mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-28 12:26:28 +08:00
533 lines
25 KiB
Markdown
533 lines
25 KiB
Markdown
---
|
||
comments: true
|
||
---
|
||
|
||
# 15.2 Fractional knapsack problem
|
||
|
||
!!! question
|
||
|
||
Given $n$ items, the weight of the $i$-th item is $wgt[i-1]$ and its value is $val[i-1]$, and a knapsack with a capacity of $cap$. Each item can be chosen only once, **but a part of the item can be selected, with its value calculated based on the proportion of the weight chosen**, what is the maximum value of the items in the knapsack under the limited capacity? An example is shown below.
|
||
|
||
![Example data of the fractional knapsack problem](fractional_knapsack_problem.assets/fractional_knapsack_example.png){ class="animation-figure" }
|
||
|
||
<p align="center"> Figure 15-3 Example data of the fractional knapsack problem </p>
|
||
|
||
The fractional knapsack problem is very similar overall to the 0-1 knapsack problem, involving the current item $i$ and capacity $c$, aiming to maximize the value within the limited capacity of the knapsack.
|
||
|
||
The difference is that, in this problem, only a part of an item can be chosen. As shown in the Figure 15-4 , **we can arbitrarily split the items and calculate the corresponding value based on the weight proportion**.
|
||
|
||
1. For item $i$, its value per unit weight is $val[i-1] / wgt[i-1]$, referred to as the unit value.
|
||
2. Suppose we put a part of item $i$ with weight $w$ into the knapsack, then the value added to the knapsack is $w \times val[i-1] / wgt[i-1]$.
|
||
|
||
![Value per unit weight of the item](fractional_knapsack_problem.assets/fractional_knapsack_unit_value.png){ class="animation-figure" }
|
||
|
||
<p align="center"> Figure 15-4 Value per unit weight of the item </p>
|
||
|
||
### 1. Greedy strategy determination
|
||
|
||
Maximizing the total value of the items in the knapsack essentially means maximizing the value per unit weight. From this, the greedy strategy shown below can be deduced.
|
||
|
||
1. Sort the items by their unit value from high to low.
|
||
2. Iterate over all items, **greedily choosing the item with the highest unit value in each round**.
|
||
3. If the remaining capacity of the knapsack is insufficient, use part of the current item to fill the knapsack.
|
||
|
||
![Greedy strategy of the fractional knapsack problem](fractional_knapsack_problem.assets/fractional_knapsack_greedy_strategy.png){ class="animation-figure" }
|
||
|
||
<p align="center"> Figure 15-5 Greedy strategy of the fractional knapsack problem </p>
|
||
|
||
### 2. Code implementation
|
||
|
||
