hello-algo/zh-Hant/docs/chapter_computational_complexity/time_complexity.md
2024-04-11 01:11:20 +08:00

3949 lines
130 KiB
Markdown
Executable file
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
comments: true
---
# 2.3   時間複雜度
執行時間可以直觀且準確地反映演算法的效率。如果我們想準確預估一段程式碼的執行時間,應該如何操作呢?
1. **確定執行平臺**,包括硬體配置、程式語言、系統環境等,這些因素都會影響程式碼的執行效率。
2. **評估各種計算操作所需的執行時間**,例如加法操作 `+` 需要 1 ns ,乘法操作 `*` 需要 10 ns ,列印操作 `print()` 需要 5 ns 等。
3. **統計程式碼中所有的計算操作**,並將所有操作的執行時間求和,從而得到執行時間。
例如在以下程式碼中,輸入資料大小為 $n$
=== "Python"
```python title=""
# 在某執行平臺下
def algorithm(n: int):
a = 2 # 1 ns
a = a + 1 # 1 ns
a = a * 2 # 10 ns
# 迴圈 n 次
for _ in range(n): # 1 ns
print(0) # 5 ns
```
=== "C++"
```cpp title=""
// 在某執行平臺下
void algorithm(int n) {
int a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 迴圈 n 次
for (int i = 0; i < n; i++) { // 1 ns 每輪都要執行 i++
cout << 0 << endl; // 5 ns
}
}
```
=== "Java"
```java title=""
// 在某執行平臺下
void algorithm(int n) {
int a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 迴圈 n
for (int i = 0; i < n; i++) { // 1 ns 每輪都要執行 i++
System.out.println(0); // 5 ns
}
}
```
=== "C#"
```csharp title=""
// 在某執行平臺下
void Algorithm(int n) {
int a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 迴圈 n
for (int i = 0; i < n; i++) { // 1 ns 每輪都要執行 i++
Console.WriteLine(0); // 5 ns
}
}
```
=== "Go"
```go title=""
// 在某執行平臺下
func algorithm(n int) {
a := 2 // 1 ns
a = a + 1 // 1 ns
a = a * 2 // 10 ns
// 迴圈 n
for i := 0; i < n; i++ { // 1 ns
fmt.Println(a) // 5 ns
}
}
```
=== "Swift"
```swift title=""
// 在某執行平臺下
func algorithm(n: Int) {
var a = 2 // 1 ns
a = a + 1 // 1 ns
a = a * 2 // 10 ns
// 迴圈 n
for _ in 0 ..< n { // 1 ns
print(0) // 5 ns
}
}
```
=== "JS"
```javascript title=""
// 在某執行平臺下
function algorithm(n) {
var a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 迴圈 n
for(let i = 0; i < n; i++) { // 1 ns 每輪都要執行 i++
console.log(0); // 5 ns
}
}
```
=== "TS"
```typescript title=""
// 在某執行平臺下
function algorithm(n: number): void {
var a: number = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 迴圈 n
for(let i = 0; i < n; i++) { // 1 ns 每輪都要執行 i++
console.log(0); // 5 ns
}
}
```
=== "Dart"
```dart title=""
// 在某執行平臺下
void algorithm(int n) {
int a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 迴圈 n
for (int i = 0; i < n; i++) { // 1 ns 每輪都要執行 i++
print(0); // 5 ns
}
}
```
=== "Rust"
```rust title=""
// 在某執行平臺下
fn algorithm(n: i32) {
let mut a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 迴圈 n
for _ in 0..n { // 1 ns 每輪都要執行 i++
println!("{}", 0); // 5 ns
}
}
```
=== "C"
```c title=""
// 在某執行平臺下
void algorithm(int n) {
int a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 迴圈 n
for (int i = 0; i < n; i++) { // 1 ns 每輪都要執行 i++
printf("%d", 0); // 5 ns
}
}
```
=== "Kotlin"
```kotlin title=""
// 在某執行平臺下
fun algorithm(n: Int) {
var a = 2 // 1 ns
a = a + 1 // 1 ns
a = a * 2 // 10 ns
// 迴圈 n
for (i in 0..<n) { // 1 ns 每輪都要執行 i++
println(0) // 5 ns
}
}
```
=== "Ruby"
```ruby title=""
# 在某執行平臺下
def algorithm(n)
a = 2 # 1 ns
a = a + 1 # 1 ns
a = a * 2 # 10 ns
# 迴圈 n
(0...n).each do # 1 ns
puts 0 # 5 ns
end
end
```
=== "Zig"
```zig title=""
// 在某執行平臺下
fn algorithm(n: usize) void {
var a: i32 = 2; // 1 ns
a += 1; // 1 ns
a *= 2; // 10 ns
// 迴圈 n
for (0..n) |_| { // 1 ns
std.debug.print("{}\n", .{0}); // 5 ns
}
}
```
根據以上方法可以得到演算法的執行時間為 $(6n + 12)$ ns
$$
1 + 1 + 10 + (1 + 5) \times n = 6n + 12
$$
但實際上**統計演算法的執行時間既不合理也不現實**。首先我們不希望將預估時間和執行平臺繫結因為演算法需要在各種不同的平臺上執行其次我們很難獲知每種操作的執行時間這給預估過程帶來了極大的難度
## 2.3.1 &nbsp; 統計時間增長趨勢
時間複雜度分析統計的不是演算法執行時間**而是演算法執行時間隨著資料量變大時的增長趨勢**。
時間增長趨勢這個概念比較抽象我們透過一個例子來加以理解假設輸入資料大小為 $n$ 給定三個演算法 `A`、`B` `C`
=== "Python"
```python title=""
# 演算法 A 的時間複雜度常數階
def algorithm_A(n: int):
print(0)
# 演算法 B 的時間複雜度線性階
def algorithm_B(n: int):
for _ in range(n):
print(0)
# 演算法 C 的時間複雜度常數階
def algorithm_C(n: int):
for _ in range(1000000):
print(0)
```
=== "C++"
```cpp title=""
// 演算法 A 的時間複雜度常數階
void algorithm_A(int n) {
cout << 0 << endl;
}
// 演算法 B 的時間複雜度線性階
void algorithm_B(int n) {
for (int i = 0; i < n; i++) {
cout << 0 << endl;
}
}
// 演算法 C 的時間複雜度常數階
void algorithm_C(int n) {
for (int i = 0; i < 1000000; i++) {
cout << 0 << endl;
}
}
```
=== "Java"
```java title=""
// 演算法 A 的時間複雜度常數階
void algorithm_A(int n) {
System.out.println(0);
}
// 演算法 B 的時間複雜度線性階
void algorithm_B(int n) {
for (int i = 0; i < n; i++) {
System.out.println(0);
}
}
// 演算法 C 的時間複雜度常數階
void algorithm_C(int n) {
for (int i = 0; i < 1000000; i++) {
System.out.println(0);
}
}
```
=== "C#"
```csharp title=""
// 演算法 A 的時間複雜度常數階
void AlgorithmA(int n) {
Console.WriteLine(0);
}
// 演算法 B 的時間複雜度線性階
void AlgorithmB(int n) {
for (int i = 0; i < n; i++) {
Console.WriteLine(0);
}
}
// 演算法 C 的時間複雜度常數階
void AlgorithmC(int n) {
for (int i = 0; i < 1000000; i++) {
Console.WriteLine(0);
}
}
```
=== "Go"
```go title=""
// 演算法 A 的時間複雜度常數階
func algorithm_A(n int) {
fmt.Println(0)
}
// 演算法 B 的時間複雜度線性階
func algorithm_B(n int) {
for i := 0; i < n; i++ {
fmt.Println(0)
}
}
// 演算法 C 的時間複雜度常數階
func algorithm_C(n int) {
for i := 0; i < 1000000; i++ {
fmt.Println(0)
}
}
```
=== "Swift"
```swift title=""
// 演算法 A 的時間複雜度常數階
func algorithmA(n: Int) {
print(0)
}
// 演算法 B 的時間複雜度線性階
func algorithmB(n: Int) {
for _ in 0 ..< n {
print(0)
}
}
// 演算法 C 的時間複雜度常數階
func algorithmC(n: Int) {
for _ in 0 ..< 1_000_000 {
print(0)
}
}
```
=== "JS"
```javascript title=""
// 演算法 A 的時間複雜度常數階
function algorithm_A(n) {
console.log(0);
}
// 演算法 B 的時間複雜度線性階
function algorithm_B(n) {
for (let i = 0; i < n; i++) {
console.log(0);
}
}
// 演算法 C 的時間複雜度常數階
function algorithm_C(n) {
for (let i = 0; i < 1000000; i++) {
console.log(0);
}
}
```
=== "TS"
```typescript title=""
// 演算法 A 的時間複雜度常數階
function algorithm_A(n: number): void {
console.log(0);
}
// 演算法 B 的時間複雜度線性階
function algorithm_B(n: number): void {
for (let i = 0; i < n; i++) {
console.log(0);
}
}
// 演算法 C 的時間複雜度常數階
function algorithm_C(n: number): void {
for (let i = 0; i < 1000000; i++) {
console.log(0);
}
}
```
=== "Dart"
```dart title=""
// 演算法 A 的時間複雜度常數階
void algorithmA(int n) {
print(0);
}
// 演算法 B 的時間複雜度線性階
void algorithmB(int n) {
for (int i = 0; i < n; i++) {
print(0);
}
}
// 演算法 C 的時間複雜度常數階
void algorithmC(int n) {
for (int i = 0; i < 1000000; i++) {
print(0);
}
}
```
=== "Rust"
```rust title=""
// 演算法 A 的時間複雜度常數階
fn algorithm_A(n: i32) {
println!("{}", 0);
}
// 演算法 B 的時間複雜度線性階
fn algorithm_B(n: i32) {
for _ in 0..n {
println!("{}", 0);
}
}
// 演算法 C 的時間複雜度常數階
fn algorithm_C(n: i32) {
for _ in 0..1000000 {
println!("{}", 0);
}
}
```
=== "C"
```c title=""
// 演算法 A 的時間複雜度常數階
void algorithm_A(int n) {
printf("%d", 0);
}
// 演算法 B 的時間複雜度線性階
void algorithm_B(int n) {
for (int i = 0; i < n; i++) {
printf("%d", 0);
}
}
// 演算法 C 的時間複雜度常數階
void algorithm_C(int n) {
for (int i = 0; i < 1000000; i++) {
printf("%d", 0);
}
}
```
=== "Kotlin"
```kotlin title=""
// 演算法 A 的時間複雜度常數階
fun algoritm_A(n: Int) {
println(0)
}
// 演算法 B 的時間複雜度線性階
fun algorithm_B(n: Int) {
for (i in 0..<n){
println(0)
}
}
// 演算法 C 的時間複雜度常數階
fun algorithm_C(n: Int) {
for (i in 0..<1000000) {
println(0)
}
}
```
=== "Ruby"
```ruby title=""
# 演算法 A 的時間複雜度常數階
def algorithm_A(n)
puts 0
end
# 演算法 B 的時間複雜度線性階
def algorithm_B(n)
(0...n).each { puts 0 }
end
# 演算法 C 的時間複雜度常數階
def algorithm_C(n)
(0...1_000_000).each { puts 0 }
end
```
=== "Zig"
```zig title=""
// 演算法 A 的時間複雜度常數階
fn algorithm_A(n: usize) void {
_ = n;
std.debug.print("{}\n", .{0});
}
// 演算法 B 的時間複雜度線性階
fn algorithm_B(n: i32) void {
for (0..n) |_| {
std.debug.print("{}\n", .{0});
}
}
// 演算法 C 的時間複雜度常數階
fn algorithm_C(n: i32) void {
_ = n;
for (0..1000000) |_| {
std.debug.print("{}\n", .{0});
}
}
```
2-7 展示了以上三個演算法函式的時間複雜度
- 演算法 `A` 只有 $1$ 個列印操作演算法執行時間不隨著 $n$ 增大而增長我們稱此演算法的時間複雜度為常數階”。
- 演算法 `B` 中的列印操作需要迴圈 $n$ 演算法執行時間隨著 $n$ 增大呈線性增長此演算法的時間複雜度被稱為線性階”。
- 演算法 `C` 中的列印操作需要迴圈 $1000000$ 雖然執行時間很長但它與輸入資料大小 $n$ 無關因此 `C` 的時間複雜度和 `A` 相同仍為常數階”。
![演算法 A、B 和 C 的時間增長趨勢](time_complexity.assets/time_complexity_simple_example.png){ class="animation-figure" }
<p align="center"> 圖 2-7 &nbsp; 演算法 A、B 和 C 的時間增長趨勢 </p>
相較於直接統計演算法的執行時間,時間複雜度分析有哪些特點呢?
