hello-algo/zh-Hant/docs/chapter_greedy/max_capacity_problem.md
2024-04-11 01:11:20 +08:00

17 KiB
Raw Blame History

comments
true

15.3   最大容量問題

!!! question

輸入一個陣列 $ht$ ,其中的每個元素代表一個垂直隔板的高度。陣列中的任意兩個隔板,以及它們之間的空間可以組成一個容器。

容器的容量等於高度和寬度的乘積(面積),其中高度由較短的隔板決定,寬度是兩個隔板的陣列索引之差。

請在陣列中選擇兩個隔板,使得組成的容器的容量最大,返回最大容量。示例如圖 15-7 所示。

最大容量問題的示例資料{ class="animation-figure" }

圖 15-7   最大容量問題的示例資料

容器由任意兩個隔板圍成,因此本題的狀態為兩個隔板的索引,記為 $[i, j]$

根據題意,容量等於高度乘以寬度,其中高度由短板決定,寬度是兩隔板的陣列索引之差。設容量為 cap[i, j] ,則可得計算公式:

$$ cap[i, j] = \min(ht[i], ht[j]) \times (j - i)

設陣列長度為 n ,兩個隔板的組合數量(狀態總數)為 C_n^2 = \frac{n(n - 1)}{2} 個。最直接地,我們可以窮舉所有狀態,從而求得最大容量,時間複雜度為 O(n^2)

1.   貪婪策略確定

這道題還有更高效率的解法。如圖 15-8 所示,現選取一個狀態 [i, j] ,其滿足索引 i < j 且高度 ht[i] < ht[j] ,即 i 為短板、j 為長板。

初始狀態{ class="animation-figure" }

圖 15-8   初始狀態

如圖 15-9 所示,若此時將長板 j 向短板 i 靠近,則容量一定變小

這是因為在移動長板 j 後,寬度 j-i 肯定變小;而高度由短板決定,因此高度只可能不變( i 仍為短板)或變小(移動後的 j 成為短板)。

向內移動長板後的狀態{ class="animation-figure" }

圖 15-9   向內移動長板後的狀態

反向思考,我們只有向內收縮短板 i ,才有可能使容量變大。因為雖然寬度一定變小,但高度可能會變大(移動後的短板 i 可能會變長)。例如在圖 15-10 中,移動短板後面積變大。

向內移動短板後的狀態{ class="animation-figure" }

圖 15-10   向內移動短板後的狀態

由此便可推出本題的貪婪策略:初始化兩指標,使其分列容器兩端,每輪向內收縮短板對應的指標,直至兩指標相遇。

圖 15-11 展示了貪婪策略的執行過程。

  1. 初始狀態下,指標 ij 分列陣列兩端。
  2. 計算當前狀態的容量 cap[i, j] ,並更新最大容量。
  3. 比較板 i 和 板 j 的高度,並將短板向內移動一格。
  4. 迴圈執行第 2. 步和第 3. 步,直至 ij 相遇時結束。

=== "<1>" 最大容量問題的貪婪過程{ class="animation-figure" }

=== "<2>" max_capacity_greedy_step2{ class="animation-figure" }

=== "<3>" max_capacity_greedy_step3{ class="animation-figure" }

=== "<4>" max_capacity_greedy_step4{ class="animation-figure" }

=== "<5>" max_capacity_greedy_step5{ class="animation-figure" }

=== "<6>" max_capacity_greedy_step6{ class="animation-figure" }

=== "<7>" max_capacity_greedy_step7{ class="animation-figure" }

=== "<8>" max_capacity_greedy_step8{ class="animation-figure" }

=== "<9>" max_capacity_greedy_step9{ class="animation-figure" }

圖 15-11   最大容量問題的貪婪過程

2.   程式碼實現

程式碼迴圈最多 n 輪,因此時間複雜度為 $O(n)$

變數 $i$、$j$、res 使用常數大小的額外空間,因此空間複雜度為 $O(1)$

=== "Python"

```python title="max_capacity.py"
def max_capacity(ht: list[int]) -> int:
    """最大容量:貪婪"""
    # 初始化 i, j使其分列陣列兩端
    i, j = 0, len(ht) - 1
    # 初始最大容量為 0
    res = 0
    # 迴圈貪婪選擇,直至兩板相遇
    while i < j:
        # 更新最大容量
        cap = min(ht[i], ht[j]) * (j - i)
        res = max(res, cap)
        # 向內移動短板
        if ht[i] < ht[j]:
            i += 1
        else:
            j -= 1
    return res
```