We have created an `Item` class in order to sort the items by their unit value. We loop and make greedy choices until the knapsack is full, then exit and return the solution:
|
||
|
||
=== "Python"
|
||
|
||
```python title="fractional_knapsack.py"
|
||
class Item:
|
||
"""物品"""
|
||
|
||
def __init__(self, w: int, v: int):
|
||
self.w = w # 物品重量
|
||
self.v = v # 物品价值
|
||
|
||
def fractional_knapsack(wgt: list[int], val: list[int], cap: int) -> int:
|
||
"""分数背包:贪心"""
|
||
# 创建物品列表,包含两个属性:重量、价值
|
||
items = [Item(w, v) for w, v in zip(wgt, val)]
|
||
# 按照单位价值 item.v / item.w 从高到低进行排序
|
||
items.sort(key=lambda item: item.v / item.w, reverse=True)
|
||
# 循环贪心选择
|
||
res = 0
|
||
for item in items:
|
||
if item.w <= cap:
|
||
# 若剩余容量充足,则将当前物品整个装进背包
|
||
res += item.v
|
||
cap -= item.w
|
||
else:
|
||
# 若剩余容量不足,则将当前物品的一部分装进背包
|
||
res += (item.v / item.w) * cap
|
||
# 已无剩余容量,因此跳出循环
|
||
break
|
||
return res
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="fractional_knapsack.cpp"
|
||
/* 物品 */
|
||
class Item {
|
||
public:
|
||
int w; // 物品重量
|
||
int v; // 物品价值
|
||
|
||
Item(int w, int v) : w(w), v(v) {
|
||
}
|
||
};
|
||
|
||
/* 分数背包:贪心 */
|
||
double fractionalKnapsack(vector<int> &wgt, vector<int> &val, int cap) {
|
||
// 创建物品列表,包含两个属性:重量、价值
|
||
vector<Item> items;
|
||
for (int i = 0; i < wgt.size(); i++) {
|
||
items.push_back(Item(wgt[i], val[i]));
|
||
}
|
||
// 按照单位价值 item.v / item.w 从高到低进行排序
|
||
sort(items.begin(), items.end(), [](Item &a, Item &b) { return (double)a.v / a.w > (double)b.v / b.w; });
|
||
// 循环贪心选择
|
||
double res = 0;
|
||
for (auto &item : items) {
|
||
if (item.w <= cap) {
|
||
// 若剩余容量充足,则将当前物品整个装进背包
|
||
res += item.v;
|
||
cap -= item.w;
|
||
} else {
|
||
// 若剩余容量不足,则将当前物品的一部分装进背包
|
||
res += (double)item.v / item.w * cap;
|
||
// 已无剩余容量,因此跳出循环
|
||
break;
|
||
}
|
||
}
|
||
return res;
|
||
}
|
||
```
|
||
|
||
=== "Java"
|
||
|
||
```java title="fractional_knapsack.java"
|
||
/* 物品 */
|
||
class Item {
|
||
int w; // 物品重量
|
||
int v; // 物品价值
|
||
|
||
public Item(int w, int v) {
|
||
this.w = w;
|
||
this.v = v;
|
||
}
|
||
}
|
||
|
||
/* 分数背包:贪心 */
|
||
double fractionalKnapsack(int[] wgt, int[] val, int cap) {
|
||
// 创建物品列表,包含两个属性:重量、价值
|
||
Item[] items = new Item[wgt.length];
|
||
for (int i = 0; i < wgt.length; i++) {
|
||
items[i] = new Item(wgt[i], val[i]);
|
||
}
|
||
// 按照单位价值 item.v / item.w 从高到低进行排序
|
||
Arrays.sort(items, Comparator.comparingDouble(item -> -((double) item.v / item.w)));
|
||
// 循环贪心选择
|
||
double res = 0;
|
||
for (Item item : items) {
|
||
if (item.w <= cap) {
|
||
// 若剩余容量充足,则将当前物品整个装进背包
|
||
res += item.v;
|
||
cap -= item.w;
|
||
} else {
|
||
// 若剩余容量不足,则将当前物品的一部分装进背包