- **時間複雜度能夠有效評估演算法效率**。例如,演算法 `B` 的執行時間呈線性增長,在 $n > 1$ 時比演算法 `A` 更慢,在 $n > 1000000$ 時比演算法 `C` 更慢。事實上,只要輸入資料大小 $n$ 足夠大,複雜度為“常數階”的演算法一定優於“線性階”的演算法,這正是時間增長趨勢的含義。
- **時間複雜度的推算方法更簡便**。顯然,執行平臺和計算操作型別都與演算法執行時間的增長趨勢無關。因此在時間複雜度分析中,我們可以簡單地將所有計算操作的執行時間視為相同的“單位時間”,從而將“計算操作執行時間統計”簡化為“計算操作數量統計”,這樣一來估算難度就大大降低了。
- **時間複雜度也存在一定的侷限性**。例如,儘管演算法 `A``C` 的時間複雜度相同,但實際執行時間差別很大。同樣,儘管演算法 `B` 的時間複雜度比 `C` 高,但在輸入資料大小 $n$ 較小時,演算法 `B` 明顯優於演算法 `C` 。在這些情況下,我們很難僅憑時間複雜度判斷演算法效率的高低。當然,儘管存在上述問題,複雜度分析仍然是評判演算法效率最有效且常用的方法。
## 2.3.2 &nbsp; 函式漸近上界
給定一個輸入大小為 $n$ 的函式:
=== "Python"
```python title=""
def algorithm(n: int):
a = 1 # +1
a = a + 1 # +1
a = a * 2 # +1
# 迴圈 n 次
for i in range(n): # +1
print(0) # +1
```
=== "C++"
```cpp title=""
void algorithm(int n) {
int a = 1; // +1
a = a + 1; // +1
a = a * 2; // +1
// 迴圈 n 次
for (int i = 0; i < n; i++) { // +1每輪都執行 i ++
cout << 0 << endl; // +1
}
}
```
=== "Java"
```java title=""
void algorithm(int n) {
int a = 1; // +1
a = a + 1; // +1
a = a * 2; // +1
// 迴圈 n
for (int i = 0; i < n; i++) { // +1每輪都執行 i ++
System.out.println(0); // +1
}
}
```
=== "C#"
```csharp title=""
void Algorithm(int n) {
int a = 1; // +1
a = a + 1; // +1
a = a * 2; // +1
// 迴圈 n
for (int i = 0; i < n; i++) { // +1每輪都執行 i ++
Console.WriteLine(0); // +1
}
}
```
=== "Go"
```go title=""
func algorithm(n int) {
a := 1 // +1
a = a + 1 // +1
a = a * 2 // +1
// 迴圈 n
for i := 0; i < n; i++ { // +1
fmt.Println(a) // +1
}
}
```
=== "Swift"
```swift title=""
func algorithm(n: Int) {
var a = 1 // +1
a = a + 1 // +1
a = a * 2 // +1
// 迴圈 n
for _ in 0 ..< n { // +1
print(0) // +1
}
}
```
=== "JS"
```javascript title=""
function algorithm(n) {
var a = 1; // +1
a += 1; // +1
a *= 2; // +1
// 迴圈 n
for(let i = 0; i < n; i++){ // +1每輪都執行 i ++
console.log(0); // +1
}
}
```
=== "TS"
```typescript title=""
function algorithm(n: number): void{
var a: number = 1; // +1
a += 1; // +1
a *= 2; // +1
// 迴圈 n
for(let i = 0; i < n; i++){ // +1每輪都執行 i ++
console.log(0); // +1
}
}
```
=== "Dart"
```dart title=""
void algorithm(int n) {
int a = 1; // +1
a = a + 1; // +1
a = a * 2; // +1
// 迴圈 n
for (int i = 0; i < n; i++) { // +1每輪都執行 i ++
print(0); // +1
}
}
```
=== "Rust"
```rust title=""
fn algorithm(n: i32) {
let mut a = 1; // +1
a = a + 1; // +1
a = a * 2; // +1
// 迴圈 n
for _ in 0..n { // +1每輪都執行 i ++
println!("{}", 0); // +1
}
}
```
=== "C"
```c title=""
void algorithm(int n) {
int a = 1; // +1
a = a + 1; // +1
a = a * 2; // +1
// 迴圈 n
for (int i = 0; i < n; i++) { // +1每輪都執行 i ++
printf("%d", 0); // +1
}
}
```
=== "Kotlin"
```kotlin title=""
fun algorithm(n: Int) {
var a = 1 // +1
a = a + 1 // +1
a = a * 2 // +1
// 迴圈 n
for (i in 0..<n) { // +1每輪都執行 i ++
println(0) // +1
}
}
```
=== "Ruby"
```ruby title=""
def algorithm(n)
a = 1 # +1
a = a + 1 # +1
a = a * 2 # +1
# 迴圈 n
(0...n).each do # +1
puts 0 # +1
end
end
```
=== "Zig"
```zig title=""
fn algorithm(n: usize) void {
var a: i32 = 1; // +1
a += 1; // +1
a *= 2; // +1
// 迴圈 n
for (0..n) |_| { // +1每輪都執行 i ++
std.debug.print("{}\n", .{0}); // +1
}
}
```
設演算法的操作數量是一個關於輸入資料大小 $n$ 的函式記為 $T(n)$ 則以上函式的操作數量為
$$
T(n) = 3 + 2n
$$
$T(n)$ 是一次函式說明其執行時間的增長趨勢是線性的因此它的時間複雜度是線性階
我們將線性階的時間複雜度記為 $O(n)$ 這個數學符號稱為<u>大 $O$ 記號big-$O$ notation</u>,表示函式 $T(n)$ 的<u>漸近上界asymptotic upper bound</u>
時間複雜度分析本質上是計算“操作數量 $T(n)$”的漸近上界,它具有明確的數學定義。
!!! abstract "函式漸近上界"
若存在正實數 $c$ 和實數 $n_0$ ,使得對於所有的 $n > n_0$ ,均有 $T(n) \leq c \cdot f(n)$ ,則可認為 $f(n)$ 給出了 $T(n)$ 的一個漸近上界,記為 $T(n) = O(f(n))$ 。
如圖 2-8 所示,計算漸近上界就是尋找一個函式 $f(n)$ ,使得當 $n$ 趨向於無窮大時,$T(n)$ 和 $f(n)$ 處於相同的增長級別,僅相差一個常數項 $c$ 的倍數。
![函式的漸近上界](time_complexity.assets/asymptotic_upper_bound.png){ class="animation-figure" }
<p align="center"> 圖 2-8 &nbsp; 函式的漸近上界 </p>
## 2.3.3 &nbsp; 推算方法
漸近上界的數學味兒有點重,如果你感覺沒有完全理解,也無須擔心。我們可以先掌握推算方法,在不斷的實踐中,就可以逐漸領悟其數學意義。
根據定義,確定 $f(n)$ 之後,我們便可得到時間複雜度 $O(f(n))$ 。那麼如何確定漸近上界 $f(n)$ 呢?總體分為兩步:首先統計操作數量,然後判斷漸近上界。
### 1. &nbsp; 第一步:統計操作數量
針對程式碼,逐行從上到下計算即可。然而,由於上述 $c \cdot f(n)$ 中的常數項 $c$ 可以取任意大小,**因此操作數量 $T(n)$ 中的各種係數、常數項都可以忽略**。根據此原則,可以總結出以下計數簡化技巧。
1. **忽略 $T(n)$ 中的常數項**。因為它們都與 $n$ 無關,所以對時間複雜度不產生影響。
2. **省略所有係數**。例如,迴圈 $2n$ 次、$5n + 1$ 次等,都可以簡化記為 $n$ 次,因為 $n$ 前面的係數對時間複雜度沒有影響。
3. **迴圈巢狀時使用乘法**。總操作數量等於外層迴圈和內層迴圈操作數量之積,每一層迴圈依然可以分別套用第 `1.` 點和第 `2.` 點的技巧。
給定一個函式,我們可以用上述技巧來統計操作數量:
=== "Python"
```python title=""
def algorithm(n: int):
a = 1 # +0技巧 1
a = a + n # +0技巧 1
# +n技巧 2
for i in range(5 * n + 1):
print(0)
# +n*n技巧 3
for i in range(2 * n):
for j in range(n + 1):
print(0)
```
=== "C++"
```cpp title=""
void algorithm(int n) {
int a = 1; // +0技巧 1
a = a + n; // +0技巧 1
// +n技巧 2
for (int i = 0; i < 5 * n + 1; i++) {
cout << 0 << endl;
}
// +n*n技巧 3
for (int i = 0; i < 2 * n; i++) {
for (int j = 0; j < n + 1; j++) {
cout << 0 << endl;
}
}
}
```
=== "Java"
```java title=""
void algorithm(int n) {
int a = 1; // +0技巧 1
a = a + n; // +0技巧 1
// +n技巧 2
for (int i = 0; i < 5 * n + 1; i++) {
System.out.println(0);
}
// +n*n技巧 3
for (int i = 0; i < 2 * n; i++) {
for (int j = 0; j < n + 1; j++) {
System.out.println(0);
}
}
}
```
=== "C#"
```csharp title=""
void Algorithm(int n) {
int a = 1; // +0技巧 1
a = a + n; // +0技巧 1
// +n技巧 2
for (int i = 0; i < 5 * n + 1; i++) {
Console.WriteLine(0);
}
// +n*n技巧 3
for (int i = 0; i < 2 * n; i++) {
for (int j = 0; j < n + 1; j++) {
Console.WriteLine(0);
}
}
}
```
=== "Go"
```go title=""
func algorithm(n int) {
a := 1 // +0技巧 1
a = a + n // +0技巧 1
// +n技巧 2
for i := 0; i < 5 * n + 1; i++ {
fmt.Println(0)
}
// +n*n技巧 3
for i := 0; i < 2 * n; i++ {
for j := 0; j < n + 1; j++ {
fmt.Println(0)
}
}
}
```
=== "Swift"
```swift title=""
func algorithm(n: Int) {
var a = 1 // +0技巧 1
a = a + n // +0技巧 1
// +n技巧 2
for _ in 0 ..< (5 * n + 1) {
print(0)
}
// +n*n技巧 3
for _ in 0 ..< (2 * n) {
for _ in 0 ..< (n + 1) {
print(0)
}
}
}
```
=== "JS"
```javascript title=""
function algorithm(n) {
let a = 1; // +0技巧 1
a = a + n; // +0技巧 1
// +n技巧 2
for (let i = 0; i < 5 * n + 1; i++) {
console.log(0);
}
// +n*n技巧 3
for (let i = 0; i < 2 * n; i++) {
for (let j = 0; j < n + 1; j++) {
console.log(0);
}
}
}
```
=== "TS"
```typescript title=""
function algorithm(n: number): void {
let a = 1; // +0技巧 1
a = a + n; // +0技巧 1
// +n技巧 2
for (let i = 0; i < 5 * n + 1; i++) {
console.log(0);
}
// +n*n技巧 3
for (let i = 0; i < 2 * n; i++) {
for (let j = 0; j < n + 1; j++) {
console.log(0);
}
}
}
```
=== "Dart"
```dart title=""
void algorithm(int n) {
int a = 1; // +0技巧 1
a = a + n; // +0技巧 1
// +n技巧 2
for (int i = 0; i < 5 * n + 1; i++) {
print(0);
}
// +n*n技巧 3
for (int i = 0; i < 2 * n; i++) {
for (int j = 0; j < n + 1; j++) {
print(0);
}
}
}
```
=== "Rust"
```rust title=""
fn algorithm(n: i32) {
let mut a = 1; // +0技巧 1
a = a + n; // +0技巧 1
// +n技巧 2
for i in 0..(5 * n + 1) {
println!("{}", 0);
}
// +n*n技巧 3
for i in 0..(2 * n) {
for j in 0..(n + 1) {
println!("{}", 0);
}
}
}
```
=== "C"
```c title=""
void algorithm(int n) {
int a = 1; // +0技巧 1
a = a + n; // +0技巧 1
// +n技巧 2
for (int i = 0; i < 5 * n + 1; i++) {
printf("%d", 0);
}
// +n*n技巧 3
for (int i = 0; i < 2 * n; i++) {
for (int j = 0; j < n + 1; j++) {
printf("%d", 0);
}
}
}
```
=== "Kotlin"
```kotlin title=""
fun algorithm(n: Int) {
var a = 1 // +0技巧 1
a = a + n // +0技巧 1
// +n技巧 2
for (i in 0..<5 * n + 1) {
println(0)
}
// +n*n技巧 3
for (i in 0..<2 * n) {
for (j in 0..<n + 1) {
println(0)
}
}
}
```
=== "Ruby"
```ruby title=""
def algorithm(n)
a = 1 # +0技巧 1
a = a + n # +0技巧 1
# +n技巧 2
(0...(5 * n + 1)).each do { puts 0 }
# +n*n技巧 3
(0...(2 * n)).each do
(0...(n + 1)).each do { puts 0 }
end
end
```
=== "Zig"
```zig title=""
fn algorithm(n: usize) void {
var a: i32 = 1; // +0技巧 1
a = a + @as(i32, @intCast(n)); // +0技巧 1
// +n技巧 2
for(0..(5 * n + 1)) |_| {
std.debug.print("{}\n", .{0});
}
// +n*n技巧 3
for(0..(2 * n)) |_| {
for(0..(n + 1)) |_| {
std.debug.print("{}\n", .{0});
}
}
}
```
以下公式展示了使用上述技巧前後的統計結果兩者推算出的時間複雜度都為 $O(n^2)$
$$
\begin{aligned}
T(n) & = 2n(n + 1) + (5n + 1) + 2 & \text{完整統計 (-.-|||)} \newline
& = 2n^2 + 7n + 3 \newline
T(n) & = n^2 + n & \text{偷懶統計 (o.O)}
\end{aligned}
$$
### 2. &nbsp; 第二步:判斷漸近上界
**時間複雜度由 $T(n)$ 中最高階的項來決定**這是因為在 $n$ 趨於無窮大時最高階的項將發揮主導作用其他項的影響都可以忽略
2-2 展示了一些例子其中一些誇張的值是為了強調係數無法撼動階數這一結論 $n$ 趨於無窮大時這些常數變得無足輕重
<p align="center"> 表 2-2 &nbsp; 不同操作數量對應的時間複雜度 </p>
<div class="center-table" markdown>
| 操作數量 $T(n)$ | 時間複雜度 $O(f(n))$ |
| ---------------------- | -------------------- |
| $100000$ | $O(1)$ |
| $3n + 2$ | $O(n)$ |
| $2n^2 + 3n + 2$ | $O(n^2)$ |
| $n^3 + 10000n^2$ | $O(n^3)$ |
| $2^n + 10000n^{10000}$ | $O(2^n)$ |
</div>
## 2.3.4 &nbsp; 常見型別
設輸入資料大小為 $n$ ,常見的時間複雜度型別如圖 2-9 所示(按照從低到高的順序排列)。
$$
\begin{aligned}
O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(2^n) < O(n!) \newline
\text{常數階} < \text{對數階} < \text{線性階} < \text{線性對數階} < \text{平方階} < \text{指數階} < \text{階乘階}
\end{aligned}
$$
![常見的時間複雜度型別](time_complexity.assets/time_complexity_common_types.png){ class="animation-figure" }
<p align="center"> 圖 2-9 &nbsp; 常見的時間複雜度型別 </p>
### 1. &nbsp; 常數階 $O(1)$ {data-toc-label="1. &nbsp; 常數階"}
常數階的操作數量與輸入資料大小 $n$ 無關,即不隨著 $n$ 的變化而變化。
在以下函式中,儘管操作數量 `size` 可能很大,但由於其與輸入資料大小 $n$ 無關,因此時間複雜度仍為 $O(1)$
=== "Python"
```python title="time_complexity.py"
def constant(n: int) -> int:
"""常數階"""
count = 0
size = 100000
for _ in range(size):
count += 1
return count
```
=== "C++"
```cpp title="time_complexity.cpp"
/* 常數階 */
int constant(int n) {
int count = 0;
int size = 100000;
for (int i = 0; i < size; i++)
count++;
return count;
}
```
=== "Java"
```java title="time_complexity.java"
/* 常數階 */
int constant(int n) {
int count = 0;
int size = 100000;
for (int i = 0; i < size; i++)
count++;
return count;
}
```
=== "C#"
```csharp title="time_complexity.cs"
/* 常數階 */
int Constant(int n) {
int count = 0;
int size = 100000;
for (int i = 0; i < size; i++)
count++;
return count;
}
```
=== "Go"
```go title="time_complexity.go"
/* 常數階 */
func constant(n int) int {
count := 0
size := 100000
for i := 0; i < size; i++ {
count++
}
return count
}
```
=== "Swift"
```swift title="time_complexity.swift"
/* 常數階 */
func constant(n: Int) -> Int {
var count = 0
let size = 100_000
for _ in 0 ..< size {
count += 1
}
return count
}
```
=== "JS"
```javascript title="time_complexity.js"
/* 常數階 */
function constant(n) {
let count = 0;
const size = 100000;
for (let i = 0; i < size; i++) count++;
return count;
}
```
=== "TS"
```typescript title="time_complexity.ts"
/* 常數階 */
function constant(n: number): number {
let count = 0;
const size = 100000;
for (let i = 0; i < size; i++) count++;
return count;
}
```
=== "Dart"
```dart title="time_complexity.dart"
/* 常數階 */
int constant(int n) {
int count = 0;
int size = 100000;
for (var i = 0; i < size; i++) {
count++;
}
return count;
}
```
=== "Rust"
```rust title="time_complexity.rs"
/* 常數階 */
fn constant(n: i32) -> i32 {
_ = n;
let mut count = 0;
let size = 100_000;
for _ in 0..size {
count += 1;
}
count
}
```
=== "C"
```c title="time_complexity.c"
/* 常數階 */
int constant(int n) {
int count = 0;
int size = 100000;
int i = 0;
for (int i = 0; i < size; i++) {
count++;
}
return count;
}
```
=== "Kotlin"
```kotlin title="time_complexity.kt"
/* 常數階 */
fun constant(n: Int): Int {
var count = 0
val size = 100000
for (i in 0..<size)
count++
return count
}
```
=== "Ruby"
```ruby title="time_complexity.rb"
### 常數階 ###
def constant(n)
count = 0
