pair(key, val);
this.#size++;
}
/* 删除操作 */
remove(key) {
// 搜索 key 对应的桶索引
const index = this.#findBucket(key);
// 若找到键值对,则用删除标记覆盖它
if (
this.#buckets[index] !== null &&
this.#buckets[index] !== this.#TOMBSTONE
) {
this.#buckets[index] = this.#TOMBSTONE;
this.#size--;
}
}
/* 扩容哈希表 */
#extend() {
// 暂存原哈希表
const bucketsTmp = this.#buckets;
// 初始化扩容后的新哈希表
this.#capacity *= this.#extendRatio;
this.#buckets = Array(this.#capacity).fill(null);
this.#size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (const pair of bucketsTmp) {
if (pair !== null && pair !== this.#TOMBSTONE) {
this.put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
print() {
for (const pair of this.#buckets) {
if (pair === null) {
console.log('null');
} else if (pair === this.#TOMBSTONE) {
console.log('TOMBSTONE');
} else {
console.log(pair.key + ' -> ' + pair.val);
}
}
}
}
```
=== "TS"
```typescript title="hash_map_open_addressing.ts"
/* 开放寻址哈希表 */
class HashMapOpenAddressing {
private size: number; // 键值对数量
private capacity: number; // 哈希表容量
private loadThres: number; // 触发扩容的负载因子阈值
private extendRatio: number; // 扩容倍数
private buckets: Array<Pair | null>; // 桶数组
private TOMBSTONE: Pair; // 删除标记
/* 构造方法 */
constructor() {
this.size = 0; // 键值对数量
this.capacity = 4; // 哈希表容量
this.loadThres = 2.0 / 3.0; // 触发扩容的负载因子阈值
this.extendRatio = 2; // 扩容倍数
this.buckets = Array(this.capacity).fill(null); // 桶数组
this.TOMBSTONE = new Pair(-1, '-1'); // 删除标记
}
/* 哈希函数 */
private hashFunc(key: number): number {
return key % this.capacity;
}
/* 负载因子 */
private loadFactor(): number {
return this.size / this.capacity;
}
/* 搜索 key 对应的桶索引 */
private findBucket(key: number): number {
let index = this.hashFunc(key);
let firstTombstone = -1;
// 线性探测,当遇到空桶时跳出
while (this.buckets[index] !== null) {
// 若遇到 key ,返回对应的桶索引
if (this.buckets[index]!.key === key) {
// 若之前遇到了删除标记,则将键值对移动至该索引处
if (firstTombstone !== -1) {
this.buckets[firstTombstone] = this.buckets[index];
this.buckets[index] = this.TOMBSTONE;
return firstTombstone; // 返回移动后的桶索引
}
return index; // 返回桶索引
}
// 记录遇到的首个删除标记
if (
firstTombstone === -1 &&
this.buckets[index] === this.TOMBSTONE
) {
firstTombstone = index;
}
// 计算桶索引,越过尾部则返回头部
index = (index + 1) % this.capacity;
}
// 若 key 不存在,则返回添加点的索引
return firstTombstone === -1 ? index : firstTombstone;
}
/* 查询操作 */
get(key: number): string | null {
// 搜索 key 对应的桶索引
const index = this.findBucket(key);
// 若找到键值对,则返回对应 val
if (
this.buckets[index] !== null &&
this.buckets[index] !== this.TOMBSTONE
) {
return this.buckets[index]!.val;
}
// 若键值对不存在,则返回 null
return null;
}
/* 添加操作 */
put(key: number, val: string): void {
// 当负载因子超过阈值时,执行扩容
if (this.loadFactor() > this.loadThres) {
this.extend();
}
// 搜索 key 对应的桶索引
const index = this.findBucket(key);
// 若找到键值对,则覆盖 val 并返回
if (
this.buckets[index] !== null &&
this.buckets[index] !== this.TOMBSTONE
) {
this.buckets[index]!.val = val;