|
||
res += (double) item.v / item.w * cap;
|
||
// 已无剩余容量,因此跳出循环
|
||
break;
|
||
}
|
||
}
|
||
return res;
|
||
}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="fractional_knapsack.cs"
|
||
/* 物品 */
|
||
class Item(int w, int v) {
|
||
public int w = w; // 物品重量
|
||
public int v = v; // 物品价值
|
||
}
|
||
|
||
/* 分数背包:贪心 */
|
||
double FractionalKnapsack(int[] wgt, int[] val, int cap) {
|
||
// 创建物品列表,包含两个属性:重量、价值
|
||
Item[] items = new Item[wgt.Length];
|
||
for (int i = 0; i < wgt.Length; i++) {
|
||
items[i] = new Item(wgt[i], val[i]);
|
||
}
|
||
// 按照单位价值 item.v / item.w 从高到低进行排序
|
||
Array.Sort(items, (x, y) => (y.v / y.w).CompareTo(x.v / x.w));
|
||
// 循环贪心选择
|
||
double res = 0;
|
||
foreach (Item item in items) {
|
||
if (item.w <= cap) {
|
||
// 若剩余容量充足,则将当前物品整个装进背包
|
||
res += item.v;
|
||
cap -= item.w;
|
||
} else {
|
||
// 若剩余容量不足,则将当前物品的一部分装进背包
|
||
res += (double)item.v / item.w * cap;
|
||
// 已无剩余容量,因此跳出循环
|
||
break;
|
||
}
|
||
}
|
||
return res;
|
||
}
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="fractional_knapsack.go"
|
||
/* 物品 */
|
||
type Item struct {
|
||
w int // 物品重量
|
||
v int // 物品价值
|
||
}
|
||
|
||
/* 分数背包:贪心 */
|
||
func fractionalKnapsack(wgt []int, val []int, cap int) float64 {
|
||
// 创建物品列表,包含两个属性:重量、价值
|
||
items := make([]Item, len(wgt))
|
||
for i := 0; i < len(wgt); i++ {
|
||
items[i] = Item{wgt[i], val[i]}
|
||
}
|
||
// 按照单位价值 item.v / item.w 从高到低进行排序
|
||
sort.Slice(items, func(i, j int) bool {
|
||
return float64(items[i].v)/float64(items[i].w) > float64(items[j].v)/float64(items[j].w)
|
||
})
|
||
// 循环贪心选择
|
||
res := 0.0
|
||
for _, item := range items {
|
||
if item.w <= cap {
|
||
// 若剩余容量充足,则将当前物品整个装进背包
|
||
res += float64(item.v)
|
||
cap -= item.w
|
||
} else {
|
||
// 若剩余容量不足,则将当前物品的一部分装进背包
|
||
res += float64(item.v) / float64(item.w) * float64(cap)
|
||
// 已无剩余容量,因此跳出循环
|
||
break
|
||
}
|
||
}
|
||
return res
|
||
}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="fractional_knapsack.swift"
|
||
/* 物品 */
|
||
class Item {
|
||
var w: Int // 物品重量
|
||
var v: Int // 物品价值
|
||
|
||
init(w: Int, v: Int) {
|
||
self.w = w
|
||
self.v = v
|
||
}
|
||
}
|
||
|
||
/* 分数背包:贪心 */
|
||
func fractionalKnapsack(wgt: [Int], val: [Int], cap: Int) -> Double {
|
||
// 创建物品列表,包含两个属性:重量、价值
|
||
var items = zip(wgt, val).map { Item(w: $0, v: $1) }
|
||
// 按照单位价值 item.v / item.w 从高到低进行排序
|
||
items.sort { -(Double($0.v) / Double($0.w)) < -(Double($1.v) / Double($1.w)) }
|
||
// 循环贪心选择
|
||
var res = 0.0
|
||
var cap = cap
|
||
for item in items {
|
||
if item.w <= cap {
|
||
// 若剩余容量充足,则将当前物品整个装进背包
|
||
res += Double(item.v)
|
||
cap -= item.w
