4.6 KiB
分数背包问题
分数背包是 0-1 背包的一个变种问题。
!!! question
给定 $n$ 个物品,第 $i$ 个物品的重量为 $wgt[i-1]$ 、价值为 $val[i-1]$ ,和一个容量为 $cap$ 的背包。每个物品只能选择一次,**但可以选择物品的一部分,价值根据选择的重量比例计算**,问在不超过背包容量下背包中物品的最大价值。
本题和 0-1 背包整体上非常相似,状态包含当前物品 i
和容量 c
,目标是求不超过背包容量下的最大价值。
不同点在于,本题允许只选择物品的一部分,这意味着可以对物品任意地进行切分,并按照重量比例来计算物品价值,因此有:
- 对于物品
i
,它在单位重量下的价值为val[i-1] / wgt[i-1]
,简称为单位价值。 - 假设放入一部分物品
i
,重量为w
,则背包增加的价值为w \times val[i-1] / wgt[i-1]
。
贪心策略确定
最大化背包内物品总价值,本质上是要最大化单位重量下的物品价值。由此便可推出本题的贪心策略:
- 将物品按照单位价值从高到低进行排序。
- 遍历所有物品,每轮贪心地选择单位价值最高的物品。
- 若剩余背包容量不足,则使用当前物品的一部分填满背包即可。
代码实现
我们建立了一个物品类 Item
,以便将物品按照单位价值进行排序。循环进行贪心选择,当背包已满时跳出并返回解。
=== "Java"
```java title="fractional_knapsack.java"
[class]{Item}-[func]{}
[class]{fractional_knapsack}-[func]{fractionalKnapsack}
```
=== "C++"
```cpp title="fractional_knapsack.cpp"
[class]{Item}-[func]{}
[class]{}-[func]{fractionalKnapsack}
```
=== "Python"
```python title="fractional_knapsack.py"
[class]{Item}-[func]{}
[class]{}-[func]{fractional_knapsack}
```
=== "Go"
```go title="fractional_knapsack.go"
[class]{Item}-[func]{}
[class]{}-[func]{fractionalKnapsack}
```
=== "JavaScript"
```javascript title="fractional_knapsack.js"
[class]{Item}-[func]{}
[class]{}-[func]{fractionalKnapsack}
```
=== "TypeScript"
```typescript title="fractional_knapsack.ts"
[class]{Item}-[func]{}
[class]{}-[func]{fractionalKnapsack}
```
=== "C"
```c title="fractional_knapsack.c"
[class]{Item}-[func]{}
[class]{}-[func]{fractionalKnapsack}
```
=== "C#"
```csharp title="fractional_knapsack.cs"
[class]{Item}-[func]{}
[class]{fractional_knapsack}-[func]{fractionalKnapsack}
```
=== "Swift"
```swift title="fractional_knapsack.swift"
[class]{Item}-[func]{}
[class]{}-[func]{fractionalKnapsack}
```
=== "Zig"
```zig title="fractional_knapsack.zig"
[class]{Item}-[func]{}
[class]{}-[func]{fractionalKnapsack}
```
=== "Dart"
```dart title="fractional_knapsack.dart"
[class]{Item}-[func]{}
[class]{}-[func]{fractionalKnapsack}
```
=== "Rust"
```rust title="fractional_knapsack.rs"
[class]{Item}-[func]{}
[class]{}-[func]{fractional_knapsack}
```
最差情况下,需要遍历整个物品列表,因此时间复杂度为 $O(n)$ ,其中 n
为物品数量。
由于初始化了一个 Item
对象列表,因此空间复杂度为 $O(n)$ 。
正确性证明
采用反证法。假设物品 x
是单位价值最高的物品,使用某算法求得最大价值为 res
,但该解中不包含物品 x
。
现在从背包中拿出单位重量的任意物品,并替换为单位重量的物品 x
。由于物品 x
的单位价值最高,因此替换后的总价值一定大于 res
。这与 res
是最优解矛盾,说明最优解中必须包含物品 $x$ 。
对于该解中的其他物品,我们也可以构建出上述矛盾。总而言之,单位价值更大的物品总是更优选择,这说明贪心策略是有效的。
如下图所示,如果将物品重量和物品单位价值分别看作一个 2D 图表的横轴和纵轴,则分数背包问题可被转化为“求在有限横轴区间下的最大围成面积”。
通过这个类比,我们可以从几何角度理解贪心策略的有效性。