=== "C++"

```cpp title="max_capacity.cpp"
/* 最大容量:貪婪 */
int maxCapacity(vector<int> &ht) {
    // 初始化 i, j使其分列陣列兩端
    int i = 0, j = ht.size() - 1;
    // 初始最大容量為 0
    int res = 0;
    // 迴圈貪婪選擇,直至兩板相遇
    while (i < j) {
        // 更新最大容量
        int cap = min(ht[i], ht[j]) * (j - i);
        res = max(res, cap);
        // 向內移動短板
        if (ht[i] < ht[j]) {
            i++;
        } else {
            j--;
        }
    }
    return res;
}
```

=== "Java"

```java title="max_capacity.java"
/* 最大容量:貪婪 */
int maxCapacity(int[] ht) {
    // 初始化 i, j使其分列陣列兩端
    int i = 0, j = ht.length - 1;
    // 初始最大容量為 0
    int res = 0;
    // 迴圈貪婪選擇,直至兩板相遇
    while (i < j) {
        // 更新最大容量
        int cap = Math.min(ht[i], ht[j]) * (j - i);
        res = Math.max(res, cap);
        // 向內移動短板
        if (ht[i] < ht[j]) {
            i++;
        } else {
            j--;
        }
    }
    return res;
}
```

=== "C#"

```csharp title="max_capacity.cs"
/* 最大容量:貪婪 */
int MaxCapacity(int[] ht) {
    // 初始化 i, j使其分列陣列兩端
    int i = 0, j = ht.Length - 1;
    // 初始最大容量為 0
    int res = 0;
    // 迴圈貪婪選擇,直至兩板相遇
    while (i < j) {
        // 更新最大容量
        int cap = Math.Min(ht[i], ht[j]) * (j - i);
        res = Math.Max(res, cap);
        // 向內移動短板
        if (ht[i] < ht[j]) {
            i++;
        } else {
            j--;
        }
    }
    return res;
}
```

=== "Go"

```go title="max_capacity.go"
/* 最大容量:貪婪 */
func maxCapacity(ht []int) int {
    // 初始化 i, j使其分列陣列兩端
    i, j := 0, len(ht)-1
    // 初始最大容量為 0
    res := 0
    // 迴圈貪婪選擇,直至兩板相遇
    for i < j {
        // 更新最大容量
        capacity := int(math.Min(float64(ht[i]), float64(ht[j]))) * (j - i)
        res = int(math.Max(float64(res), float64(capacity)))
        // 向內移動短板
        if ht[i] < ht[j] {
            i++
        } else {
            j--
        }
    }
    return res
}
```

=== "Swift"

```swift title="max_capacity.swift"
/* 最大容量:貪婪 */
func maxCapacity(ht: [Int]) -> Int {
    // 初始化 i, j使其分列陣列兩端
    var i = ht.startIndex, j = ht.endIndex - 1
    // 初始最大容量為 0
    var res = 0
    // 迴圈貪婪選擇,直至兩板相遇
    while i < j {
        // 更新最大容量
        let cap = min(ht[i], ht[j]) * (j - i)
        res = max(res, cap)
        // 向內移動短板
        if ht[i] < ht[j] {
            i += 1
        } else {
            j -= 1
        }
    }
    return res
}
```

=== "JS"

```javascript title="max_capacity.js"
/* 最大容量:貪婪 */
function maxCapacity(ht) {
    // 初始化 i, j使其分列陣列兩端
    let i = 0,
        j = ht.length - 1;
    // 初始最大容量為 0
    let res = 0;
    // 迴圈貪婪選擇,直至兩板相遇
    while (i < j) {
        // 更新最大容量
        const cap = Math.min(ht[i], ht[j]) * (j - i);
        res = Math.max(res, cap);
        // 向內移動短板
        if (ht[i] < ht[j]) {
            i += 1;
        } else {
            j -= 1;
        }
    }
    return res;
}
```