|
||
} else {
|
||
// 若剩余容量不足,则将当前物品的一部分装进背包
|
||
res += Double(item.v) / Double(item.w) * Double(cap)
|
||
// 已无剩余容量,因此跳出循环
|
||
break
|
||
}
|
||
}
|
||
return res
|
||
}
|
||
```
|
||
|
||
=== "JS"
|
||
|
||
```javascript title="fractional_knapsack.js"
|
||
/* 物品 */
|
||
class Item {
|
||
constructor(w, v) {
|
||
this.w = w; // 物品重量
|
||
this.v = v; // 物品价值
|
||
}
|
||
}
|
||
|
||
/* 分数背包:贪心 */
|
||
function fractionalKnapsack(wgt, val, cap) {
|
||
// 创建物品列表,包含两个属性:重量、价值
|
||
const items = wgt.map((w, i) => new Item(w, val[i]));
|
||
// 按照单位价值 item.v / item.w 从高到低进行排序
|
||
items.sort((a, b) => b.v / b.w - a.v / a.w);
|
||
// 循环贪心选择
|
||
let res = 0;
|
||
for (const item of items) {
|
||
if (item.w <= cap) {
|
||
// 若剩余容量充足,则将当前物品整个装进背包
|
||
res += item.v;
|
||
cap -= item.w;
|
||
} else {
|
||
// 若剩余容量不足,则将当前物品的一部分装进背包
|
||
res += (item.v / item.w) * cap;
|
||
// 已无剩余容量,因此跳出循环
|
||
break;
|
||
}
|
||
}
|
||
return res;
|
||
}
|
||
```
|
||
|
||
=== "TS"
|
||
|
||
```typescript title="fractional_knapsack.ts"
|
||
/* 物品 */
|
||
class Item {
|
||
w: number; // 物品重量
|
||
v: number; // 物品价值
|
||
|
||
constructor(w: number, v: number) {
|
||
this.w = w;
|
||
this.v = v;
|
||
}
|
||
}
|
||
|
||
/* 分数背包:贪心 */
|
||
function fractionalKnapsack(wgt: number[], val: number[], cap: number): number {
|
||
// 创建物品列表,包含两个属性:重量、价值
|
||
const items: Item[] = wgt.map((w, i) => new Item(w, val[i]));
|
||
// 按照单位价值 item.v / item.w 从高到低进行排序
|
||
items.sort((a, b) => b.v / b.w - a.v / a.w);
|
||
// 循环贪心选择
|
||
let res = 0;
|
||
for (const item of items) {
|
||
if (item.w <= cap) {
|
||
// 若剩余容量充足,则将当前物品整个装进背包
|
||
res += item.v;
|
||
cap -= item.w;
|
||
} else {
|
||
// 若剩余容量不足,则将当前物品的一部分装进背包
|
||
res += (item.v / item.w) * cap;
|
||
// 已无剩余容量,因此跳出循环
|
||
break;
|
||
}
|
||
}
|
||
return res;
|
||
}
|
||
```
|
||
|
||
=== "Dart"
|
||
|
||
```dart title="fractional_knapsack.dart"
|
||
/* 物品 */
|
||
class Item {
|
||
int w; // 物品重量
|
||
int v; // 物品价值
|
||
|
||
Item(this.w, this.v);
|
||
}
|
||
|
||
/* 分数背包:贪心 */
|
||
double fractionalKnapsack(List<int> wgt, List<int> val, int cap) {
|
||
// 创建物品列表,包含两个属性:重量、价值
|
||
List<Item> items = List.generate(wgt.length, (i) => Item(wgt[i], val[i]));
|
||
// 按照单位价值 item.v / item.w 从高到低进行排序
|
||
items.sort((a, b) => (b.v / b.w).compareTo(a.v / a.w));
|
||
// 循环贪心选择
|
||
double res = 0;
|
||
for (Item item in items) {
|
||
if (item.w <= cap) {
|
||
// 若剩余容量充足,则将当前物品整个装进背包
|
||
res += item.v;
|
||
cap -= item.w;
|
||
} else {
|
||
// 若剩余容量不足,则将当前物品的一部分装进背包
|
||
res += item.v / item.w * cap;
|
||
// 已无剩余容量,因此跳出循环
|
||
break;
|
||
}
|
||
}
|
||
return res;
|
||
}
|
||
```
|
||
|
||
=== "Rust"
|
||
|
||