return;
}
// 若键值对不存在,则添加该键值对
this.buckets[index] = new Pair(key, val);
this.size++;
}
/* 删除操作 */
remove(key: number): void {
// 搜索 key 对应的桶索引
const index = this.findBucket(key);
// 若找到键值对,则用删除标记覆盖它
if (
this.buckets[index] !== null &&
this.buckets[index] !== this.TOMBSTONE
) {
this.buckets[index] = this.TOMBSTONE;
this.size--;
}
}
/* 扩容哈希表 */
private extend(): void {
// 暂存原哈希表
const bucketsTmp = this.buckets;
// 初始化扩容后的新哈希表
this.capacity *= this.extendRatio;
this.buckets = Array(this.capacity).fill(null);
this.size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (const pair of bucketsTmp) {
if (pair !== null && pair !== this.TOMBSTONE) {
this.put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
print(): void {
for (const pair of this.buckets) {
if (pair === null) {
console.log('null');
} else if (pair === this.TOMBSTONE) {
console.log('TOMBSTONE');
} else {
console.log(pair.key + ' -> ' + pair.val);
}
}
}
}
```
=== "Dart"
```dart title="hash_map_open_addressing.dart"
/* 开放寻址哈希表 */
class HashMapOpenAddressing {
late int _size; // 键值对数量
int _capacity = 4; // 哈希表容量
double _loadThres = 2.0 / 3.0; // 触发扩容的负载因子阈值
int _extendRatio = 2; // 扩容倍数
late List<Pair?> _buckets; // 桶数组
Pair _TOMBSTONE = Pair(-1, "-1"); // 删除标记
/* 构造方法 */
HashMapOpenAddressing() {
_size = 0;
_buckets = List.generate(_capacity, (index) => null);
}
/* 哈希函数 */
int hashFunc(int key) {
return key % _capacity;
}
/* 负载因子 */
double loadFactor() {
return _size / _capacity;
}
/* 搜索 key 对应的桶索引 */
int findBucket(int key) {
int index = hashFunc(key);
int firstTombstone = -1;
// 线性探测,当遇到空桶时跳出
while (_buckets[index] != null) {
// 若遇到 key ,返回对应的桶索引
if (_buckets[index]!.key == key) {
// 若之前遇到了删除标记,则将键值对移动至该索引处
if (firstTombstone != -1) {
_buckets[firstTombstone] = _buckets[index];
_buckets[index] = _TOMBSTONE;
return firstTombstone; // 返回移动后的桶索引
}
return index; // 返回桶索引
}
// 记录遇到的首个删除标记
if (firstTombstone == -1 && _buckets[index] == _TOMBSTONE) {
firstTombstone = index;
}
// 计算桶索引,越过尾部则返回头部
index = (index + 1) % _capacity;
}
// 若 key 不存在,则返回添加点的索引
return firstTombstone == -1 ? index : firstTombstone;
}
/* 查询操作 */
String? get(int key) {
// 搜索 key 对应的桶索引
int index = findBucket(key);
// 若找到键值对,则返回对应 val
if (_buckets[index] != null && _buckets[index] != _TOMBSTONE) {
return _buckets[index]!.val;
}
// 若键值对不存在,则返回 null
return null;
}
/* 添加操作 */
void put(int key, String val) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor() > _loadThres) {
extend();
}
// 搜索 key 对应的桶索引
int index = findBucket(key);
// 若找到键值对,则覆盖 val 并返回
if (_buckets[index] != null && _buckets[index] != _TOMBSTONE) {
_buckets[index]!.val = val;
return;
}
// 若键值对不存在,则添加该键值对
_buckets[index] = new Pair(key, val);
_size++;
}
/* 删除操作 */
void remove(int key) {
// 搜索 key 对应的桶索引
int index = findBucket(key);
// 若找到键值对,则用删除标记覆盖它
if (_buckets[index] != null && _buckets[index] != _TOMBSTONE) {