size = 100000
(0...size).each { count += 1 }
count
end
```
=== "Zig"
```zig title="time_complexity.zig"
// 常數階
fn constant(n: i32) i32 {
_ = n;
var count: i32 = 0;
const size: i32 = 100_000;
var i: i32 = 0;
while(i<size) : (i += 1) {
count += 1;
}
return count;
}
```
??? pythontutor "視覺化執行"
<div style="height: 459px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20constant%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%B8%B8%E6%95%B8%E9%9A%8E%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20size%20%3D%2010%0A%20%20%20%20for%20_%20in%20range%28size%29%3A%0A%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BC%B8%E5%85%A5%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%3D%22%2C%20n%29%0A%0A%20%20%20%20count%20%3D%20constant%28n%29%0A%20%20%20%20print%28%22%E5%B8%B8%E6%95%B8%E9%9A%8E%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B8%E9%87%8F%20%3D%22%2C%20count%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20constant%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%B8%B8%E6%95%B8%E9%9A%8E%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20size%20%3D%2010%0A%20%20%20%20for%20_%20in%20range%28size%29%3A%0A%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BC%B8%E5%85%A5%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%3D%22%2C%20n%29%0A%0A%20%20%20%20count%20%3D%20constant%28n%29%0A%20%20%20%20print%28%22%E5%B8%B8%E6%95%B8%E9%9A%8E%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B8%E9%87%8F%20%3D%22%2C%20count%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
### 2. &nbsp; 線性階 $O(n)$ {data-toc-label="2. &nbsp; 線性階"}
線性階的操作數量相對於輸入資料大小 $n$ 以線性級別增長。線性階通常出現在單層迴圈中:
=== "Python"
```python title="time_complexity.py"
def linear(n: int) -> int:
"""線性階"""
count = 0
for _ in range(n):
count += 1
return count
```
=== "C++"
```cpp title="time_complexity.cpp"
/* 線性階 */
int linear(int n) {
int count = 0;
for (int i = 0; i < n; i++)
count++;
return count;
}
```
=== "Java"
```java title="time_complexity.java"
/* 線性階 */
int linear(int n) {
int count = 0;
for (int i = 0; i < n; i++)
count++;
return count;
}
```
=== "C#"
```csharp title="time_complexity.cs"
/* 線性階 */
int Linear(int n) {
int count = 0;
for (int i = 0; i < n; i++)
count++;
return count;
}
```
=== "Go"
```go title="time_complexity.go"
/* 線性階 */
func linear(n int) int {
count := 0
for i := 0; i < n; i++ {
count++
}
return count
}
```
=== "Swift"
```swift title="time_complexity.swift"
/* 線性階 */
func linear(n: Int) -> Int {
var count = 0
for _ in 0 ..< n {
count += 1
}
return count
}
```
=== "JS"
```javascript title="time_complexity.js"
/* 線性階 */
function linear(n) {
let count = 0;
for (let i = 0; i < n; i++) count++;
return count;
}
```
=== "TS"
```typescript title="time_complexity.ts"
/* 線性階 */
function linear(n: number): number {
let count = 0;
for (let i = 0; i < n; i++) count++;
return count;
}
```
=== "Dart"
```dart title="time_complexity.dart"
/* 線性階 */
int linear(int n) {
int count = 0;
for (var i = 0; i < n; i++) {
count++;
}
return count;
}
```
=== "Rust"
```rust title="time_complexity.rs"
/* 線性階 */
fn linear(n: i32) -> i32 {
let mut count = 0;
for _ in 0..n {
count += 1;
}
count
}
```
=== "C"
```c title="time_complexity.c"
/* 線性階 */
int linear(int n) {
int count = 0;
for (int i = 0; i < n; i++) {
count++;
}
return count;
}
```
=== "Kotlin"
```kotlin title="time_complexity.kt"
/* 線性階 */
fun linear(n: Int): Int {
var count = 0
// 迴圈次數與陣列長度成正比
for (i in 0..<n)
count++
return count
}
```
=== "Ruby"
```ruby title="time_complexity.rb"
### 線性階 ###
def linear(n)
count = 0
(0...n).each { count += 1 }
count
end
```
=== "Zig"
```zig title="time_complexity.zig"
// 線性階
fn linear(n: i32) i32 {
var count: i32 = 0;
var i: i32 = 0;
while (i < n) : (i += 1) {
count += 1;
}
return count;
}
```
??? pythontutor "視覺化執行"
<div style="height: 441px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20linear%28n%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%B7%9A%E6%80%A7%E9%9A%8E%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20for%20_%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BC%B8%E5%85%A5%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%3D%22%2C%20n%29%0A%0A%20%20%20%20count%20%3D%20linear%28n%29%0A%20%20%20%20print%28%22%E7%B7%9A%E6%80%A7%E9%9A%8E%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B8%E9%87%8F%20%3D%22%2C%20count%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20linear%28n%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%B7%9A%E6%80%A7%E9%9A%8E%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20for%20_%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BC%B8%E5%85%A5%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%3D%22%2C%20n%29%0A%0A%20%20%20%20count%20%3D%20linear%28n%29%0A%20%20%20%20print%28%22%E7%B7%9A%E6%80%A7%E9%9A%8E%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B8%E9%87%8F%20%3D%22%2C%20count%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
走訪陣列和走訪鏈結串列等操作的時間複雜度均為 $O(n)$ ,其中 $n$ 為陣列或鏈結串列的長度:
=== "Python"
```python title="time_complexity.py"
def array_traversal(nums: list[int]) -> int:
"""線性階(走訪陣列)"""
count = 0
# 迴圈次數與陣列長度成正比
for num in nums:
count += 1
return count
```
=== "C++"
```cpp title="time_complexity.cpp"
/* 線性階(走訪陣列) */
int arrayTraversal(vector<int> &nums) {
int count = 0;
// 迴圈次數與陣列長度成正比
for (int num : nums) {
count++;
}
return count;
}
```
=== "Java"
```java title="time_complexity.java"
/* 線性階(走訪陣列) */
int arrayTraversal(int[] nums) {
int count = 0;
// 迴圈次數與陣列長度成正比
for (int num : nums) {
count++;
}
return count;
}
```
=== "C#"
```csharp title="time_complexity.cs"
/* 線性階(走訪陣列) */
int ArrayTraversal(int[] nums) {
int count = 0;
// 迴圈次數與陣列長度成正比
foreach (int num in nums) {
count++;
}
return count;
}
```
=== "Go"
```go title="time_complexity.go"
/* 線性階(走訪陣列) */
func arrayTraversal(nums []int) int {
count := 0
// 迴圈次數與陣列長度成正比
for range nums {
count++
}
return count
}
```
=== "Swift"
```swift title="time_complexity.swift"
/* 線性階(走訪陣列) */
func arrayTraversal(nums: [Int]) -> Int {
var count = 0
// 迴圈次數與陣列長度成正比
for _ in nums {
count += 1
}
return count
}
```
=== "JS"
```javascript title="time_complexity.js"
/* 線性階(走訪陣列) */
function arrayTraversal(nums) {
let count = 0;
// 迴圈次數與陣列長度成正比
for (let i = 0; i < nums.length; i++) {
count++;
}
return count;
}
```
=== "TS"
```typescript title="time_complexity.ts"
/* 線性階走訪陣列 */
function arrayTraversal(nums: number[]): number {
let count = 0;
// 迴圈次數與陣列長度成正比
for (let i = 0; i < nums.length; i++) {
count++;
}
return count;
}
```
=== "Dart"
```dart title="time_complexity.dart"
/* 線性階走訪陣列 */
int arrayTraversal(List<int> nums) {
int count = 0;
// 迴圈次數與陣列長度成正比
for (var _num in nums) {
count++;
}
return count;
}
```
=== "Rust"
```rust title="time_complexity.rs"
/* 線性階(走訪陣列) */
fn array_traversal(nums: &[i32]) -> i32 {
let mut count = 0;
// 迴圈次數與陣列長度成正比
for _ in nums {
count += 1;
}
count
}
```
=== "C"
```c title="time_complexity.c"
/* 線性階(走訪陣列) */
int arrayTraversal(int *nums, int n) {
int count = 0;
// 迴圈次數與陣列長度成正比
for (int i = 0; i < n; i++) {
count++;
}
return count;
}
```
=== "Kotlin"
```kotlin title="time_complexity.kt"
/* 線性階走訪陣列 */
fun arrayTraversal(nums: IntArray): Int {
var count = 0
// 迴圈次數與陣列長度成正比
for (num in nums) {
count++
}
return count
}
```
=== "Ruby"
```ruby title="time_complexity.rb"
### 線性階走訪陣列###
def array_traversal(nums)
count = 0
# 迴圈次數與陣列長度成正比
for num in nums
count += 1
end
count
end
```
=== "Zig"
```zig title="time_complexity.zig"
// 線性階走訪陣列
fn arrayTraversal(nums: []i32) i32 {
var count: i32 = 0;
// 迴圈次數與陣列長度成正比
for (nums) |_| {
count += 1;
}
return count;
}
```
??? pythontutor "視覺化執行"
<div style="height: 459px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20array_traversal%28nums%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%B7%9A%E6%80%A7%E9%9A%8E%EF%BC%88%E8%B5%B0%E8%A8%AA%E9%99%A3%E5%88%97%EF%BC%89%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20%23%20%E8%BF%B4%E5%9C%88%E6%AC%A1%E6%95%B8%E8%88%87%E9%99%A3%E5%88%97%E9%95%B7%E5%BA%A6%E6%88%90%E6%AD%A3%E6%AF%94%0A%20%20%20%20for%20num%20in%20nums%3A%0A%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BC%B8%E5%85%A5%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%3D%22%2C%20n%29%0A%0A%20%20%20%20count%20%3D%20array_traversal%28%5B0%5D%20%2A%20n%29%0A%20%20%20%20print%28%22%E7%B7%9A%E6%80%A7%E9%9A%8E%EF%BC%88%E8%B5%B0%E8%A8%AA%E9%99%A3%E5%88%97%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B8%E9%87%8F%20%3D%22%2C%20count%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20array_traversal%28nums%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%B7%9A%E6%80%A7%E9%9A%8E%EF%BC%88%E8%B5%B0%E8%A8%AA%E9%99%A3%E5%88%97%EF%BC%89%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20%23%20%E8%BF%B4%E5%9C%88%E6%AC%A1%E6%95%B8%E8%88%87%E9%99%A3%E5%88%97%E9%95%B7%E5%BA%A6%E6%88%90%E6%AD%A3%E6%AF%94%0A%20%20%20%20for%20num%20in%20nums%3A%0A%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BC%B8%E5%85%A5%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%3D%22%2C%20n%29%0A%0A%20%20%20%20count%20%3D%20array_traversal%28%5B0%5D%20%2A%20n%29%0A%20%20%20%20print%28%22%E7%B7%9A%E6%80%A7%E9%9A%8E%EF%BC%88%E8%B5%B0%E8%A8%AA%E9%99%A3%E5%88%97%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B8%E9%87%8F%20%3D%22%2C%20count%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
值得注意的是,**輸入資料大小 $n$ 需根據輸入資料的型別來具體確定**。比如在第一個示例中,變數 $n$ 為輸入資料大小;在第二個示例中,陣列長度 $n$ 為資料大小。
### 3. &nbsp; 平方階 $O(n^2)$ {data-toc-label="3. &nbsp; 平方階"}
平方階的操作數量相對於輸入資料大小 $n$ 以平方級別增長。平方階通常出現在巢狀迴圈中,外層迴圈和內層迴圈的時間複雜度都為 $O(n)$ ,因此總體的時間複雜度為 $O(n^2)$
=== "Python"
```python title="time_complexity.py"
def quadratic(n: int) -> int:
"""平方階"""
count = 0
# 迴圈次數與資料大小 n 成平方關係
for i in range(n):
for j in range(n):
count += 1
return count
```
=== "C++"
```cpp title="time_complexity.cpp"
/* 平方階 */
int quadratic(int n) {
int count = 0;
// 迴圈次數與資料大小 n 成平方關係
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
count++;
}
}
return count;
}
```
=== "Java"
```java title="time_complexity.java"
/* 平方階 */
int quadratic(int n) {
int count = 0;
// 迴圈次數與資料大小 n 成平方關係
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
count++;
}
}
return count;
}
```
=== "C#"
```csharp title="time_complexity.cs"
/* 平方階 */
int Quadratic(int n) {
int count = 0;
// 迴圈次數與資料大小 n 成平方關係
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
count++;
}
}
return count;
}
```
=== "Go"
```go title="time_complexity.go"
/* 平方階 */
func quadratic(n int) int {
count := 0
// 迴圈次數與資料大小 n 成平方關係
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
count++
}
}
return count
}
```
=== "Swift"
```swift title="time_complexity.swift"
/* 平方階 */
func quadratic(n: Int) -> Int {
var count = 0
// 迴圈次數與資料大小 n 成平方關係
for _ in 0 ..< n {
for _ in 0 ..< n {
count += 1
}
}
return count
}
```
=== "JS"
```javascript title="time_complexity.js"
/* 平方階 */
function quadratic(n) {
let count = 0;
// 迴圈次數與資料大小 n 成平方關係
for (let i = 0; i < n; i++) {
for (let j = 0; j < n; j++) {
count++;
}
}
return count;
}
```
=== "TS"
```typescript title="time_complexity.ts"
/* 平方階 */
function quadratic(n: number): number {
let count = 0;
// 迴圈次數與資料大小 n 成平方關係
for (let i = 0; i < n; i++) {
for (let j = 0; j < n; j++) {
count++;
}
}
return count;
}
```
=== "Dart"