```rust title="fractional_knapsack.rs"
|
||
/* 物品 */
|
||
struct Item {
|
||
w: i32, // 物品重量
|
||
v: i32, // 物品价值
|
||
}
|
||
|
||
impl Item {
|
||
fn new(w: i32, v: i32) -> Self {
|
||
Self { w, v }
|
||
}
|
||
}
|
||
|
||
/* 分数背包:贪心 */
|
||
fn fractional_knapsack(wgt: &[i32], val: &[i32], mut cap: i32) -> f64 {
|
||
// 创建物品列表,包含两个属性:重量、价值
|
||
let mut items = wgt
|
||
.iter()
|
||
.zip(val.iter())
|
||
.map(|(&w, &v)| Item::new(w, v))
|
||
.collect::<Vec<Item>>();
|
||
// 按照单位价值 item.v / item.w 从高到低进行排序
|
||
items.sort_by(|a, b| {
|
||
(b.v as f64 / b.w as f64)
|
||
.partial_cmp(&(a.v as f64 / a.w as f64))
|
||
.unwrap()
|
||
});
|
||
// 循环贪心选择
|
||
let mut res = 0.0;
|
||
for item in &items {
|
||
if item.w <= cap {
|
||
// 若剩余容量充足,则将当前物品整个装进背包
|
||
res += item.v as f64;
|
||
cap -= item.w;
|
||
} else {
|
||
// 若剩余容量不足,则将当前物品的一部分装进背包
|
||
res += item.v as f64 / item.w as f64 * cap as f64;
|
||
// 已无剩余容量,因此跳出循环
|
||
break;
|
||
}
|
||
}
|
||
res
|
||
}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="fractional_knapsack.c"
|
||
/* 物品 */
|
||
typedef struct {
|
||
int w; // 物品重量
|
||
int v; // 物品价值
|
||
} Item;
|
||
|
||
/* 分数背包:贪心 */
|
||
float fractionalKnapsack(int wgt[], int val[], int itemCount, int cap) {
|
||
// 创建物品列表,包含两个属性:重量、价值
|
||
Item *items = malloc(sizeof(Item) * itemCount);
|
||
for (int i = 0; i < itemCount; i++) {
|
||
items[i] = (Item){.w = wgt[i], .v = val[i]};
|
||
}
|
||
// 按照单位价值 item.v / item.w 从高到低进行排序
|
||
qsort(items, (size_t)itemCount, sizeof(Item), sortByValueDensity);
|
||
// 循环贪心选择
|
||
float res = 0.0;
|
||
for (int i = 0; i < itemCount; i++) {
|
||
if (items[i].w <= cap) {
|
||
// 若剩余容量充足,则将当前物品整个装进背包
|
||
res += items[i].v;
|
||
cap -= items[i].w;
|
||
} else {
|
||
// 若剩余容量不足,则将当前物品的一部分装进背包
|
||
res += (float)cap / items[i].w * items[i].v;
|
||
cap = 0;
|
||
break;
|
||
}
|
||
}
|
||
free(items);
|
||
return res;
|
||
}
|
||
```
|
||
|
||
=== "Kotlin"
|
||
|
||
```kotlin title="fractional_knapsack.kt"
|
||
/* 物品 */
|
||
class Item(
|
||
val w: Int, // 物品
|
||
val v: Int // 物品价值
|
||
)
|
||
|
||
/* 分数背包:贪心 */
|
||
fun fractionalKnapsack(wgt: IntArray, _val: IntArray, c: Int): Double {
|
||
// 创建物品列表,包含两个属性:重量、价值
|
||
var cap = c
|
||
val items = arrayOfNulls<Item>(wgt.size)
|
||
for (i in wgt.indices) {
|
||
items[i] = Item(wgt[i], _val[i])
|
||
}
|
||
// 按照单位价值 item.v / item.w 从高到低进行排序
|
||
items.sortBy { item: Item? -> -(item!!.v.toDouble() / item.w) }
|
||
// 循环贪心选择
|
||
var res = 0.0
|
||
for (item in items) {
|
||
if (item!!.w <= cap) {
|
||
// 若剩余容量充足,则将当前物品整个装进背包
|
||
res += item.v
|
||
cap -= item.w
|
||
} else {
|
||
// 若剩余容量不足,则将当前物品的一部分装进背包
|
||