_buckets[index] = _TOMBSTONE;
_size--;
}
}
/* 扩容哈希表 */
void extend() {
// 暂存原哈希表
List<Pair?> bucketsTmp = _buckets;
// 初始化扩容后的新哈希表
_capacity *= _extendRatio;
_buckets = List.generate(_capacity, (index) => null);
_size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (Pair? pair in bucketsTmp) {
if (pair != null && pair != _TOMBSTONE) {
put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
void printHashMap() {
for (Pair? pair in _buckets) {
if (pair == null) {
print("null");
} else if (pair == _TOMBSTONE) {
print("TOMBSTONE");
} else {
print("${pair.key} -> ${pair.val}");
}
}
}
}
```
=== "Rust"
```rust title="hash_map_open_addressing.rs"
/* 开放寻址哈希表 */
struct HashMapOpenAddressing {
size: usize, // 键值对数量
capacity: usize, // 哈希表容量
load_thres: f64, // 触发扩容的负载因子阈值
extend_ratio: usize, // 扩容倍数
buckets: Vec<Option<Pair>>, // 桶数组
TOMBSTONE: Option<Pair>, // 删除标记
}
impl HashMapOpenAddressing {
/* 构造方法 */
fn new() -> Self {
Self {
size: 0,
capacity: 4,
load_thres: 2.0 / 3.0,
extend_ratio: 2,
buckets: vec![None; 4],
TOMBSTONE: Some(Pair {
key: -1,
val: "-1".to_string(),
}),
}
}
/* 哈希函数 */
fn hash_func(&self, key: i32) -> usize {
(key % self.capacity as i32) as usize
}
/* 负载因子 */
fn load_factor(&self) -> f64 {
self.size as f64 / self.capacity as f64
}
/* 搜索 key 对应的桶索引 */
fn find_bucket(&mut self, key: i32) -> usize {
let mut index = self.hash_func(key);
let mut first_tombstone = -1;
// 线性探测,当遇到空桶时跳出
while self.buckets[index].is_some() {
// 若遇到 key返回对应的桶索引
if self.buckets[index].as_ref().unwrap().key == key {
// 若之前遇到了删除标记,则将建值对移动至该索引
if first_tombstone != -1 {
self.buckets[first_tombstone as usize] = self.buckets[index].take();
self.buckets[index] = self.TOMBSTONE.clone();
return first_tombstone as usize; // 返回移动后的桶索引
}
return index; // 返回桶索引
}
// 记录遇到的首个删除标记
if first_tombstone == -1 && self.buckets[index] == self.TOMBSTONE {
first_tombstone = index as i32;
}
// 计算桶索引,越过尾部则返回头部
index = (index + 1) % self.capacity;
}
// 若 key 不存在,则返回添加点的索引
if first_tombstone == -1 {
index
} else {
first_tombstone as usize
}
}
/* 查询操作 */
fn get(&mut self, key: i32) -> Option<&str> {
// 搜索 key 对应的桶索引
let index = self.find_bucket(key);
// 若找到键值对,则返回对应 val
if self.buckets[index].is_some() && self.buckets[index] != self.TOMBSTONE {
return self.buckets[index].as_ref().map(|pair| &pair.val as &str);
}
// 若键值对不存在,则返回 null
None
}
/* 添加操作 */
fn put(&mut self, key: i32, val: String) {
// 当负载因子超过阈值时,执行扩容
if self.load_factor() > self.load_thres {
self.extend();
}
// 搜索 key 对应的桶索引
let index = self.find_bucket(key);
// 若找到键值对,则覆盖 val 并返回
if self.buckets[index].is_some() && self.buckets[index] != self.TOMBSTONE {
self.buckets[index].as_mut().unwrap().val = val;
return;
}
// 若键值对不存在,则添加该键值对
self.buckets[index] = Some(Pair { key, val });
self.size += 1;
}
/* 删除操作 */
fn remove(&mut self, key: i32) {
// 搜索 key 对应的桶索引
let index = self.find_bucket(key);