```dart title="time_complexity.dart"
/* 平方階 */
int quadratic(int n) {
int count = 0;
// 迴圈次數與資料大小 n 成平方關係
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
count++;
}
}
return count;
}
```
=== "Rust"
```rust title="time_complexity.rs"
/* 平方階 */
fn quadratic(n: i32) -> i32 {
let mut count = 0;
// 迴圈次數與資料大小 n 成平方關係
for _ in 0..n {
for _ in 0..n {
count += 1;
}
}
count
}
```
=== "C"
```c title="time_complexity.c"
/* 平方階 */
int quadratic(int n) {
int count = 0;
// 迴圈次數與資料大小 n 成平方關係
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
count++;
}
}
return count;
}
```
=== "Kotlin"
```kotlin title="time_complexity.kt"
/* 平方階 */
fun quadratic(n: Int): Int {
var count = 0
// 迴圈次數與資料大小 n 成平方關係
for (i in 0..<n) {
for (j in 0..<n) {
count++
}
}
return count
}
```
=== "Ruby"
```ruby title="time_complexity.rb"
### 平方階 ###
def quadratic(n)
count = 0
# 迴圈次數與資料大小 n 成平方關係
for i in 0...n
for j in 0...n
count += 1
end
end
count
end
```
=== "Zig"
```zig title="time_complexity.zig"
// 平方階
fn quadratic(n: i32) i32 {
var count: i32 = 0;
var i: i32 = 0;
// 迴圈次數與資料大小 n 成平方關係
while (i < n) : (i += 1) {
var j: i32 = 0;
while (j < n) : (j += 1) {
count += 1;
}
}
return count;
}
```
??? pythontutor "視覺化執行"
<div style="height: 477px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20quadratic%28n%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%B9%B3%E6%96%B9%E9%9A%8E%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20%23%20%E8%BF%B4%E5%9C%88%E6%AC%A1%E6%95%B8%E8%88%87%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%E6%88%90%E5%B9%B3%E6%96%B9%E9%97%9C%E4%BF%82%0A%20%20%20%20for%20i%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20for%20j%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BC%B8%E5%85%A5%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%3D%22%2C%20n%29%0A%0A%20%20%20%20count%20%3D%20quadratic%28n%29%0A%20%20%20%20print%28%22%E5%B9%B3%E6%96%B9%E9%9A%8E%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B8%E9%87%8F%20%3D%22%2C%20count%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20quadratic%28n%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%B9%B3%E6%96%B9%E9%9A%8E%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20%23%20%E8%BF%B4%E5%9C%88%E6%AC%A1%E6%95%B8%E8%88%87%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%E6%88%90%E5%B9%B3%E6%96%B9%E9%97%9C%E4%BF%82%0A%20%20%20%20for%20i%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20for%20j%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BC%B8%E5%85%A5%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%3D%22%2C%20n%29%0A%0A%20%20%20%20count%20%3D%20quadratic%28n%29%0A%20%20%20%20print%28%22%E5%B9%B3%E6%96%B9%E9%9A%8E%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B8%E9%87%8F%20%3D%22%2C%20count%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
圖 2-10 對比了常數階、線性階和平方階三種時間複雜度。
![常數階、線性階和平方階的時間複雜度](time_complexity.assets/time_complexity_constant_linear_quadratic.png){ class="animation-figure" }
<p align="center"> 圖 2-10 &nbsp; 常數階、線性階和平方階的時間複雜度 </p>
以泡沫排序為例,外層迴圈執行 $n - 1$ 次,內層迴圈執行 $n-1$、$n-2$、$\dots$、$2$、$1$ 次,平均為 $n / 2$ 次,因此時間複雜度為 $O((n - 1) n / 2) = O(n^2)$
=== "Python"
```python title="time_complexity.py"
def bubble_sort(nums: list[int]) -> int:
"""平方階(泡沫排序)"""
count = 0 # 計數器
# 外迴圈:未排序區間為 [0, i]
for i in range(len(nums) - 1, 0, -1):
# 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
for j in range(i):
if nums[j] > nums[j + 1]:
# 交換 nums[j] 與 nums[j + 1]
tmp: int = nums[j]
nums[j] = nums[j + 1]
nums[j + 1] = tmp
count += 3 # 元素交換包含 3 個單元操作
return count
```
=== "C++"
```cpp title="time_complexity.cpp"
/* 平方階(泡沫排序) */
int bubbleSort(vector<int> &nums) {
int count = 0; // 計數器
// 外迴圈:未排序區間為 [0, i]
for (int i = nums.size() - 1; i > 0; i--) {
// 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交換 nums[j] 與 nums[j + 1]
int tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
count += 3; // 元素交換包含 3 個單元操作
}
}
}
return count;
}
```
=== "Java"
```java title="time_complexity.java"
/* 平方階(泡沫排序) */
int bubbleSort(int[] nums) {
int count = 0; // 計數器
// 外迴圈:未排序區間為 [0, i]
for (int i = nums.length - 1; i > 0; i--) {
// 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交換 nums[j] 與 nums[j + 1]
int tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
count += 3; // 元素交換包含 3 個單元操作
}
}
}
return count;
}
```
=== "C#"
```csharp title="time_complexity.cs"
/* 平方階(泡沫排序) */
int BubbleSort(int[] nums) {
int count = 0; // 計數器
// 外迴圈:未排序區間為 [0, i]
for (int i = nums.Length - 1; i > 0; i--) {
// 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交換 nums[j] 與 nums[j + 1]
(nums[j + 1], nums[j]) = (nums[j], nums[j + 1]);
count += 3; // 元素交換包含 3 個單元操作
}
}
}
return count;
}
```
=== "Go"
```go title="time_complexity.go"
/* 平方階(泡沫排序) */
func bubbleSort(nums []int) int {
count := 0 // 計數器
// 外迴圈:未排序區間為 [0, i]
for i := len(nums) - 1; i > 0; i-- {
// 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
for j := 0; j < i; j++ {
if nums[j] > nums[j+1] {
// 交換 nums[j] 與 nums[j + 1]
tmp := nums[j]
nums[j] = nums[j+1]
nums[j+1] = tmp
count += 3 // 元素交換包含 3 個單元操作
}
}
}
return count
}
```
=== "Swift"
```swift title="time_complexity.swift"
/* 平方階(泡沫排序) */
func bubbleSort(nums: inout [Int]) -> Int {
var count = 0 // 計數器
// 外迴圈:未排序區間為 [0, i]
for i in nums.indices.dropFirst().reversed() {
// 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
for j in 0 ..< i {
if nums[j] > nums[j + 1] {
// 交換 nums[j] 與 nums[j + 1]
let tmp = nums[j]
nums[j] = nums[j + 1]
nums[j + 1] = tmp
count += 3 // 元素交換包含 3 個單元操作
}
}
}
return count
}
```
=== "JS"
```javascript title="time_complexity.js"
/* 平方階(泡沫排序) */
function bubbleSort(nums) {
let count = 0; // 計數器
// 外迴圈:未排序區間為 [0, i]
for (let i = nums.length - 1; i > 0; i--) {
// 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
for (let j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交換 nums[j] 與 nums[j + 1]
let tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
count += 3; // 元素交換包含 3 個單元操作
}
}
}
return count;
}
```
=== "TS"
```typescript title="time_complexity.ts"
/* 平方階(泡沫排序) */
function bubbleSort(nums: number[]): number {
let count = 0; // 計數器
// 外迴圈:未排序區間為 [0, i]
for (let i = nums.length - 1; i > 0; i--) {
// 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
for (let j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交換 nums[j] 與 nums[j + 1]
let tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
count += 3; // 元素交換包含 3 個單元操作
}
}
}
return count;
}
```
=== "Dart"
```dart title="time_complexity.dart"
/* 平方階(泡沫排序) */
int bubbleSort(List<int> nums) {
int count = 0; // 計數器
// 外迴圈:未排序區間為 [0, i]
for (var i = nums.length - 1; i > 0; i--) {
// 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
for (var j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交換 nums[j] 與 nums[j + 1]
int tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
count += 3; // 元素交換包含 3 個單元操作
}
}
}
return count;
}
```
=== "Rust"
```rust title="time_complexity.rs"
/* 平方階(泡沫排序) */
fn bubble_sort(nums: &mut [i32]) -> i32 {
let mut count = 0; // 計數器
// 外迴圈:未排序區間為 [0, i]
for i in (1..nums.len()).rev() {
// 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
for j in 0..i {
if nums[j] > nums[j + 1] {
// 交換 nums[j] 與 nums[j + 1]
let tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
count += 3; // 元素交換包含 3 個單元操作
}
}
}
count
}
```
=== "C"
```c title="time_complexity.c"
/* 平方階(泡沫排序) */
int bubbleSort(int *nums, int n) {
int count = 0; // 計數器
// 外迴圈:未排序區間為 [0, i]
for (int i = n - 1; i > 0; i--) {
// 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交換 nums[j] 與 nums[j + 1]
int tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
count += 3; // 元素交換包含 3 個單元操作
}
}
}
return count;
}
```
=== "Kotlin"
```kotlin title="time_complexity.kt"
/* 平方階(泡沫排序) */
fun bubbleSort(nums: IntArray): Int {
var count = 0 // 計數器
// 外迴圈:未排序區間為 [0, i]
for (i in nums.size - 1 downTo 1) {
// 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
for (j in 0..<i) {
if (nums[j] > nums[j + 1]) {
// 交換 nums[j] 與 nums[j + 1]
nums[j] = nums[j + 1].also { nums[j + 1] = nums[j] }
count += 3 // 元素交換包含 3 個單元操作
}
}
}
return count
}
```
=== "Ruby"
```ruby title="time_complexity.rb"
### 平方階(泡沫排序)###
def bubble_sort(nums)
count = 0 # 計數器
# 外迴圈:未排序區間為 [0, i]
for i in (nums.length - 1).downto(0)
# 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
for j in 0...i
if nums[j] > nums[j + 1]
# 交換 nums[j] 與 nums[j + 1]
tmp = nums[j]
nums[j] = nums[j + 1]
nums[j + 1] = tmp
count += 3 # 元素交換包含 3 個單元操作
end
end
end
count
end
```
=== "Zig"
```zig title="time_complexity.zig"
// 平方階(泡沫排序)
fn bubbleSort(nums: []i32) i32 {
var count: i32 = 0; // 計數器
// 外迴圈:未排序區間為 [0, i]
var i: i32 = @as(i32, @intCast(nums.len)) - 1;
while (i > 0) : (i -= 1) {
var j: usize = 0;
// 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
while (j < i) : (j += 1) {
if (nums[j] > nums[j + 1]) {
// 交換 nums[j] 與 nums[j + 1]
var tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
count += 3; // 元素交換包含 3 個單元操作
}
}
}
return count;
}
```
??? pythontutor "視覺化執行"
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20bubble_sort%28nums%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%B9%B3%E6%96%B9%E9%9A%8E%EF%BC%88%E6%B3%A1%E6%B2%AB%E6%8E%92%E5%BA%8F%EF%BC%89%22%22%22%0A%20%20%20%20count%20%3D%200%20%20%23%20%E8%A8%88%E6%95%B8%E5%99%A8%0A%20%20%20%20%23%20%E5%A4%96%E8%BF%B4%E5%9C%88%EF%BC%9A%E6%9C%AA%E6%8E%92%E5%BA%8F%E5%8D%80%E9%96%93%E7%82%BA%20%5B0%2C%20i%5D%0A%20%20%20%20for%20i%20in%20range%28len%28nums%29%20-%201%2C%200%2C%20-1%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E5%85%A7%E8%BF%B4%E5%9C%88%EF%BC%9A%E5%B0%87%E6%9C%AA%E6%8E%92%E5%BA%8F%E5%8D%80%E9%96%93%20%5B0%2C%20i%5D%20%E4%B8%AD%E7%9A%84%E6%9C%80%E5%A4%A7%E5%85%83%E7%B4%A0%E4%BA%A4%E6%8F%9B%E8%87%B3%E8%A9%B2%E5%8D%80%E9%96%93%E7%9A%84%E6%9C%80%E5%8F%B3%E7%AB%AF%0A%20%20%20%20%20%20%20%20for%20j%20in%20range%28i%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20nums%5Bj%5D%20%3E%20nums%5Bj%20%2B%201%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E4%BA%A4%E6%8F%9B%20nums%5Bj%5D%20%E8%88%87%20nums%5Bj%20%2B%201%5D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20tmp%20%3D%20nums%5Bj%5D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20nums%5Bj%5D%20%3D%20nums%5Bj%20%2B%201%5D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20nums%5Bj%20%2B%201%5D%20%3D%20tmp%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20count%20%2B%3D%203%20%20%23%20%E5%85%83%E7%B4%A0%E4%BA%A4%E6%8F%9B%E5%8C%85%E5%90%AB%203%20%E5%80%8B%E5%96%AE%E5%85%83%E6%93%8D%E4%BD%9C%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BC%B8%E5%85%A5%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%3D%22%2C%20n%29%0A%0A%20%20%20%20nums%20%3D%20%5Bi%20for%20i%20in%20range%28n%2C%200%2C%20-1%29%5D%20%20%23%20%5Bn%2C%20n-1%2C%20...