res += item.v.toDouble() / item.w * cap
|
||
// 已无剩余容量,因此跳出循环
|
||
break
|
||
}
|
||
}
|
||
return res
|
||
}
|
||
```
|
||
|
||
=== "Ruby"
|
||
|
||
```ruby title="fractional_knapsack.rb"
|
||
[class]{Item}-[func]{}
|
||
|
||
[class]{}-[func]{fractional_knapsack}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="fractional_knapsack.zig"
|
||
[class]{Item}-[func]{}
|
||
|
||
[class]{}-[func]{fractionalKnapsack}
|
||
```
|
||
|
||
??? pythontutor "Code Visualization"
|
||
|
||
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=class%20Item%3A%0A%20%20%20%20%22%22%22%E7%89%A9%E5%93%81%22%22%22%0A%20%20%20%20def%20__init__%28self,%20w%3A%20int,%20v%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20self.w%20%3D%20w%20%20%23%20%E7%89%A9%E5%93%81%E9%87%8D%E9%87%8F%0A%20%20%20%20%20%20%20%20self.v%20%3D%20v%20%20%23%20%E7%89%A9%E5%93%81%E4%BB%B7%E5%80%BC%0A%0Adef%20fractional_knapsack%28wgt%3A%20list%5Bint%5D,%20val%3A%20list%5Bint%5D,%20cap%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%88%86%E6%95%B0%E8%83%8C%E5%8C%85%EF%BC%9A%E8%B4%AA%E5%BF%83%22%22%22%0A%20%20%20%20%23%20%E5%88%9B%E5%BB%BA%E7%89%A9%E5%93%81%E5%88%97%E8%A1%A8%EF%BC%8C%E5%8C%85%E5%90%AB%E4%B8%A4%E4%B8%AA%E5%B1%9E%E6%80%A7%EF%BC%9A%E9%87%8D%E9%87%8F%E3%80%81%E4%BB%B7%E5%80%BC%0A%20%20%20%20items%20%3D%20%5BItem%28w,%20v%29%20for%20w,%20v%20in%20zip%28wgt,%20val%29%5D%0A%20%20%20%20%23%20%E6%8C%89%E7%85%A7%E5%8D%95%E4%BD%8D%E4%BB%B7%E5%80%BC%20item.v%20/%20item.w%20%E4%BB%8E%E9%AB%98%E5%88%B0%E4%BD%8E%E8%BF%9B%E8%A1%8C%E6%8E%92%E5%BA%8F%0A%20%20%20%20items.sort%28key%3Dlambda%20item%3A%20item.v%20/%20item.w,%20reverse%3DTrue%29%0A%20%20%20%20%23%20%E5%BE%AA%E7%8E%AF%E8%B4%AA%E5%BF%83%E9%80%89%E6%8B%A9%0A%20%20%20%20res%20%3D%200%0A%20%20%20%20for%20item%20in%20items%3A%0A%20%20%20%20%20%20%20%20if%20item.w%20%3C%3D%20cap%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E8%8B%A5%E5%89%A9%E4%BD%99%E5%AE%B9%E9%87%8F%E5%85%85%E8%B6%B3%EF%BC%8C%E5%88%99%E5%B0%86%E5%BD%93%E5%89%8D%E7%89%A9%E5%93%81%E6%95%B4%E4%B8%AA%E8%A3%85%E8%BF%9B%E8%83%8C%E5%8C%85%0A%20%20%20%20%20%20%20%20%20%20%20%20res%20%2B%3D%20item.v%0A%20%20%20%20%20%20%20%20%20%20%20%20cap%20-%3D%20item.w%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E8%8B%A5%E5%89%A9%E4%BD%99%E5%AE%B9%E9%87%8F%E4%B8%8D%E8%B6%B3%EF%BC%8C%E5%88%99%E5%B0%86%E5%BD%93%E5%89%8D%E7%89%A9%E5%93%81%E7%9A%84%E4%B8%80%E9%83%A8%E5%88%86%E8%A3%85%E8%BF%9B%E8%83%8C%E5%8C%85%0A%20%20%20%20%20%20%20%20%20%20%20%20res%20%2B%3D%20%28item.v%20/%20item.w%29%20*%20cap%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%B7%B2%E6%97%A0%E5%89%A9%E4%BD%99%E5%AE%B9%E9%87%8F%EF%BC%8C%E5%9B%A0%E6%AD%A4%E8%B7%B3%E5%87%BA%E5%BE%AA%