=== "TS"

```typescript title="max_capacity.ts"
/* 最大容量:貪婪 */
function maxCapacity(ht: number[]): number {
    // 初始化 i, j使其分列陣列兩端
    let i = 0,
        j = ht.length - 1;
    // 初始最大容量為 0
    let res = 0;
    // 迴圈貪婪選擇,直至兩板相遇
    while (i < j) {
        // 更新最大容量
        const cap: number = Math.min(ht[i], ht[j]) * (j - i);
        res = Math.max(res, cap);
        // 向內移動短板
        if (ht[i] < ht[j]) {
            i += 1;
        } else {
            j -= 1;
        }
    }
    return res;
}
```

=== "Dart"

```dart title="max_capacity.dart"
/* 最大容量:貪婪 */
int maxCapacity(List<int> ht) {
  // 初始化 i, j使其分列陣列兩端
  int i = 0, j = ht.length - 1;
  // 初始最大容量為 0
  int res = 0;
  // 迴圈貪婪選擇,直至兩板相遇
  while (i < j) {
    // 更新最大容量
    int cap = min(ht[i], ht[j]) * (j - i);
    res = max(res, cap);
    // 向內移動短板
    if (ht[i] < ht[j]) {
      i++;
    } else {
      j--;
    }
  }
  return res;
}
```

=== "Rust"

```rust title="max_capacity.rs"
/* 最大容量:貪婪 */
fn max_capacity(ht: &[i32]) -> i32 {
    // 初始化 i, j使其分列陣列兩端
    let mut i = 0;
    let mut j = ht.len() - 1;
    // 初始最大容量為 0
    let mut res = 0;
    // 迴圈貪婪選擇,直至兩板相遇
    while i < j {
        // 更新最大容量
        let cap = std::cmp::min(ht[i], ht[j]) * (j - i) as i32;
        res = std::cmp::max(res, cap);
        // 向內移動短板
        if ht[i] < ht[j] {
            i += 1;
        } else {
            j -= 1;
        }
    }
    res
}
```

=== "C"

```c title="max_capacity.c"
/* 最大容量:貪婪 */
int maxCapacity(int ht[], int htLength) {
    // 初始化 i, j使其分列陣列兩端
    int i = 0;
    int j = htLength - 1;
    // 初始最大容量為 0
    int res = 0;
    // 迴圈貪婪選擇,直至兩板相遇
    while (i < j) {
        // 更新最大容量
        int capacity = myMin(ht[i], ht[j]) * (j - i);
        res = myMax(res, capacity);
        // 向內移動短板
        if (ht[i] < ht[j]) {
            i++;
        } else {
            j--;
        }
    }
    return res;
}
```

=== "Kotlin"

```kotlin title="max_capacity.kt"
/* 最大容量:貪婪 */
fun maxCapacity(ht: IntArray): Int {
    // 初始化 i, j使其分列陣列兩端
    var i = 0
    var j = ht.size - 1
    // 初始最大容量為 0
    var res = 0
    // 迴圈貪婪選擇,直至兩板相遇
    while (i < j) {
        // 更新最大容量
        val cap = min(ht[i], ht[j]) * (j - i)
        res = max(res, cap)
        // 向內移動短板
        if (ht[i] < ht[j]) {
            i++
        } else {
            j--
        }
    }
    return res
}
```

=== "Ruby"

```ruby title="max_capacity.rb"
[class]{}-[func]{max_capacity}
```

=== "Zig"

```zig title="max_capacity.zig"
[class]{}-[func]{maxCapacity}
```

??? pythontutor "視覺化執行"