%2C%202%2C%201%5D%0A%20%20%20%20count%20%3D%20bubble_sort%28nums%29%0A%20%20%20%20print%28%22%E5%B9%B3%E6%96%B9%E9%9A%8E%EF%BC%88%E6%B3%A1%E6%B2%AB%E6%8E%92%E5%BA%8F%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B8%E9%87%8F%20%3D%22%2C%20count%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20bubble_sort%28nums%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%B9%B3%E6%96%B9%E9%9A%8E%EF%BC%88%E6%B3%A1%E6%B2%AB%E6%8E%92%E5%BA%8F%EF%BC%89%22%22%22%0A%20%20%20%20count%20%3D%200%20%20%23%20%E8%A8%88%E6%95%B8%E5%99%A8%0A%20%20%20%20%23%20%E5%A4%96%E8%BF%B4%E5%9C%88%EF%BC%9A%E6%9C%AA%E6%8E%92%E5%BA%8F%E5%8D%80%E9%96%93%E7%82%BA%20%5B0%2C%20i%5D%0A%20%20%20%20for%20i%20in%20range%28len%28nums%29%20-%201%2C%200%2C%20-1%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E5%85%A7%E8%BF%B4%E5%9C%88%EF%BC%9A%E5%B0%87%E6%9C%AA%E6%8E%92%E5%BA%8F%E5%8D%80%E9%96%93%20%5B0%2C%20i%5D%20%E4%B8%AD%E7%9A%84%E6%9C%80%E5%A4%A7%E5%85%83%E7%B4%A0%E4%BA%A4%E6%8F%9B%E8%87%B3%E8%A9%B2%E5%8D%80%E9%96%93%E7%9A%84%E6%9C%80%E5%8F%B3%E7%AB%AF%0A%20%20%20%20%20%20%20%20for%20j%20in%20range%28i%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20nums%5Bj%5D%20%3E%20nums%5Bj%20%2B%201%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E4%BA%A4%E6%8F%9B%20nums%5Bj%5D%20%E8%88%87%20nums%5Bj%20%2B%201%5D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20tmp%20%3D%20nums%5Bj%5D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20nums%5Bj%5D%20%3D%20nums%5Bj%20%2B%201%5D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20nums%5Bj%20%2B%201%5D%20%3D%20tmp%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20count%20%2B%3D%203%20%20%23%20%E5%85%83%E7%B4%A0%E4%BA%A4%E6%8F%9B%E5%8C%85%E5%90%AB%203%20%E5%80%8B%E5%96%AE%E5%85%83%E6%93%8D%E4%BD%9C%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BC%B8%E5%85%A5%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%3D%22%2C%20n%29%0A%0A%20%20%20%20nums%20%3D%20%5Bi%20for%20i%20in%20range%28n%2C%200%2C%20-1%29%5D%20%20%23%20%5Bn%2C%20n-1%2C%20...%2C%202%2C%201%5D%0A%20%20%20%20count%20%3D%20bubble_sort%28nums%29%0A%20%20%20%20print%28%22%E5%B9%B3%E6%96%B9%E9%9A%8E%EF%BC%88%E6%B3%A1%E6%B2%AB%E6%8E%92%E5%BA%8F%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B8%E9%87%8F%20%3D%22%2C%20count%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
### 4. &nbsp; 指數階 $O(2^n)$ {data-toc-label="4. &nbsp; 指數階"}
生物學的“細胞分裂”是指數階增長的典型例子:初始狀態為 $1$ 個細胞,分裂一輪後變為 $2$ 個,分裂兩輪後變為 $4$ 個,以此類推,分裂 $n$ 輪後有 $2^n$ 個細胞。
圖 2-11 和以下程式碼模擬了細胞分裂的過程,時間複雜度為 $O(2^n)$
=== "Python"
```python title="time_complexity.py"
def exponential(n: int) -> int:
"""指數階(迴圈實現)"""
count = 0
base = 1
# 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1)
for _ in range(n):
for _ in range(base):
count += 1
base *= 2
# count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count
```
=== "C++"
```cpp title="time_complexity.cpp"
/* 指數階(迴圈實現) */
int exponential(int n) {
int count = 0, base = 1;
// 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1)
for (int i = 0; i < n; i++) {
for (int j = 0; j < base; j++) {
count++;
}
base *= 2;
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count;
}
```
=== "Java"
```java title="time_complexity.java"
/* 指數階迴圈實現 */
int exponential(int n) {
int count = 0, base = 1;
// 細胞每輪一分為二形成數列 1, 2, 4, 8, ..., 2^(n-1)
for (int i = 0; i < n; i++) {
for (int j = 0; j < base; j++) {
count++;
}
base *= 2;
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count;
}
```
=== "C#"
```csharp title="time_complexity.cs"
/* 指數階迴圈實現 */
int Exponential(int n) {
int count = 0, bas = 1;
// 細胞每輪一分為二形成數列 1, 2, 4, 8, ..., 2^(n-1)
for (int i = 0; i < n; i++) {
for (int j = 0; j < bas; j++) {
count++;
}
bas *= 2;
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count;
}
```
=== "Go"
```go title="time_complexity.go"
/* 指數階迴圈實現*/
func exponential(n int) int {
count, base := 0, 1
// 細胞每輪一分為二形成數列 1, 2, 4, 8, ..., 2^(n-1)
for i := 0; i < n; i++ {
for j := 0; j < base; j++ {
count++
}
base *= 2
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count
}
```
=== "Swift"
```swift title="time_complexity.swift"
/* 指數階迴圈實現 */
func exponential(n: Int) -> Int {
var count = 0
var base = 1
// 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1)
for _ in 0 ..< n {
for _ in 0 ..< base {
count += 1
}
base *= 2
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count
}
```
=== "JS"
```javascript title="time_complexity.js"
/* 指數階迴圈實現 */
function exponential(n) {
let count = 0,
base = 1;
// 細胞每輪一分為二形成數列 1, 2, 4, 8, ..., 2^(n-1)
for (let i = 0; i < n; i++) {
for (let j = 0; j < base; j++) {
count++;
}
base *= 2;
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count;
}
```
=== "TS"
```typescript title="time_complexity.ts"
/* 指數階迴圈實現 */
function exponential(n: number): number {
let count = 0,
base = 1;
// 細胞每輪一分為二形成數列 1, 2, 4, 8, ..., 2^(n-1)
for (let i = 0; i < n; i++) {
for (let j = 0; j < base; j++) {
count++;
}
base *= 2;
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count;
}
```
=== "Dart"
```dart title="time_complexity.dart"
/* 指數階迴圈實現 */
int exponential(int n) {
int count = 0, base = 1;
// 細胞每輪一分為二形成數列 1, 2, 4, 8, ..., 2^(n-1)
for (var i = 0; i < n; i++) {
for (var j = 0; j < base; j++) {
count++;
}
base *= 2;
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count;
}
```
=== "Rust"
```rust title="time_complexity.rs"
/* 指數階迴圈實現 */
fn exponential(n: i32) -> i32 {
let mut count = 0;
let mut base = 1;
// 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1)
for _ in 0..n {
for _ in 0..base {
count += 1
}
base *= 2;
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
count
}
```
=== "C"
```c title="time_complexity.c"
/* 指數階(迴圈實現) */
int exponential(int n) {
int count = 0;
int bas = 1;
// 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1)
for (int i = 0; i < n; i++) {
for (int j = 0; j < bas; j++) {
count++;
}
bas *= 2;
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count;
}
```
=== "Kotlin"
```kotlin title="time_complexity.kt"
/* 指數階迴圈實現 */
fun exponential(n: Int): Int {
var count = 0
// 細胞每輪一分為二形成數列 1, 2, 4, 8, ..., 2^(n-1)
var base = 1
for (i in 0..<n) {
for (j in 0..<base) {
count++
}
base *= 2
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count
}
```
=== "Ruby"
```ruby title="time_complexity.rb"
### 指數階迴圈實現###
def exponential(n)
count, base = 0, 1
# 細胞每輪一分為二形成數列 1, 2, 4, 8, ..., 2^(n-1)
(0...n).each do
(0...base).each { count += 1 }
base *= 2
end
# count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
count
end
```
=== "Zig"
```zig title="time_complexity.zig"
// 指數階迴圈實現
fn exponential(n: i32) i32 {
var count: i32 = 0;
var bas: i32 = 1;
var i: i32 = 0;
// 細胞每輪一分為二形成數列 1, 2, 4, 8, ..., 2^(n-1)
while (i < n) : (i += 1) {
var j: i32 = 0;
while (j < bas) : (j += 1) {
count += 1;
}
bas *= 2;
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count;
}
```
??? pythontutor "視覺化執行"
<div style="height: 531px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20exponential%28n%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%8C%87%E6%95%B8%E9%9A%8E%EF%BC%88%E8%BF%B4%E5%9C%88%E5%AF%A6%E7%8F%BE%EF%BC%89%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20base%20%3D%201%0A%20%20%20%20%23%20%E7%B4%B0%E8%83%9E%E6%AF%8F%E8%BC%AA%E4%B8%80%E5%88%86%E7%82%BA%E4%BA%8C%EF%BC%8C%E5%BD%A2%E6%88%90%E6%95%B8%E5%88%97%201%2C%202%2C%204%2C%208%2C%20...%2C%202%5E%28n-1%29%0A%20%20%20%20for%20_%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20for%20_%20in%20range%28base%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20%20%20%20%20base%20%2A%3D%202%0A%20%20%20%20%23%20count%20%3D%201%20%2B%202%20%2B%204%20%2B%208%20%2B%20..%20%2B%202%5E%28n-1%29%20%3D%202%5En%20-%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BC%B8%E5%85%A5%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%3D%22%2C%20n%29%0A%0A%20%20%20%20count%20%3D%20exponential%28n%29%0A%20%20%20%20print%28%22%E6%8C%87%E6%95%B8%E9%9A%8E%EF%BC%88%E8%BF%B4%E5%9C%88%E5%AF%A6%E7%8F%BE%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B8%E9%87%8F%20%3D%22%2C%20count%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20exponential%28n%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%8C%87%E6%95%B8%E9%9A%8E%EF%BC%88%E8%BF%B4%E5%9C%88%E5%AF%A6%E7%8F%BE%EF%BC%89%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20base%20%3D%201%0A%20%20%20%20%23%20%E7%B4%B0%E8%83%9E%E6%AF%8F%E8%BC%AA%E4%B8%80%E5%88%86%E7%82%BA%E4%BA%8C%EF%BC%8C%E5%BD%A2%E6%88%90%E6%95%B8%E5%88%97%201%2C%202%2C%204%2C%208%2C%20...%2C%202%5E%28n-1%29%0A%20%20%20%20for%20_%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20for%20_%20in%20range%28base%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20%20%20%20%20base%20%2A%3D%202%0A%20%20%20%20%23%20count%20%3D%201%20%2B%202%20%2B%204%20%2B%208%20%2B%20..%20%2B%202%5E%28n-1%29%20%3D%202%5En%20-%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BC%B8%E5%85%A5%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%3D%22%2C%20n%29%0A%0A%20%20%20%20count%20%3D%20exponential%28n%29%0A%20%20%20%20print%28%22%E6%8C%87%E6%95%B8%E9%9A%8E%EF%BC%88%E8%BF%B4%E5%9C%88%E5%AF%A6%E7%8F%BE%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B8%E9%87%8F%20%3D%22%2C%20count%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
![指數階的時間複雜度](time_complexity.assets/time_complexity_exponential.png){ class="animation-figure" }
<p align="center"> 圖 2-11 &nbsp; 指數階的時間複雜度 </p>
在實際演算法中,指數階常出現於遞迴函式中。例如在以下程式碼中,其遞迴地一分為二,經過 $n$ 次分裂後停止:
=== "Python"
```python title="time_complexity.py"
def exp_recur(n: int) -> int:
"""指數階(遞迴實現)"""
if n == 1:
return 1
return exp_recur(n - 1) + exp_recur(n - 1) + 1
```
=== "C++"
```cpp title="time_complexity.cpp"
/* 指數階(遞迴實現) */
int expRecur(int n) {
if (n == 1)
return 1;
return expRecur(n - 1) + expRecur(n - 1) + 1;
}
```
=== "Java"
```java title="time_complexity.java"
/* 指數階(遞迴實現) */
int expRecur(int n) {
if (n == 1)
return 1;
return expRecur(n - 1) + expRecur(n - 1) + 1;
}
```
=== "C#"
```csharp title="time_complexity.cs"
/* 指數階(遞迴實現) */
int ExpRecur(int n) {
if (n == 1) return 1;
return ExpRecur(n - 1) + ExpRecur(n - 1) + 1;
}
```
=== "Go"
```go title="time_complexity.go"
/* 指數階(遞迴實現)*/
func expRecur(n int) int {
if n == 1 {
return 1
}
return expRecur(n-1) + expRecur(n-1) + 1
}
```
=== "Swift"
```swift title="time_complexity.swift"
/* 指數階(遞迴實現) */
func expRecur(n: Int) -> Int {
if n == 1 {
return 1
}
return expRecur(n: n - 1) + expRecur(n: n - 1) + 1
}
```
=== "JS"
```javascript title="time_complexity.js"
/* 指數階(遞迴實現) */
function expRecur(n) {
if (n === 1) return 1;
return expRecur(n - 1) + expRecur(n - 1) + 1;
}
```
=== "TS"
```typescript title="time_complexity.ts"
/* 指數階(遞迴實現) */
function expRecur(n: number): number {
if (n === 1) return 1;
return expRecur(n - 1) + expRecur(n - 1) + 1;
}
```
=== "Dart"
```dart title="time_complexity.dart"
/* 指數階(遞迴實現) */
int expRecur(int n) {
if (n == 1) return 1;
return expRecur(n - 1) + expRecur(n - 1) + 1;
}
```
=== "Rust"
```rust title="time_complexity.rs"
/* 指數階(遞迴實現) */
fn exp_recur(n: i32) -> i32 {
if n == 1 {
return 1;
}
exp_recur(n - 1) + exp_recur(n - 1) + 1
}
```
=== "C"
```c title="time_complexity.c"
/* 指數階(遞迴實現) */
int expRecur(int n) {
if (n == 1)
return 1;
return expRecur(n - 1) + expRecur(n - 1) + 1;
}
```
=== "Kotlin"
```kotlin title="time_complexity.kt"
/* 指數階(遞迴實現) */
fun expRecur(n: Int): Int {
if (n == 1) {
return 1
}
return expRecur(n - 1) + expRecur(n - 1) + 1
}
```
=== "Ruby"
```ruby title="time_complexity.rb"
### 指數階(遞迴實現)###
def exp_recur(n)
return 1 if n == 1
exp_recur(n - 1) + exp_recur(n - 1) + 1
end
```
=== "Zig"
```zig title="time_complexity.zig"
// 指數階(遞迴實現)
fn expRecur(n: i32) i32 {