E7%8E%AF%0A%20%20%20%20%20%20%20%20%20%20%20%20break%0A%20%20%20%20return%20res%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20wgt%20%3D%20%5B10,%2020,%2030,%2040,%2050%5D%0A%20%20%20%20val%20%3D%20%5B50,%20120,%20150,%20210,%20240%5D%0A%20%20%20%20cap%20%3D%2050%0A%20%20%20%20n%20%3D%20len%28wgt%29%0A%0A%20%20%20%20%23%20%E8%B4%AA%E5%BF%83%E7%AE%97%E6%B3%95%0A%20%20%20%20res%20%3D%20fractional_knapsack%28wgt,%20val,%20cap%29%0A%20%20%20%20print%28f%22%E4%B8%8D%E8%B6%85%E8%BF%87%E8%83%8C%E5%8C%85%E5%AE%B9%E9%87%8F%E7%9A%84%E6%9C%80%E5%A4%A7%E7%89%A9%E5%93%81%E4%BB%B7%E5%80%BC%E4%B8%BA%20%7Bres%7D%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=8&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=class%20Item%3A%0A%20%20%20%20%22%22%22%E7%89%A9%E5%93%81%22%22%22%0A%20%20%20%20def%20__init__%28self,%20w%3A%20int,%20v%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20self.w%20%3D%20w%20%20%23%20%E7%89%A9%E5%93%81%E9%87%8D%E9%87%8F%0A%20%20%20%20%20%20%20%20self.v%20%3D%20v%20%20%23%20%E7%89%A9%E5%93%81%E4%BB%B7%E5%80%BC%0A%0Adef%20fractional_knapsack%28wgt%3A%20list%5Bint%5D,%20val%3A%20list%5Bint%5D,%20cap%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%88%86%E6%95%B0%E8%83%8C%E5%8C%85%EF%BC%9A%E8%B4%AA%E5%BF%83%22%22%22%0A%20%20%20%20%23%20%E5%88%9B%E5%BB%BA%E7%89%A9%E5%93%81%E5%88%97%E8%A1%A8%EF%BC%8C%E5%8C%85%E5%90%AB%E4%B8%A4%E4%B8%AA%E5%B1%9E%E6%80%A7%EF%BC%9A%E9%87%8D%E9%87%8F%E3%80%81%E4%BB%B7%E5%80%BC%0A%20%20%20%20items%20%3D%20%5BItem%28w,%20v%29%20for%20w,%20v%20in%20zip%28wgt,%20val%29%5D%0A%20%20%20%20%23%20%E6%8C%89%E7%85%A7%E5%8D%95%E4%BD%8D%E4%BB%B7%E5%80%BC%20item.v%20/%20item.w%20%E4%BB%8E%E9%AB%98%E5%88%B0%E4%BD%8E%E8%BF%9B%E8%A1%8C%E6%8E%92%E5%BA%8F%0A%20%20%20%20items.sort%28key%3Dlambda%20item%3A%20item.v%20/%20item.w,%20reverse%3DTrue%29%0A%20%20%20%20%23%20%E5%BE%AA%E7%8E%AF%E8%B4%AA%E5%BF%83%E9%80%89%E6%8B%A9%0A%20%20%20%20res%20%3D%200%0A%20%20%20%20for%20item%20in%20items%3A%0A%20%20%20%20%20%20%20%20if%20item.w%20%3C%3D%20cap%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E8%8B%A5%E5%89%A9%E4%BD%99%E5%AE%B9%E9%87%8F%E5%85%85%E8%B6%B3%EF%BC%8C%E5%88%99%E5%B0%86%E5%BD%93%E5%89%8D%E7%89%A9%E5%93%81%E6%95%B4%E4%B8%AA%E8%A3%85%E8%BF%9B%E8%83%8C%E5%8C%85%0A%20%20%20%20%20%20%20%20%20%20%20%20res%20%2B%3D%20item.v%0A%20%20%20%20%20%20%20%20%20%20%20%20cap%20-%3D%20item.w%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E8%8B%A5%E5%89%A9%E4%BD%99%E5%AE%B9%E9%87%8F%E4%B8%8D%E8%B6%B3%EF%BC%8C%E5%88%99%E5%B0%86%E5%BD%93%E5%89%8D%E7%89%A9%E5%93%81%E7%9A%84%E4%B8%80%E9%83%A8%E5%88%86%E8%A3%85%E8%BF%9B%E8%83%8C%E5%8C%85%0A%20%20%20%20%20%20%20%20%20%20%20%20res%20%2B