// 若找到键值对,则用删除标记覆盖它
if self.buckets[index].is_some() && self.buckets[index] != self.TOMBSTONE {
self.buckets[index] = self.TOMBSTONE.clone();
self.size -= 1;
}
}
/* 扩容哈希表 */
fn extend(&mut self) {
// 暂存原哈希表
let buckets_tmp = self.buckets.clone();
// 初始化扩容后的新哈希表
self.capacity *= self.extend_ratio;
self.buckets = vec![None; self.capacity];
self.size = 0;
// 将键值对从原哈希表搬运至新哈希表
for pair in buckets_tmp {
if pair.is_none() || pair == self.TOMBSTONE {
continue;
}
let pair = pair.unwrap();
self.put(pair.key, pair.val);
}
}
/* 打印哈希表 */
fn print(&self) {
for pair in &self.buckets {
if pair.is_none() {
println!("null");
} else if pair == &self.TOMBSTONE {
println!("TOMBSTONE");
} else {
let pair = pair.as_ref().unwrap();
println!("{} -> {}", pair.key, pair.val);
}
}
}
}
```
=== "C"
```c title="hash_map_open_addressing.c"
/* 开放寻址哈希表 */
typedef struct {
int size; // 键值对数量
int capacity; // 哈希表容量
double loadThres; // 触发扩容的负载因子阈值
int extendRatio; // 扩容倍数
Pair **buckets; // 桶数组
Pair *TOMBSTONE; // 删除标记
} HashMapOpenAddressing;
/* 构造函数 */
HashMapOpenAddressing *newHashMapOpenAddressing() {
HashMapOpenAddressing *hashMap = (HashMapOpenAddressing *)malloc(sizeof(HashMapOpenAddressing));
hashMap->size = 0;
hashMap->capacity = 4;
hashMap->loadThres = 2.0 / 3.0;
hashMap->extendRatio = 2;
hashMap->buckets = (Pair **)malloc(sizeof(Pair *) * hashMap->capacity);
hashMap->TOMBSTONE = (Pair *)malloc(sizeof(Pair));
hashMap->TOMBSTONE->key = -1;
hashMap->TOMBSTONE->val = "-1";
return hashMap;
}
/* 析构函数 */
void delHashMapOpenAddressing(HashMapOpenAddressing *hashMap) {
for (int i = 0; i < hashMap->capacity; i++) {
Pair *pair = hashMap->buckets[i];
if (pair != NULL && pair != hashMap->TOMBSTONE) {
free(pair->val);
free(pair);
}
}
free(hashMap->buckets);
free(hashMap->TOMBSTONE);
free(hashMap);
}
/* 哈希函数 */
int hashFunc(HashMapOpenAddressing *hashMap, int key) {
return key % hashMap->capacity;
}
/* 负载因子 */
double loadFactor(HashMapOpenAddressing *hashMap) {
return (double)hashMap->size / (double)hashMap->capacity;
}
/* 搜索 key 对应的桶索引 */
int findBucket(HashMapOpenAddressing *hashMap, int key) {
int index = hashFunc(hashMap, key);
int firstTombstone = -1;
// 线性探测,当遇到空桶时跳出
while (hashMap->buckets[index] != NULL) {
// 若遇到 key ,返回对应的桶索引
if (hashMap->buckets[index]->key == key) {
// 若之前遇到了删除标记,则将键值对移动至该索引处
if (firstTombstone != -1) {
hashMap->buckets[firstTombstone] = hashMap->buckets[index];
hashMap->buckets[index] = hashMap->TOMBSTONE;
return firstTombstone; // 返回移动后的桶索引
}
return index; // 返回桶索引
}
// 记录遇到的首个删除标记
if (firstTombstone == -1 && hashMap->buckets[index] == hashMap->TOMBSTONE) {
firstTombstone = index;
}
// 计算桶索引,越过尾部则返回头部
index = (index + 1) % hashMap->capacity;
}
// 若 key 不存在,则返回添加点的索引
return firstTombstone == -1 ? index : firstTombstone;
}
/* 查询操作 */
char *get(HashMapOpenAddressing *hashMap, int key) {
// 搜索 key 对应的桶索引