if (n == 1) return 1;
return expRecur(n - 1) + expRecur(n - 1) + 1;
}
```
??? pythontutor "視覺化執行"
<div style="height: 423px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20exp_recur%28n%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%8C%87%E6%95%B8%E9%9A%8E%EF%BC%88%E9%81%9E%E8%BF%B4%E5%AF%A6%E7%8F%BE%EF%BC%89%22%22%22%0A%20%20%20%20if%20n%20%3D%3D%201%3A%0A%20%20%20%20%20%20%20%20return%201%0A%20%20%20%20return%20exp_recur%28n%20-%201%29%20%2B%20exp_recur%28n%20-%201%29%20%2B%201%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%207%0A%20%20%20%20print%28%22%E8%BC%B8%E5%85%A5%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%3D%22%2C%20n%29%0A%0A%20%20%20%20count%20%3D%20exp_recur%28n%29%0A%20%20%20%20print%28%22%E6%8C%87%E6%95%B8%E9%9A%8E%EF%BC%88%E9%81%9E%E8%BF%B4%E5%AF%A6%E7%8F%BE%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B8%E9%87%8F%20%3D%22%2C%20count%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20exp_recur%28n%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%8C%87%E6%95%B8%E9%9A%8E%EF%BC%88%E9%81%9E%E8%BF%B4%E5%AF%A6%E7%8F%BE%EF%BC%89%22%22%22%0A%20%20%20%20if%20n%20%3D%3D%201%3A%0A%20%20%20%20%20%20%20%20return%201%0A%20%20%20%20return%20exp_recur%28n%20-%201%29%20%2B%20exp_recur%28n%20-%201%29%20%2B%201%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%207%0A%20%20%20%20print%28%22%E8%BC%B8%E5%85%A5%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%3D%22%2C%20n%29%0A%0A%20%20%20%20count%20%3D%20exp_recur%28n%29%0A%20%20%20%20print%28%22%E6%8C%87%E6%95%B8%E9%9A%8E%EF%BC%88%E9%81%9E%E8%BF%B4%E5%AF%A6%E7%8F%BE%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B8%E9%87%8F%20%3D%22%2C%20count%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
指數階增長非常迅速,在窮舉法(暴力搜尋、回溯等)中比較常見。對於資料規模較大的問題,指數階是不可接受的,通常需要使用動態規劃或貪婪演算法等來解決。
### 5. &nbsp; 對數階 $O(\log n)$ {data-toc-label="5. &nbsp; 對數階"}
與指數階相反,對數階反映了“每輪縮減到一半”的情況。設輸入資料大小為 $n$ ,由於每輪縮減到一半,因此迴圈次數是 $\log_2 n$ ,即 $2^n$ 的反函式。
圖 2-12 和以下程式碼模擬了“每輪縮減到一半”的過程,時間複雜度為 $O(\log_2 n)$ ,簡記為 $O(\log n)$
=== "Python"
```python title="time_complexity.py"
def logarithmic(n: int) -> int:
"""對數階(迴圈實現)"""
count = 0
while n > 1:
n = n / 2
count += 1
return count
```
=== "C++"
```cpp title="time_complexity.cpp"
/* 對數階(迴圈實現) */
int logarithmic(int n) {
int count = 0;
while (n > 1) {
n = n / 2;
count++;
}
return count;
}
```
=== "Java"
```java title="time_complexity.java"
/* 對數階(迴圈實現) */
int logarithmic(int n) {
int count = 0;
while (n > 1) {
n = n / 2;
count++;
}
return count;
}
```
=== "C#"
```csharp title="time_complexity.cs"
/* 對數階(迴圈實現) */
int Logarithmic(int n) {
int count = 0;
while (n > 1) {
n /= 2;
count++;
}
return count;
}
```
=== "Go"
```go title="time_complexity.go"
/* 對數階(迴圈實現)*/
func logarithmic(n int) int {
count := 0
for n > 1 {
n = n / 2
count++
}
return count
}
```
=== "Swift"
```swift title="time_complexity.swift"
/* 對數階(迴圈實現) */
func logarithmic(n: Int) -> Int {
var count = 0
var n = n
while n > 1 {
n = n / 2
count += 1
}
return count
}
```
=== "JS"
```javascript title="time_complexity.js"
/* 對數階(迴圈實現) */
function logarithmic(n) {
let count = 0;
while (n > 1) {
n = n / 2;
count++;
}
return count;
}
```
=== "TS"
```typescript title="time_complexity.ts"
/* 對數階(迴圈實現) */
function logarithmic(n: number): number {
let count = 0;
while (n > 1) {
n = n / 2;
count++;
}
return count;
}
```
=== "Dart"
```dart title="time_complexity.dart"
/* 對數階(迴圈實現) */
int logarithmic(int n) {
int count = 0;
while (n > 1) {
n = n ~/ 2;
count++;
}
return count;
}
```
=== "Rust"
```rust title="time_complexity.rs"
/* 對數階(迴圈實現) */
fn logarithmic(mut n: i32) -> i32 {
let mut count = 0;
while n > 1 {
n = n / 2;
count += 1;
}
count
}
```
=== "C"
```c title="time_complexity.c"
/* 對數階(迴圈實現) */
int logarithmic(int n) {
int count = 0;
while (n > 1) {
n = n / 2;
count++;
}
return count;
}
```
=== "Kotlin"
```kotlin title="time_complexity.kt"
/* 對數階(迴圈實現) */
fun logarithmic(n: Int): Int {
var n1 = n
var count = 0
while (n1 > 1) {
n1 /= 2
count++
}
return count
}
```
=== "Ruby"
```ruby title="time_complexity.rb"
### 對數階(迴圈實現)###
def logarithmic(n)
count = 0
while n > 1
n /= 2
count += 1
end
count
end
```
=== "Zig"
```zig title="time_complexity.zig"
// 對數階(迴圈實現)
fn logarithmic(n: i32) i32 {
var count: i32 = 0;
var n_var = n;
while (n_var > 1)
{
n_var = n_var / 2;
count +=1;
}
return count;
}
```
??? pythontutor "視覺化執行"
<div style="height: 459px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20logarithmic%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%B0%8D%E6%95%B8%E9%9A%8E%EF%BC%88%E8%BF%B4%E5%9C%88%E5%AF%A6%E7%8F%BE%EF%BC%89%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20while%20n%20%3E%201%3A%0A%20%20%20%20%20%20%20%20n%20%3D%20n%20/%202%0A%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BC%B8%E5%85%A5%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%3D%22%2C%20n%29%0A%0A%20%20%20%20count%20%3D%20logarithmic%28n%29%0A%20%20%20%20print%28%22%E5%B0%8D%E6%95%B8%E9%9A%8E%EF%BC%88%E8%BF%B4%E5%9C%88%E5%AF%A6%E7%8F%BE%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B8%E9%87%8F%20%3D%22%2C%20count%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20logarithmic%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%B0%8D%E6%95%B8%E9%9A%8E%EF%BC%88%E8%BF%B4%E5%9C%88%E5%AF%A6%E7%8F%BE%EF%BC%89%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20while%20n%20%3E%201%3A%0A%20%20%20%20%20%20%20%20n%20%3D%20n%20/%202%0A%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BC%B8%E5%85%A5%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%3D%22%2C%20n%29%0A%0A%20%20%20%20count%20%3D%20logarithmic%28n%29%0A%20%20%20%20print%28%22%E5%B0%8D%E6%95%B8%E9%9A%8E%EF%BC%88%E8%BF%B4%E5%9C%88%E5%AF%A6%E7%8F%BE%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B8%E9%87%8F%20%3D%22%2C%20count%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
![對數階的時間複雜度](time_complexity.assets/time_complexity_logarithmic.png){ class="animation-figure" }
<p align="center"> 圖 2-12 &nbsp; 對數階的時間複雜度 </p>
與指數階類似,對數階也常出現於遞迴函式中。以下程式碼形成了一棵高度為 $\log_2 n$ 的遞迴樹:
=== "Python"
```python title="time_complexity.py"
def log_recur(n: int) -> int:
"""對數階(遞迴實現)"""
if n <= 1:
return 0
return log_recur(n / 2) + 1
```
=== "C++"
```cpp title="time_complexity.cpp"
/* 對數階(遞迴實現) */
int logRecur(int n) {
if (n <= 1)
return 0;
return logRecur(n / 2) + 1;
}
```
=== "Java"
```java title="time_complexity.java"
/* 對數階(遞迴實現) */
int logRecur(int n) {
if (n <= 1)
return 0;
return logRecur(n / 2) + 1;
}
```
=== "C#"
```csharp title="time_complexity.cs"
/* 對數階(遞迴實現) */
int LogRecur(int n) {
if (n <= 1) return 0;
return LogRecur(n / 2) + 1;
}
```
=== "Go"
```go title="time_complexity.go"
/* 對數階(遞迴實現)*/
func logRecur(n int) int {
if n <= 1 {
return 0
}
return logRecur(n/2) + 1
}
```
=== "Swift"
```swift title="time_complexity.swift"
/* 對數階(遞迴實現) */
func logRecur(n: Int) -> Int {
if n <= 1 {
return 0
}
return logRecur(n: n / 2) + 1
}
```
=== "JS"
```javascript title="time_complexity.js"
/* 對數階(遞迴實現) */
function logRecur(n) {
if (n <= 1) return 0;
return logRecur(n / 2) + 1;
}
```
=== "TS"
```typescript title="time_complexity.ts"
/* 對數階(遞迴實現) */
function logRecur(n: number): number {
if (n <= 1) return 0;
return logRecur(n / 2) + 1;
}
```
=== "Dart"
```dart title="time_complexity.dart"
/* 對數階(遞迴實現) */
int logRecur(int n) {
if (n <= 1) return 0;
return logRecur(n ~/ 2) + 1;
}
```
=== "Rust"
```rust title="time_complexity.rs"
/* 對數階(遞迴實現) */
fn log_recur(n: i32) -> i32 {
if n <= 1 {
return 0;
}
log_recur(n / 2) + 1
}
```
=== "C"
```c title="time_complexity.c"
/* 對數階(遞迴實現) */
int logRecur(int n) {
if (n <= 1)
return 0;
return logRecur(n / 2) + 1;
}
```
=== "Kotlin"
```kotlin title="time_complexity.kt"
/* 對數階(遞迴實現) */
fun logRecur(n: Int): Int {
if (n <= 1)
return 0
return logRecur(n / 2) + 1
}
```
=== "Ruby"
```ruby title="time_complexity.rb"
### 對數階(遞迴實現)###
def log_recur(n)
return 0 unless n > 1
log_recur(n / 2) + 1
end
```
=== "Zig"
```zig title="time_complexity.zig"
// 對數階(遞迴實現)
fn logRecur(n: i32) i32 {
if (n <= 1) return 0;
return logRecur(n / 2) + 1;
}
```
??? pythontutor "視覺化執行"
<div style="height: 423px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20log_recur%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%B0%8D%E6%95%B8%E9%9A%8E%EF%BC%88%E9%81%9E%E8%BF%B4%E5%AF%A6%E7%8F%BE%EF%BC%89%22%22%22%0A%20%20%20%20if%20n%20%3C%3D%201%3A%0A%20%20%20%20%20%20%20%20return%200%0A%20%20%20%20return%20log_recur%28n%20/%202%29%20%2B%201%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BC%B8%E5%85%A5%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%3D%22%2C%20n%29%0A%0A%20%20%20%20count%20%3D%20log_recur%28n%29%0A%20%20%20%20print%28%22%E5%B0%8D%E6%95%B8%E9%9A%8E%EF%BC%88%E9%81%9E%E8%BF%B4%E5%AF%A6%E7%8F%BE%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B8%E9%87%8F%20%3D%22%2C%20count%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20log_recur%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%B0%8D%E6%95%B8%E9%9A%8E%EF%BC%88%E9%81%9E%E8%BF%B4%E5%AF%A6%E7%8F%BE%EF%BC%89%22%22%22%0A%20%20%20%20if%20n%20%3C%3D%201%3A%0A%20%20%20%20%20%20%20%20return%200%0A%20%20%20%20return%20log_recur%28n%20/%202%29%20%2B%201%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BC%B8%E5%85%A5%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%3D%22%2C%20n%29%0A%0A%20%20%20%20count%20%3D%20log_recur%28n%29%0A%20%20%20%20print%28%22%E5%B0%8D%E6%95%B8%E9%9A%8E%EF%BC%88%E9%81%9E%E8%BF%B4%E5%AF%A6%E7%8F%BE%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B8%E9%87%8F%20%3D%22%2C%20count%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
對數階常出現於基於分治策略的演算法中,體現了“一分為多”和“化繁為簡”的演算法思想。它增長緩慢,是僅次於常數階的理想的時間複雜度。
!!! tip "$O(\log n)$ 的底數是多少?"
準確來說,“一分為 $m$”對應的時間複雜度是 $O(\log_m n)$ 。而透過對數換底公式,我們可以得到具有不同底數、相等的時間複雜度:
$$
O(\log_m n) = O(\log_k n / \log_k m) = O(\log_k n)
$$
也就是說,底數 $m$ 可以在不影響複雜度的前提下轉換。因此我們通常會省略底數 $m$ ,將對數階直接記為 $O(\log n)$ 。
### 6. &nbsp; 線性對數階 $O(n \log n)$ {data-toc-label="6. &nbsp; 線性對數階"}
線性對數階常出現於巢狀迴圈中,兩層迴圈的時間複雜度分別為 $O(\log n)$ 和 $O(n)$ 。相關程式碼如下:
=== "Python"
```python title="time_complexity.py"
def linear_log_recur(n: int) -> int:
"""線性對數階"""
if n <= 1:
return 1
count: int = linear_log_recur(n // 2) + linear_log_recur(n // 2)
for _ in range(n):
count += 1
return count
```
=== "C++"
```cpp title="time_complexity.cpp"
/* 線性對數階 */
int linearLogRecur(int n) {
if (n <= 1)
return 1;
int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
for (int i = 0; i < n; i++) {
count++;
}
return count;
}
```
=== "Java"
```java title="time_complexity.java"
/* 線性對數階 */
int linearLogRecur(int n) {
if (n <= 1)
return 1;
int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
for (int i = 0; i < n; i++) {
count++;
}
return count;
}
```
=== "C#"
```csharp title="time_complexity.cs"
/* 線性對數階 */
int LinearLogRecur(int n) {
if (n <= 1) return 1;
int count = LinearLogRecur(n / 2) + LinearLogRecur(n / 2);
for (int i = 0; i < n; i++) {
count++;
}
return count;
}
```
=== "Go"
```go title="time_complexity.go"
/* 線性對數階 */
func linearLogRecur(n int) int {
if n <= 1 {
return 1
}
count := linearLogRecur(n/2) + linearLogRecur(n/2)
for i := 0; i < n; i++ {
count++
}
return count
}
```
=== "Swift"
```swift title="time_complexity.swift"