%3D%20%28item.v%20/%20item.w%29%20*%20cap%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%B7%B2%E6%97%A0%E5%89%A9%E4%BD%99%E5%AE%B9%E9%87%8F%EF%BC%8C%E5%9B%A0%E6%AD%A4%E8%B7%B3%E5%87%BA%E5%BE%AA%E7%8E%AF%0A%20%20%20%20%20%20%20%20%20%20%20%20break%0A%20%20%20%20return%20res%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20wgt%20%3D%20%5B10,%2020,%2030,%2040,%2050%5D%0A%20%20%20%20val%20%3D%20%5B50,%20120,%20150,%20210,%20240%5D%0A%20%20%20%20cap%20%3D%2050%0A%20%20%20%20n%20%3D%20len%28wgt%29%0A%0A%20%20%20%20%23%20%E8%B4%AA%E5%BF%83%E7%AE%97%E6%B3%95%0A%20%20%20%20res%20%3D%20fractional_knapsack%28wgt,%20val,%20cap%29%0A%20%20%20%20print%28f%22%E4%B8%8D%E8%B6%85%E8%BF%87%E8%83%8C%E5%8C%85%E5%AE%B9%E9%87%8F%E7%9A%84%E6%9C%80%E5%A4%A7%E7%89%A9%E5%93%81%E4%BB%B7%E5%80%BC%E4%B8%BA%20%7Bres%7D%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=8&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen ></a></div>
|
||
|
||
Apart from sorting, in the worst case, the entire list of items needs to be traversed, **hence the time complexity is $O(n)$**, where $n$ is the number of items.
|
||
|
||
Since an `Item` object list is initialized, **the space complexity is $O(n)$**.
|
||
|
||
### 3. Correctness proof
|
||
|
||
Using proof by contradiction. Suppose item $x$ has the highest unit value, and some algorithm yields a maximum value `res`, but the solution does not include item $x$.
|
||
|
||
Now remove a unit weight of any item from the knapsack and replace it with a unit weight of item $x$. Since the unit value of item $x$ is the highest, the total value after replacement will definitely be greater than `res`. **This contradicts the assumption that `res` is the optimal solution, proving that the optimal solution must include item $x$**.
|
||
|
||
For other items in this solution, we can also construct the above contradiction. Overall, **items with greater unit value are always better choices**, proving that the greedy strategy is effective.
|
||
|
||
As shown in the Figure 15-6 , if the item weight and unit value are viewed as the horizontal and vertical axes of a two-dimensional chart respectively, the fractional knapsack problem can be transformed into "seeking the largest area enclosed within a limited horizontal axis range". This analogy can help us understand the effectiveness of the greedy strategy from a geometric perspective.
|
||
|
||
![Geometric representation of the fractional knapsack problem](fractional_knapsack_problem.assets/fractional_knapsack_area_chart.png){ class="animation-figure" }
|
||
|
||
<p align="center"> Figure 15-6 Geometric representation of the fractional knapsack problem </p>
|