int index = findBucket(hashMap, key);
// 若找到键值对,则返回对应 val
if (hashMap->buckets[index] != NULL && hashMap->buckets[index] != hashMap->TOMBSTONE) {
return hashMap->buckets[index]->val;
}
// 若键值对不存在,则返回空字符串
return "";
}
/* 添加操作 */
void put(HashMapOpenAddressing *hashMap, int key, char *val) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor(hashMap) > hashMap->loadThres) {
extend(hashMap);
}
// 搜索 key 对应的桶索引
int index = findBucket(hashMap, key);
// 若找到键值对,则覆盖 val 并返回
if (hashMap->buckets[index] != NULL && hashMap->buckets[index] != hashMap->TOMBSTONE) {
free(hashMap->buckets[index]->val);
hashMap->buckets[index]->val = (char *)malloc(sizeof(strlen(val) + 1));
strcpy(hashMap->buckets[index]->val, val);
hashMap->buckets[index]->val[strlen(val)] = '\0';
return;
}
// 若键值对不存在,则添加该键值对
Pair *pair = (Pair *)malloc(sizeof(Pair));
pair->key = key;
pair->val = (char *)malloc(sizeof(strlen(val) + 1));
strcpy(pair->val, val);
pair->val[strlen(val)] = '\0';
hashMap->buckets[index] = pair;
hashMap->size++;
}
/* 删除操作 */
void removeItem(HashMapOpenAddressing *hashMap, int key) {
// 搜索 key 对应的桶索引
int index = findBucket(hashMap, key);
// 若找到键值对,则用删除标记覆盖它
if (hashMap->buckets[index] != NULL && hashMap->buckets[index] != hashMap->TOMBSTONE) {
Pair *pair = hashMap->buckets[index];
free(pair->val);
free(pair);
hashMap->buckets[index] = hashMap->TOMBSTONE;
hashMap->size--;
}
}
/* 扩容哈希表 */
void extend(HashMapOpenAddressing *hashMap) {
// 暂存原哈希表
Pair **bucketsTmp = hashMap->buckets;
int oldCapacity = hashMap->capacity;
// 初始化扩容后的新哈希表
hashMap->capacity *= hashMap->extendRatio;
hashMap->buckets = (Pair **)malloc(sizeof(Pair *) * hashMap->capacity);
hashMap->size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (int i = 0; i < oldCapacity; i++) {
Pair *pair = bucketsTmp[i];
if (pair != NULL && pair != hashMap->TOMBSTONE) {
put(hashMap, pair->key, pair->val);
free(pair->val);
free(pair);
}
}
free(bucketsTmp);
}
/* 打印哈希表 */
void print(HashMapOpenAddressing *hashMap) {
for (int i = 0; i < hashMap->capacity; i++) {
Pair *pair = hashMap->buckets[i];
if (pair == NULL) {
printf("NULL\n");
} else if (pair == hashMap->TOMBSTONE) {
printf("TOMBSTONE\n");
} else {
printf("%d -> %s\n", pair->key, pair->val);
}
}
}
```
=== "Kotlin"
```kotlin title="hash_map_open_addressing.kt"
/* 开放寻址哈希表 */
class HashMapOpenAddressing {
private var size: Int // 键值对数量
private var capacity: Int // 哈希表容量
private val loadThres: Double // 触发扩容的负载因子阈值
private val extendRatio: Int // 扩容倍数
private var buckets: Array<Pair?> // 桶数组
private val TOMBSTONE: Pair // 删除标记
/* 构造方法 */
init {
size = 0
capacity = 4
loadThres = 2.0 / 3.0
extendRatio = 2
buckets = arrayOfNulls(capacity)
TOMBSTONE = Pair(-1, "-1")
}
/* 哈希函数 */
fun hashFunc(key: Int): Int {
return key % capacity
}
/* 负载因子 */
fun loadFactor(): Double {
return (size / capacity).toDouble()
}
/* 搜索 key 对应的桶索引 */
fun findBucket(key: Int): Int {