/* 線性對數階 */
func linearLogRecur(n: Int) -> Int {
if n <= 1 {
return 1
}
var count = linearLogRecur(n: n / 2) + linearLogRecur(n: n / 2)
for _ in stride(from: 0, to: n, by: 1) {
count += 1
}
return count
}
```
=== "JS"
```javascript title="time_complexity.js"
/* 線性對數階 */
function linearLogRecur(n) {
if (n <= 1) return 1;
let count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
for (let i = 0; i < n; i++) {
count++;
}
return count;
}
```
=== "TS"
```typescript title="time_complexity.ts"
/* 線性對數階 */
function linearLogRecur(n: number): number {
if (n <= 1) return 1;
let count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
for (let i = 0; i < n; i++) {
count++;
}
return count;
}
```
=== "Dart"
```dart title="time_complexity.dart"
/* 線性對數階 */
int linearLogRecur(int n) {
if (n <= 1) return 1;
int count = linearLogRecur(n ~/ 2) + linearLogRecur(n ~/ 2);
for (var i = 0; i < n; i++) {
count++;
}
return count;
}
```
=== "Rust"
```rust title="time_complexity.rs"
/* 線性對數階 */
fn linear_log_recur(n: i32) -> i32 {
if n <= 1 {
return 1;
}
let mut count = linear_log_recur(n / 2) + linear_log_recur(n / 2);
for _ in 0..n as i32 {
count += 1;
}
return count;
}
```
=== "C"
```c title="time_complexity.c"
/* 線性對數階 */
int linearLogRecur(int n) {
if (n <= 1)
return 1;
int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
for (int i = 0; i < n; i++) {
count++;
}
return count;
}
```
=== "Kotlin"
```kotlin title="time_complexity.kt"
/* 線性對數階 */
fun linearLogRecur(n: Int): Int {
if (n <= 1)
return 1
var count = linearLogRecur(n / 2) + linearLogRecur(n / 2)
for (i in 0..<n) {
count++
}
return count
}
```
=== "Ruby"
```ruby title="time_complexity.rb"
### 線性對數階 ###
def linear_log_recur(n)
return 1 unless n > 1
count = linear_log_recur(n / 2) + linear_log_recur(n / 2)
(0...n).each { count += 1 }
count
end
```
=== "Zig"
```zig title="time_complexity.zig"
// 線性對數階
fn linearLogRecur(n: i32) i32 {
if (n <= 1) return 1;
var count: i32 = linearLogRecur(n / 2) + linearLogRecur(n / 2);
var i: i32 = 0;
while (i < n) : (i += 1) {
count += 1;
}
return count;
}
```
??? pythontutor "視覺化執行"
<div style="height: 477px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20linear_log_recur%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%B7%9A%E6%80%A7%E5%B0%8D%E6%95%B8%E9%9A%8E%22%22%22%0A%20%20%20%20if%20n%20%3C%3D%201%3A%0A%20%20%20%20%20%20%20%20return%201%0A%20%20%20%20count%20%3D%20linear_log_recur%28n%20//%202%29%20%2B%20linear_log_recur%28n%20//%202%29%0A%20%20%20%20for%20_%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BC%B8%E5%85%A5%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%3D%22%2C%20n%29%0A%0A%20%20%20%20count%20%3D%20linear_log_recur%28n%29%0A%20%20%20%20print%28%22%E7%B7%9A%E6%80%A7%E5%B0%8D%E6%95%B8%E9%9A%8E%EF%BC%88%E9%81%9E%E8%BF%B4%E5%AF%A6%E7%8F%BE%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B8%E9%87%8F%20%3D%22%2C%20count%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20linear_log_recur%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%B7%9A%E6%80%A7%E5%B0%8D%E6%95%B8%E9%9A%8E%22%22%22%0A%20%20%20%20if%20n%20%3C%3D%201%3A%0A%20%20%20%20%20%20%20%20return%201%0A%20%20%20%20count%20%3D%20linear_log_recur%28n%20//%202%29%20%2B%20linear_log_recur%28n%20//%202%29%0A%20%20%20%20for%20_%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BC%B8%E5%85%A5%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%3D%22%2C%20n%29%0A%0A%20%20%20%20count%20%3D%20linear_log_recur%28n%29%0A%20%20%20%20print%28%22%E7%B7%9A%E6%80%A7%E5%B0%8D%E6%95%B8%E9%9A%8E%EF%BC%88%E9%81%9E%E8%BF%B4%E5%AF%A6%E7%8F%BE%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B8%E9%87%8F%20%3D%22%2C%20count%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
圖 2-13 展示了線性對數階的生成方式。二元樹的每一層的操作總數都為 $n$ ,樹共有 $\log_2 n + 1$ 層,因此時間複雜度為 $O(n \log n)$ 。
![線性對數階的時間複雜度](time_complexity.assets/time_complexity_logarithmic_linear.png){ class="animation-figure" }
<p align="center"> 圖 2-13 &nbsp; 線性對數階的時間複雜度 </p>
主流排序演算法的時間複雜度通常為 $O(n \log n)$ ,例如快速排序、合併排序、堆積排序等。
### 7. &nbsp; 階乘階 $O(n!)$ {data-toc-label="7. &nbsp; 階乘階"}
階乘階對應數學上的“全排列”問題。給定 $n$ 個互不重複的元素,求其所有可能的排列方案,方案數量為:
$$
n! = n \times (n - 1) \times (n - 2) \times \dots \times 2 \times 1
$$
階乘通常使用遞迴實現。如圖 2-14 和以下程式碼所示,第一層分裂出 $n$ 個,第二層分裂出 $n - 1$ 個,以此類推,直至第 $n$ 層時停止分裂:
=== "Python"
```python title="time_complexity.py"
def factorial_recur(n: int) -> int:
"""階乘階(遞迴實現)"""
if n == 0:
return 1
count = 0
# 從 1 個分裂出 n 個
for _ in range(n):
count += factorial_recur(n - 1)
return count
```
=== "C++"
```cpp title="time_complexity.cpp"
/* 階乘階(遞迴實現) */
int factorialRecur(int n) {
if (n == 0)
return 1;
int count = 0;
// 從 1 個分裂出 n 個
for (int i = 0; i < n; i++) {
count += factorialRecur(n - 1);
}
return count;
}
```
=== "Java"
```java title="time_complexity.java"
/* 階乘階遞迴實現 */
int factorialRecur(int n) {
if (n == 0)
return 1;
int count = 0;
// 1 個分裂出 n
for (int i = 0; i < n; i++) {
count += factorialRecur(n - 1);
}
return count;
}
```
=== "C#"
```csharp title="time_complexity.cs"
/* 階乘階遞迴實現 */
int FactorialRecur(int n) {
if (n == 0) return 1;
int count = 0;
// 1 個分裂出 n
for (int i = 0; i < n; i++) {
count += FactorialRecur(n - 1);
}
return count;
}
```
=== "Go"
```go title="time_complexity.go"
/* 階乘階遞迴實現 */
func factorialRecur(n int) int {
if n == 0 {
return 1
}
count := 0
// 1 個分裂出 n
for i := 0; i < n; i++ {
count += factorialRecur(n - 1)
}
return count
}
```
=== "Swift"
```swift title="time_complexity.swift"
/* 階乘階遞迴實現 */
func factorialRecur(n: Int) -> Int {
if n == 0 {
return 1
}
var count = 0
// 從 1 個分裂出 n 個
for _ in 0 ..< n {
count += factorialRecur(n: n - 1)
}
return count
}
```
=== "JS"
```javascript title="time_complexity.js"
/* 階乘階遞迴實現 */
function factorialRecur(n) {
if (n === 0) return 1;
let count = 0;
// 1 個分裂出 n
for (let i = 0; i < n; i++) {
count += factorialRecur(n - 1);
}
return count;
}
```
=== "TS"
```typescript title="time_complexity.ts"
/* 階乘階遞迴實現 */
function factorialRecur(n: number): number {
if (n === 0) return 1;
let count = 0;
// 1 個分裂出 n
for (let i = 0; i < n; i++) {
count += factorialRecur(n - 1);
}
return count;
}
```
=== "Dart"
```dart title="time_complexity.dart"
/* 階乘階遞迴實現 */
int factorialRecur(int n) {
if (n == 0) return 1;
int count = 0;
// 1 個分裂出 n
for (var i = 0; i < n; i++) {
count += factorialRecur(n - 1);
}
return count;
}
```
=== "Rust"
```rust title="time_complexity.rs"
/* 階乘階遞迴實現 */
fn factorial_recur(n: i32) -> i32 {
if n == 0 {
return 1;
}
let mut count = 0;
// 從 1 個分裂出 n 個
for _ in 0..n {
count += factorial_recur(n - 1);
}
count
}
```
=== "C"
```c title="time_complexity.c"
/* 階乘階(遞迴實現) */
int factorialRecur(int n) {
if (n == 0)
return 1;
int count = 0;
for (int i = 0; i < n; i++) {
count += factorialRecur(n - 1);
}
return count;
}
```
=== "Kotlin"
```kotlin title="time_complexity.kt"
/* 階乘階遞迴實現 */
fun factorialRecur(n: Int): Int {
if (n == 0)
return 1
var count = 0
// 1 個分裂出 n
for (i in 0..<n) {
count += factorialRecur(n - 1)
}
return count
}
```
=== "Ruby"
```ruby title="time_complexity.rb"
### 階乘階遞迴實現###
def factorial_recur(n)
return 1 if n == 0
count = 0
# 1 個分裂出 n
(0...n).each { count += factorial_recur(n - 1) }
count
end
```
=== "Zig"
```zig title="time_complexity.zig"
// 階乘階遞迴實現
fn factorialRecur(n: i32) i32 {
if (n == 0) return 1;
var count: i32 = 0;
var i: i32 = 0;
// 1 個分裂出 n
while (i < n) : (i += 1) {
count += factorialRecur(n - 1);
}
return count;
}
```
??? pythontutor "視覺化執行"
<div style="height: 495px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20factorial_recur%28n%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E9%9A%8E%E4%B9%98%E9%9A%8E%EF%BC%88%E9%81%9E%E8%BF%B4%E5%AF%A6%E7%8F%BE%EF%BC%89%22%22%22%0A%20%20%20%20if%20n%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20return%201%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20%23%20%E5%BE%9E%201%20%E5%80%8B%E5%88%86%E8%A3%82%E5%87%BA%20n%20%E5%80%8B%0A%20%20%20%20for%20_%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20count%20%2B%3D%20factorial_recur%28n%20-%201%29%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%204%0A%20%20%20%20print%28%22%E8%BC%B8%E5%85%A5%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%3D%22%2C%20n%29%0A%0A%20%20%20%20count%20%3D%20factorial_recur%28n%29%0A%20%20%20%20print%28%22%E9%9A%8E%E4%B9%98%E9%9A%8E%EF%BC%88%E9%81%9E%E8%BF%B4%E5%AF%A6%E7%8F%BE%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B8%E9%87%8F%20%3D%22%2C%20count%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20factorial_recur%28n%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E9%9A%8E%E4%B9%98%E9%9A%8E%EF%BC%88%E9%81%9E%E8%BF%B4%E5%AF%A6%E7%8F%BE%EF%BC%89%22%22%22%0A%20%20%20%20if%20n%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20return%201%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20%23%20%E5%BE%9E%201%20%E5%80%8B%E5%88%86%E8%A3%82%E5%87%BA%20n%20%E5%80%8B%0A%20%20%20%20for%20_%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20count%20%2B%3D%20factorial_recur%28n%20-%201%29%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%204%0A%20%20%20%20print%28%22%E8%BC%B8%E5%85%A5%E8%B3%87%E6%96%99%E5%A4%A7%E5%B0%8F%20n%20%3D%22%2C%20n%29%0A%0A%20%20%20%20count%20%3D%20factorial_recur%28n%29%0A%20%20%20%20print%28%22%E9%9A%8E%E4%B9%98%E9%9A%8E%EF%BC%88%E9%81%9E%E8%BF%B4%E5%AF%A6%E7%8F%BE%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B8%E9%87%8F%20%3D%22%2C%20count%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
![階乘階的時間複雜度](time_complexity.assets/time_complexity_factorial.png){ class="animation-figure" }
<p align="center"> 圖 2-14 &nbsp; 階乘階的時間複雜度 </p>
請注意,因為當 $n \geq 4$ 時恆有 $n! > 2^n$ ,所以階乘階比指數階增長得更快,在 $n$ 較大時也是不可接受的。
## 2.3.5 &nbsp; 最差、最佳、平均時間複雜度
**演算法的時間效率往往不是固定的,而是與輸入資料的分佈有關**。假設輸入一個長度為 $n$ 的陣列 `nums` ,其中 `nums` 由從 $1$ 至 $n$ 的數字組成,每個數字只出現一次;但元素順序是隨機打亂的,任務目標是返回元素 $1$ 的索引。我們可以得出以下結論。
-`nums = [?, ?, ..., 1]` ,即當末尾元素是 $1$ 時,需要完整走訪陣列,**達到最差時間複雜度 $O(n)$** 。
-`nums = [1, ?, ?, ...]` ,即當首個元素為 $1$ 時,無論陣列多長都不需要繼續走訪,**達到最佳時間複雜度 $\Omega(1)$** 。
“最差時間複雜度”對應函式漸近上界,使用大 $O$ 記號表示。相應地,“最佳時間複雜度”對應函式漸近下界,用 $\Omega$ 記號表示:
=== "Python"
```python title="worst_best_time_complexity.py"
def random_numbers(n: int) -> list[int]:
"""生成一個陣列,元素為: 1, 2, ..., n ,順序被打亂"""
# 生成陣列 nums =: 1, 2, 3, ..., n
nums = [i for i in range(1, n + 1)]
# 隨機打亂陣列元素
random.shuffle(nums)
return nums
def find_one(nums: list[int]) -> int:
"""查詢陣列 nums 中數字 1 所在索引"""
for i in range(len(nums)):
# 當元素 1 在陣列頭部時,達到最佳時間複雜度 O(1)
# 當元素 1 在陣列尾部時,達到最差時間複雜度 O(n)
if nums[i] == 1:
return i
return -1
```
=== "C++"
```cpp title="worst_best_time_complexity.cpp"
/* 生成一個陣列,元素為 { 1, 2, ..., n },順序被打亂 */
vector<int> randomNumbers(int n) {
vector<int> nums(n);
// 生成陣列 nums = { 1, 2, 3, ..., n }
for (int i = 0; i < n; i++) {
nums[i] = i + 1;
}
// 使用系統時間生成隨機種子
unsigned seed = chrono::system_clock::now().time_since_epoch().count();
// 隨機打亂陣列元素
shuffle(nums.begin(), nums.end(), default_random_engine(seed));
return nums;
}
/* 查詢陣列 nums 中數字 1 所在索引 */
int findOne(vector<int> &nums) {
for (int i = 0; i < nums.size(); i++) {
// 當元素 1 在陣列頭部時達到最佳時間複雜度 O(1)
// 當元素 1 在陣列尾部時達到最差時間複雜度 O(n)
if (nums[i] == 1)
return i;
}
return -1;
}
```
=== "Java"
```java title="worst_best_time_complexity.java"
/* 生成一個陣列元素為 { 1, 2, ..., n }順序被打亂 */