<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20max_capacity%28ht%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%EF%BC%9A%E8%B2%AA%E5%A9%AA%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20i%2C%20j%EF%BC%8C%E4%BD%BF%E5%85%B6%E5%88%86%E5%88%97%E9%99%A3%E5%88%97%E5%85%A9%E7%AB%AF%0A%20%20%20%20i%2C%20j%20%3D%200%2C%20len%28ht%29%20-%201%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%E7%82%BA%200%0A%20%20%20%20res%20%3D%200%0A%20%20%20%20%23%20%E8%BF%B4%E5%9C%88%E8%B2%AA%E5%A9%AA%E9%81%B8%E6%93%87%EF%BC%8C%E7%9B%B4%E8%87%B3%E5%85%A9%E6%9D%BF%E7%9B%B8%E9%81%87%0A%20%20%20%20while%20i%20%3C%20j%3A%0A%20%20%20%20%20%20%20%20%23%20%E6%9B%B4%E6%96%B0%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%0A%20%20%20%20%20%20%20%20cap%20%3D%20min%28ht%5Bi%5D%2C%20ht%5Bj%5D%29%20%2A%20%28j%20-%20i%29%0A%20%20%20%20%20%20%20%20res%20%3D%20max%28res%2C%20cap%29%0A%20%20%20%20%20%20%20%20%23%20%E5%90%91%E5%85%A7%E7%A7%BB%E5%8B%95%E7%9F%AD%E6%9D%BF%0A%20%20%20%20%20%20%20%20if%20ht%5Bi%5D%20%3C%20ht%5Bj%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%2B%3D%201%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20-%3D%201%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20ht%20%3D%20%5B3%2C%208%2C%205%2C%202%2C%207%2C%207%2C%203%2C%204%5D%0A%0A%20%20%20%20%23%20%E8%B2%AA%E5%A9%AA%E6%BC%94%E7%AE%97%E6%B3%95%0A%20%20%20%20res%20%3D%20max_capacity%28ht%29%0A%20%20%20%20print%28f%22%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%E7%82%BA%20%7Bres%7D%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20max_capacity%28ht%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%EF%BC%9A%E8%B2%AA%E5%A9%AA%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20i%2C%20j%EF%BC%8C%E4%BD%BF%E5%85%B6%E5%88%86%E5%88%97%E9%99%A3%E5%88%97%E5%85%A9%E7%AB%AF%0A%20%20%20%20i%2C%20j%20%3D%200%2C%20len%28ht%29%20-%201%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%E7%82%BA%200%0A%20%20%20%20res%20%3D%200%0A%20%20%20%20%23%20%E8%BF%B4%E5%9C%88%E8%B2%AA%E5%A9%AA%E9%81%B8%E6%93%87%EF%BC%8C%E7%9B%B4%E8%87%B3%E5%85%A9%E6%9D%BF%E7%9B%B8%E9%81%87%0A%20%20%20%20while%20i%20%3C%20j%3A%0A%20%20%20%20%20%20%20%20%23%20%E6%9B%B4%E6%96%B0%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%0A%20%20%20%20%20%20%20%20cap%20%3D%20min%28ht%5Bi%5D%2C%20ht%5Bj%5D%29%20%2A%20%28j%20-%20i%29%0A%20%20%20%20%20%20%20%20res%20%3D%20max%28res%2C%20cap%29%0A%20%20%20%20%20%20%20%20%23%20%E5%90%91%E5%85%A7%E7%A7%BB%E5%8B%95%E7%9F%AD%E6%9D%BF%0A%20%20%20%20%20%20%20%20if%20ht%5Bi%5D%20%3C%20ht%5Bj%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%2B%3D%201%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20-%3D%201%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20ht%20%3D%20%5B3%2C%208%2C%205%2C%202%2C%207%2C%207%2C%203%2C%204%5D%0A%0A%20%20%20%20%23%20%E8%B2%AA%E5%A9%AA%E6%BC%94%E7%AE%97%E6%B3%95%0A%20%20%20%20res%20%3D%20max_capacity%28ht%29%0A%20%20%20%20print%28f%22%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%E7%82%BA%20%7Bres%7D%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>

3.   正確性證明

之所以貪婪比窮舉更快,是因為每輪的貪婪選擇都會“跳過”一些狀態。

比如在狀態 cap[i, j] 下,i 為短板、j 為長板。若貪婪地將短板 i 向內移動一格,會導致圖 15-12 所示的狀態被“跳過”。這意味著之後無法驗證這些狀態的容量大小

$$ cap[i, i+1], cap[i, i+2], \dots, cap[i, j-2], cap[i, j-1]

移動短板導致被跳過的狀態{ class="animation-figure" }

圖 15-12   移動短板導致被跳過的狀態

觀察發現,這些被跳過的狀態實際上就是將長板 j 向內移動的所有狀態。前面我們已經證明內移長板一定會導致容量變小。也就是說,被跳過的狀態都不可能是最優解,跳過它們不會導致錯過最優解

以上分析說明,移動短板的操作是“安全”的,貪婪策略是有效的。