var index = hashFunc(key)
var firstTombstone = -1
// 线性探测,当遇到空桶时跳出
while (buckets[index] != null) {
// 若遇到 key ,返回对应的桶索引
if (buckets[index]?.key == key) {
// 若之前遇到了删除标记,则将键值对移动至该索引处
if (firstTombstone != -1) {
buckets[firstTombstone] = buckets[index]
buckets[index] = TOMBSTONE
return firstTombstone // 返回移动后的桶索引
}
return index // 返回桶索引
}
// 记录遇到的首个删除标记
if (firstTombstone == -1 && buckets[index] == TOMBSTONE) {
firstTombstone = index
}
// 计算桶索引,越过尾部则返回头部
index = (index + 1) % capacity
}
// 若 key 不存在,则返回添加点的索引
return if (firstTombstone == -1) index else firstTombstone
}
/* 查询操作 */
fun get(key: Int): String? {
// 搜索 key 对应的桶索引
val index = findBucket(key)
// 若找到键值对,则返回对应 val
if (buckets[index] != null && buckets[index] != TOMBSTONE) {
return buckets[index]?._val
}
// 若键值对不存在,则返回 null
return null
}
/* 添加操作 */
fun put(key: Int, _val: String) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor() > loadThres) {
extend()
}
// 搜索 key 对应的桶索引
val index = findBucket(key)
// 若找到键值对,则覆盖 val 并返回
if (buckets[index] != null && buckets[index] != TOMBSTONE) {
buckets[index]!!._val = _val
return
}
// 若键值对不存在,则添加该键值对
buckets[index] = Pair(key, _val)
size++
}
/* 删除操作 */
fun remove(key: Int) {
// 搜索 key 对应的桶索引
val index = findBucket(key)
// 若找到键值对,则用删除标记覆盖它
if (buckets[index] != null && buckets[index] != TOMBSTONE) {
buckets[index] = TOMBSTONE
size--
}
}
/* 扩容哈希表 */
fun extend() {
// 暂存原哈希表
val bucketsTmp = buckets
// 初始化扩容后的新哈希表
capacity *= extendRatio
buckets = arrayOfNulls(capacity)
size = 0
// 将键值对从原哈希表搬运至新哈希表
for (pair in bucketsTmp) {
if (pair != null && pair != TOMBSTONE) {
put(pair.key, pair._val)
}
}
}
/* 打印哈希表 */
fun print() {
for (pair in buckets) {
if (pair == null) {
println("null")
} else if (pair == TOMBSTONE) {
println("TOMESTOME")
} else {
println("${pair.key} -> ${pair._val}")
}
}
}
}
```
=== "Ruby"
```ruby title="hash_map_open_addressing.rb"
[class]{HashMapOpenAddressing}-[func]{}
```
=== "Zig"
```zig title="hash_map_open_addressing.zig"
[class]{HashMapOpenAddressing}-[func]{}
```
### 2. &nbsp; 平方探测
平方探测与线性探测类似,都是开放寻址的常见策略之一。当发生冲突时,平方探测不是简单地跳过一个固定的步数,而是跳过“探测次数的平方”的步数,即 $1, 4, 9, \dots$ 步。
平方探测主要具有以下优势。
- 平方探测通过跳过探测次数平方的距离,试图缓解线性探测的聚集效应。
- 平方探测会跳过更大的距离来寻找空位置,有助于数据分布得更加均匀。
然而,平方探测并不是完美的。
- 仍然存在聚集现象,即某些位置比其他位置更容易被占用。
- 由于平方的增长,平方探测可能不会探测整个哈希表,这意味着即使哈希表中有空桶,平方探测也可能无法访问到它。
### 3. &nbsp; 多次哈希
顾名思义,多次哈希方法使用多个哈希函数 $f_1(x)$、$f_2(x)$、$f_3(x)$、$\dots$ 进行探测。
- **插入元素**:若哈希函数 $f_1(x)$ 出现冲突,则尝试 $f_2(x)$ ,以此类推,直到找到空位后插入元素。
- **查找元素**:在相同的哈希函数顺序下进行查找,直到找到目标元素时返回;若遇到空位或已尝试所有哈希函数,说明哈希表中不存在该元素,则返回 `None`
与线性探测相比,多次哈希方法不易产生聚集,但多个哈希函数会带来额外的计算量。
!!! tip
请注意,开放寻址(线性探测、平方探测和多次哈希)哈希表都存在“不能直接删除元素”的问题。
## 6.2.3 &nbsp; 编程语言的选择
各种编程语言采取了不同的哈希表实现策略,下面举几个例子。
- Python 采用开放寻址。字典 `dict` 使用伪随机数进行探测。
- Java 采用链式地址。自 JDK 1.8 以来,当 `HashMap` 内数组长度达到 64 且链表长度达到 8 时,链表会转换为红黑树以提升查找性能。
- Go 采用链式地址。Go 规定每个桶最多存储 8 个键值对,超出容量则连接一个溢出桶;当溢出桶过多时,会执行一次特殊的等量扩容操作,以确保性能。