int[] randomNumbers(int n) {
Integer[] nums = new Integer[n];
// 生成陣列 nums = { 1, 2, 3, ..., n }
for (int i = 0; i < n; i++) {
nums[i] = i + 1;
}
// 隨機打亂陣列元素
Collections.shuffle(Arrays.asList(nums));
// Integer[] -> int[]
int[] res = new int[n];
for (int i = 0; i < n; i++) {
res[i] = nums[i];
}
return res;
}
/* 查詢陣列 nums 中數字 1 所在索引 */
int findOne(int[] nums) {
for (int i = 0; i < nums.length; i++) {
// 當元素 1 在陣列頭部時達到最佳時間複雜度 O(1)
// 當元素 1 在陣列尾部時達到最差時間複雜度 O(n)
if (nums[i] == 1)
return i;
}
return -1;
}
```
=== "C#"
```csharp title="worst_best_time_complexity.cs"
/* 生成一個陣列元素為 { 1, 2, ..., n }順序被打亂 */
int[] RandomNumbers(int n) {
int[] nums = new int[n];
// 生成陣列 nums = { 1, 2, 3, ..., n }
for (int i = 0; i < n; i++) {
nums[i] = i + 1;
}
// 隨機打亂陣列元素
for (int i = 0; i < nums.Length; i++) {
int index = new Random().Next(i, nums.Length);
(nums[i], nums[index]) = (nums[index], nums[i]);
}
return nums;
}
/* 查詢陣列 nums 中數字 1 所在索引 */
int FindOne(int[] nums) {
for (int i = 0; i < nums.Length; i++) {
// 當元素 1 在陣列頭部時達到最佳時間複雜度 O(1)
// 當元素 1 在陣列尾部時達到最差時間複雜度 O(n)
if (nums[i] == 1)
return i;
}
return -1;
}
```
=== "Go"
```go title="worst_best_time_complexity.go"
/* 生成一個陣列元素為 { 1, 2, ..., n }順序被打亂 */
func randomNumbers(n int) []int {
nums := make([]int, n)
// 生成陣列 nums = { 1, 2, 3, ..., n }
for i := 0; i < n; i++ {
nums[i] = i + 1
}
// 隨機打亂陣列元素
rand.Shuffle(len(nums), func(i, j int) {
nums[i], nums[j] = nums[j], nums[i]
})
return nums
}
/* 查詢陣列 nums 中數字 1 所在索引 */
func findOne(nums []int) int {
for i := 0; i < len(nums); i++ {
// 當元素 1 在陣列頭部時達到最佳時間複雜度 O(1)
// 當元素 1 在陣列尾部時達到最差時間複雜度 O(n)
if nums[i] == 1 {
return i
}
}
return -1
}
```
=== "Swift"
```swift title="worst_best_time_complexity.swift"
/* 生成一個陣列元素為 { 1, 2, ..., n }順序被打亂 */
func randomNumbers(n: Int) -> [Int] {
// 生成陣列 nums = { 1, 2, 3, ..., n }
var nums = Array(1 ... n)
// 隨機打亂陣列元素
nums.shuffle()
return nums
}
/* 查詢陣列 nums 中數字 1 所在索引 */
func findOne(nums: [Int]) -> Int {
for i in nums.indices {
// 當元素 1 在陣列頭部時,達到最佳時間複雜度 O(1)
// 當元素 1 在陣列尾部時,達到最差時間複雜度 O(n)
if nums[i] == 1 {
return i
}
}
return -1
}
```
=== "JS"
```javascript title="worst_best_time_complexity.js"
/* 生成一個陣列,元素為 { 1, 2, ..., n },順序被打亂 */
function randomNumbers(n) {
const nums = Array(n);
// 生成陣列 nums = { 1, 2, 3, ..., n }
for (let i = 0; i < n; i++) {
nums[i] = i + 1;
}
// 隨機打亂陣列元素
for (let i = 0; i < n; i++) {
const r = Math.floor(Math.random() * (i + 1));
const temp = nums[i];
nums[i] = nums[r];
nums[r] = temp;
}
return nums;
}
/* 查詢陣列 nums 中數字 1 所在索引 */
function findOne(nums) {
for (let i = 0; i < nums.length; i++) {
// 當元素 1 在陣列頭部時達到最佳時間複雜度 O(1)
// 當元素 1 在陣列尾部時達到最差時間複雜度 O(n)
if (nums[i] === 1) {
return i;
}
}
return -1;
}
```
=== "TS"
```typescript title="worst_best_time_complexity.ts"
/* 生成一個陣列元素為 { 1, 2, ..., n }順序被打亂 */
function randomNumbers(n: number): number[] {
const nums = Array(n);
// 生成陣列 nums = { 1, 2, 3, ..., n }
for (let i = 0; i < n; i++) {
nums[i] = i + 1;
}
// 隨機打亂陣列元素
for (let i = 0; i < n; i++) {
const r = Math.floor(Math.random() * (i + 1));
const temp = nums[i];
nums[i] = nums[r];
nums[r] = temp;
}
return nums;
}
/* 查詢陣列 nums 中數字 1 所在索引 */
function findOne(nums: number[]): number {
for (let i = 0; i < nums.length; i++) {
// 當元素 1 在陣列頭部時達到最佳時間複雜度 O(1)
// 當元素 1 在陣列尾部時達到最差時間複雜度 O(n)
if (nums[i] === 1) {
return i;
}
}
return -1;
}
```
=== "Dart"
```dart title="worst_best_time_complexity.dart"
/* 生成一個陣列元素為 { 1, 2, ..., n }順序被打亂 */
List<int> randomNumbers(int n) {
final nums = List.filled(n, 0);
// 生成陣列 nums = { 1, 2, 3, ..., n }
for (var i = 0; i < n; i++) {
nums[i] = i + 1;
}
// 隨機打亂陣列元素
nums.shuffle();
return nums;
}
/* 查詢陣列 nums 中數字 1 所在索引 */
int findOne(List<int> nums) {
for (var i = 0; i < nums.length; i++) {
// 當元素 1 在陣列頭部時達到最佳時間複雜度 O(1)
// 當元素 1 在陣列尾部時達到最差時間複雜度 O(n)
if (nums[i] == 1) return i;
}
return -1;
}
```
=== "Rust"
```rust title="worst_best_time_complexity.rs"
/* 生成一個陣列元素為 { 1, 2, ..., n }順序被打亂 */
fn random_numbers(n: i32) -> Vec<i32> {
// 生成陣列 nums = { 1, 2, 3, ..., n }
let mut nums = (1..=n).collect::<Vec<i32>>();
// 隨機打亂陣列元素
nums.shuffle(&mut thread_rng());
nums
}
/* 查詢陣列 nums 中數字 1 所在索引 */
fn find_one(nums: &[i32]) -> Option<usize> {
for i in 0..nums.len() {
// 當元素 1 在陣列頭部時,達到最佳時間複雜度 O(1)
// 當元素 1 在陣列尾部時,達到最差時間複雜度 O(n)
if nums[i] == 1 {
return Some(i);
}
}
None
}
```
=== "C"
```c title="worst_best_time_complexity.c"
/* 生成一個陣列,元素為 { 1, 2, ..., n },順序被打亂 */
int *randomNumbers(int n) {
// 分配堆積區記憶體(建立一維可變長陣列:陣列中元素數量為 n ,元素型別為 int
int *nums = (int *)malloc(n * sizeof(int));
// 生成陣列 nums = { 1, 2, 3, ..., n }
for (int i = 0; i < n; i++) {
nums[i] = i + 1;
}
// 隨機打亂陣列元素
for (int i = n - 1; i > 0; i--) {
int j = rand() % (i + 1);
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
return nums;
}
/* 查詢陣列 nums 中數字 1 所在索引 */
int findOne(int *nums, int n) {
for (int i = 0; i < n; i++) {
// 當元素 1 在陣列頭部時達到最佳時間複雜度 O(1)
// 當元素 1 在陣列尾部時達到最差時間複雜度 O(n)
if (nums[i] == 1)
return i;
}
return -1;
}
```
=== "Kotlin"
```kotlin title="worst_best_time_complexity.kt"
/* 生成一個陣列元素為 { 1, 2, ..., n }順序被打亂 */
fun randomNumbers(n: Int): Array<Int?> {
val nums = IntArray(n)
// 生成陣列 nums = { 1, 2, 3, ..., n }
for (i in 0..<n) {
nums[i] = i + 1
}
val mutableList = nums.toMutableList()
// 隨機打亂陣列元素
mutableList.shuffle()
val res = arrayOfNulls<Int>(n)
for (i in 0..<n) {
res[i] = mutableList[i]
}
return res
}
/* 查詢陣列 nums 中數字 1 所在索引 */
fun findOne(nums: Array<Int?>): Int {
for (i in nums.indices) {
// 當元素 1 在陣列頭部時,達到最佳時間複雜度 O(1)
// 當元素 1 在陣列尾部時,達到最差時間複雜度 O(n)
if (nums[i] == 1)
return i
}
return -1
}
```
=== "Ruby"
```ruby title="worst_best_time_complexity.rb"
### 生成一個陣列,元素為: 1, 2, ..., n ,順序被打亂 ###
def random_numbers(n)
# 生成陣列 nums =: 1, 2, 3, ..., n
nums = Array.new(n) { |i| i + 1 }
# 隨機打亂陣列元素
nums.shuffle!
end
### 查詢陣列 nums 中數字 1 所在索引 ###
def find_one(nums)
for i in 0...nums.length
# 當元素 1 在陣列頭部時,達到最佳時間複雜度 O(1)
# 當元素 1 在陣列尾部時,達到最差時間複雜度 O(n)
return i if nums[i] == 1
end
-1
end
```
=== "Zig"
```zig title="worst_best_time_complexity.zig"
// 生成一個陣列,元素為 { 1, 2, ..., n },順序被打亂
fn randomNumbers(comptime n: usize) [n]i32 {
var nums: [n]i32 = undefined;
// 生成陣列 nums = { 1, 2, 3, ..., n }
for (&nums, 0..) |*num, i| {
num.* = @as(i32, @intCast(i)) + 1;
}
// 隨機打亂陣列元素
const rand = std.crypto.random;
rand.shuffle(i32, &nums);
return nums;
}
// 查詢陣列 nums 中數字 1 所在索引
fn findOne(nums: []i32) i32 {
for (nums, 0..) |num, i| {
// 當元素 1 在陣列頭部時,達到最佳時間複雜度 O(1)
// 當元素 1 在陣列尾部時,達到最差時間複雜度 O(n)
if (num == 1) return @intCast(i);
}
return -1;
}
```
??? pythontutor "視覺化執行"
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=import%20random%0A%0Adef%20random_numbers%28n%3A%20int%29%20-%3E%20list%5Bint%5D%3A%0A%20%20%20%20%22%22%22%E7%94%9F%E6%88%90%E4%B8%80%E5%80%8B%E9%99%A3%E5%88%97%EF%BC%8C%E5%85%83%E7%B4%A0%E7%82%BA%3A%201%2C%202%2C%20...%2C%20n%20%EF%BC%8C%E9%A0%86%E5%BA%8F%E8%A2%AB%E6%89%93%E4%BA%82%22%22%22%0A%20%20%20%20%23%20%E7%94%9F%E6%88%90%E9%99%A3%E5%88%97%20nums%20%3D%3A%201%2C%202%2C%203%2C%20...%2C%20n%0A%20%20%20%20nums%20%3D%20%5Bi%20for%20i%20in%20range%281%2C%20n%20%2B%201%29%5D%0A%20%20%20%20%23%20%E9%9A%A8%E6%A9%9F%E6%89%93%E4%BA%82%E9%99%A3%E5%88%97%E5%85%83%E7%B4%A0%0A%20%20%20%20random.shuffle%28nums%29%0A%20%20%20%20return%20nums%0A%0Adef%20find_one%28nums%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%9F%A5%E8%A9%A2%E9%99%A3%E5%88%97%20nums%20%E4%B8%AD%E6%95%B8%E5%AD%97%201%20%E6%89%80%E5%9C%A8%E7%B4%A2%E5%BC%95%22%22%22%0A%20%20%20%20for%20i%20in%20range%28len%28nums%29%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E7%95%B6%E5%85%83%E7%B4%A0%201%20%E5%9C%A8%E9%99%A3%E5%88%97%E9%A0%AD%E9%83%A8%E6%99%82%EF%BC%8C%E9%81%94%E5%88%B0%E6%9C%80%E4%BD%B3%E6%99%82%E9%96%93%E8%A4%87%E9%9B%9C%E5%BA%A6%20O%281%29%0A%20%20%20%20%20%20%20%20%23%20%E7%95%B6%E5%85%83%E7%B4%A0%201%20%E5%9C%A8%E9%99%A3%E5%88%97%E5%B0%BE%E9%83%A8%E6%99%82%EF%BC%8C%E9%81%94%E5%88%B0%E6%9C%80%E5%B7%AE%E6%99%82%E9%96%93%E8%A4%87%E9%9B%9C%E5%BA%A6%20O%28n%29%0A%20%20%20%20%20%20%20%20if%20nums%5Bi%5D%20%3D%3D%201%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%20i%0A%20%20%20%20return%20-1%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%2010%0A%20%20%20%20nums%20%3D%20random_numbers%28n%29%0A%20%20%20%20index%20%3D%20find_one%28nums%29%0A%20%20%20%20print%28%22%5Cn%E9%99%A3%E5%88%97%20%5B%201%2C%202%2C%20...%2C%20n%20%5D%20%E8%A2%AB%E6%89%93%E4%BA%82%E5%BE%8C%20%3D%22%2C%20nums%29%0A%20%20%20%20print%28%22%E6%95%B8%E5%AD%97%201%20%E7%9A%84%E7%B4%A2%E5%BC%95%E7%82%BA%22%2C%20index%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=25&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=import%20random%0A%0Adef%20random_numbers%28n%3A%20int%29%20-%3E%20list%5Bint%5D%3A%0A%20%20%20%20%22%22%22%E7%94%9F%E6%88%90%E4%B8%80%E5%80%8B%E9%99%A3%E5%88%97%EF%BC%8C%E5%85%83%E7%B4%A0%E7%82%BA%3A%201%2C%202%2C%20...%2C%20n%20%EF%BC%8C%E9%A0%86%E5%BA%8F%E8%A2%AB%E6%89%93%E4%BA%82%22%22%22%0A%20%20%20%20%23%20%E7%94%9F%E6%88%90%E9%99%A3%E5%88%97%20nums%20%3D%3A%201%2C%202%2C%203%2C%20...%2C%20n%0A%20%20%20%20nums%20%3D%20%5Bi%20for%20i%20in%20range%281%2C%20n%20%2B%201%29%5D%0A%20%20%20%20%23%20%E9%9A%A8%E6%A9%9F%E6%89%93%E4%BA%82%E9%99%A3%E5%88%97%E5%85%83%E7%B4%A0%0A%20%20%20%20random.shuffle%28nums%29%0A%20%20%20%20return%20nums%0A%0Adef%20find_one%28nums%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%9F%A5%E8%A9%A2%E9%99%A3%E5%88%97%20nums%20%E4%B8%AD%E6%95%B8%E5%AD%97%201%20%E6%89%80%E5%9C%A8%E7%B4%A2%E5%BC%95%22%22%22%0A%20%20%20%20for%20i%20in%20range%28len%28nums%29%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E7%95%B6%E5%85%83%E7%B4%A0%201%20%E5%9C%A8%E9%99%A3%E5%88%97%E9%A0%AD%E9%83%A8%E6%99%82%EF%BC%8C%E9%81%94%E5%88%B0%E6%9C%80%E4%BD%B3%E6%99%82%E9%96%93%E8%A4%87%E9%9B%9C%E5%BA%A6%20O%281%29%0A%20%20%20%20%20%20%20%20%23%20%E7%95%B6%E5%85%83%E7%B4%A0%201%20%E5%9C%A8%E9%99%A3%E5%88%97%E5%B0%BE%E9%83%A8%E6%99%82%EF%BC%8C%E9%81%94%E5%88%B0%E6%9C%80%E5%B7%AE%E6%99%82%E9%96%93%E8%A4%87%E9%9B%9C%E5%BA%A6%20O%28n%29%0A%20%20%20%20%20%20%20%20if%20nums%5Bi%5D%20%3D%3D%201%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%20i%0A%20%20%20%20return%20-1%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%2010%0A%20%20%20%20nums%20%3D%20random_numbers%28n%29%0A%20%20%20%20index%20%3D%20find_one%28nums%29%0A%20%20%20%20print%28%22%5Cn%E9%99%A3%E5%88%97%20%5B%201%2C%202%2C%20...%2C%20n%20%5D%20%E8%A2%AB%E6%89%93%E4%BA%82%E5%BE%8C%20%3D%22%2C%20nums%29%0A%20%20%20%20print%28%22%E6%95%B8%E5%AD%97%201%20%E7%9A%84%E7%B4%A2%E5%BC%95%E7%82%BA%22%2C%20index%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=25&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
值得說明的是,我們在實際中很少使用最佳時間複雜度,因為通常只有在很小機率下才能達到,可能會帶來一定的誤導性。**而最差時間複雜度更為實用,因為它給出了一個效率安全值**,讓我們可以放心地使用演算法。
從上述示例可以看出,最差時間複雜度和最佳時間複雜度只出現於“特殊的資料分佈”,這些情況的出現機率可能很小,並不能真實地反映演算法執行效率。相比之下,**平均時間複雜度可以體現演算法在隨機輸入資料下的執行效率**,用 $\Theta$ 記號來表示。
對於部分演算法,我們可以簡單地推算出隨機資料分佈下的平均情況。比如上述示例,由於輸入陣列是被打亂的,因此元素 $1$ 出現在任意索引的機率都是相等的,那麼演算法的平均迴圈次數就是陣列長度的一半 $n / 2$ ,平均時間複雜度為 $\Theta(n / 2) = \Theta(n)$ 。
但對於較為複雜的演算法,計算平均時間複雜度往往比較困難,因為很難分析出在資料分佈下的整體數學期望。在這種情況下,我們通常使用最差時間複雜度作為演算法效率的評判標準。
!!! question "為什麼很少看到 $\Theta$ 符號?"
可能由於 $O$ 符號過於朗朗上口,因此我們常常使用它來表示平均時間複雜度。但從嚴格意義上講,這種做法並不規範。在本書和其他資料中,若遇到類似“平均時間複雜度 $O(n)$”的表述,請將其直接理解為 $\Theta(n)$ 。