hello-algo/zh-Hant/docs/chapter_backtracking/permutations_problem.md
2024-04-11 01:11:20 +08:00

1068 lines
49 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
comments: true
---
# 13.2   全排列問題
全排列問題是回溯演算法的一個典型應用。它的定義是在給定一個集合(如一個陣列或字串)的情況下,找出其中元素的所有可能的排列。
表 13-2 列舉了幾個示例資料,包括輸入陣列和對應的所有排列。
<p align="center"> 表 13-2 &nbsp; 全排列示例 </p>
<div class="center-table" markdown>
| 輸入陣列 | 所有排列 |
| :---------- | :----------------------------------------------------------------- |
| $[1]$ | $[1]$ |
| $[1, 2]$ | $[1, 2], [2, 1]$ |
| $[1, 2, 3]$ | $[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]$ |
</div>
## 13.2.1 &nbsp; 無相等元素的情況
!!! question
輸入一個整數陣列,其中不包含重複元素,返回所有可能的排列。
從回溯演算法的角度看,**我們可以把生成排列的過程想象成一系列選擇的結果**。假設輸入陣列為 $[1, 2, 3]$ ,如果我們先選擇 $1$ ,再選擇 $3$ ,最後選擇 $2$ ,則獲得排列 $[1, 3, 2]$ 。回退表示撤銷一個選擇,之後繼續嘗試其他選擇。
從回溯程式碼的角度看,候選集合 `choices` 是輸入陣列中的所有元素,狀態 `state` 是直至目前已被選擇的元素。請注意,每個元素只允許被選擇一次,**因此 `state` 中的所有元素都應該是唯一的**。
如圖 13-5 所示,我們可以將搜尋過程展開成一棵遞迴樹,樹中的每個節點代表當前狀態 `state` 。從根節點開始,經過三輪選擇後到達葉節點,每個葉節點都對應一個排列。
![全排列的遞迴樹](permutations_problem.assets/permutations_i.png){ class="animation-figure" }
<p align="center"> 圖 13-5 &nbsp; 全排列的遞迴樹 </p>
### 1. &nbsp; 重複選擇剪枝
為了實現每個元素只被選擇一次,我們考慮引入一個布林型陣列 `selected` ,其中 `selected[i]` 表示 `choices[i]` 是否已被選擇,並基於它實現以下剪枝操作。
- 在做出選擇 `choice[i]` 後,我們就將 `selected[i]` 賦值為 $\text{True}$ ,代表它已被選擇。
- 走訪選擇串列 `choices` 時,跳過所有已被選擇的節點,即剪枝。
如圖 13-6 所示,假設我們第一輪選擇 1 ,第二輪選擇 3 ,第三輪選擇 2 ,則需要在第二輪剪掉元素 1 的分支,在第三輪剪掉元素 1 和元素 3 的分支。
![全排列剪枝示例](permutations_problem.assets/permutations_i_pruning.png){ class="animation-figure" }
<p align="center"> 圖 13-6 &nbsp; 全排列剪枝示例 </p>
觀察圖 13-6 發現,該剪枝操作將搜尋空間大小從 $O(n^n)$ 減小至 $O(n!)$ 。
### 2. &nbsp; 程式碼實現
想清楚以上資訊之後,我們就可以在框架程式碼中做“完形填空”了。為了縮短整體程式碼,我們不單獨實現框架程式碼中的各個函式,而是將它們展開在 `backtrack()` 函式中:
=== "Python"
```python title="permutations_i.py"
def backtrack(
state: list[int], choices: list[int], selected: list[bool], res: list[list[int]]
):
"""回溯演算法:全排列 I"""
# 當狀態長度等於元素數量時,記錄解
if len(state) == len(choices):
res.append(list(state))
return
# 走訪所有選擇
for i, choice in enumerate(choices):
# 剪枝:不允許重複選擇元素
if not selected[i]:
# 嘗試:做出選擇,更新狀態
selected[i] = True
state.append(choice)
# 進行下一輪選擇
backtrack(state, choices, selected, res)
# 回退:撤銷選擇,恢復到之前的狀態
selected[i] = False
state.pop()
def permutations_i(nums: list[int]) -> list[list[int]]:
"""全排列 I"""
res = []
backtrack(state=[], choices=nums, selected=[False] * len(nums), res=res)
return res
```
=== "C++"
```cpp title="permutations_i.cpp"
/* 回溯演算法:全排列 I */
void backtrack(vector<int> &state, const vector<int> &choices, vector<bool> &selected, vector<vector<int>> &res) {
// 當狀態長度等於元素數量時,記錄解
if (state.size() == choices.size()) {
res.push_back(state);
return;
}
// 走訪所有選擇
for (int i = 0; i < choices.size(); i++) {
int choice = choices[i];
// 剪枝不允許重複選擇元素
if (!selected[i]) {
// 嘗試做出選擇更新狀態
selected[i] = true;
state.push_back(choice);
// 進行下一輪選擇
backtrack(state, choices, selected, res);
// 回退撤銷選擇恢復到之前的狀態
selected[i] = false;
state.pop_back();
}
}
}
/* 全排列 I */
vector<vector<int>> permutationsI(vector<int> nums) {
vector<int> state;
vector<bool> selected(nums.size(), false);
vector<vector<int>> res;
backtrack(state, nums, selected, res);
return res;
}
```
=== "Java"
```java title="permutations_i.java"
/* 回溯演算法:全排列 I */
void backtrack(List<Integer> state, int[] choices, boolean[] selected, List<List<Integer>> res) {
// 當狀態長度等於元素數量時,記錄解
if (state.size() == choices.length) {
res.add(new ArrayList<Integer>(state));
return;
}
// 走訪所有選擇
for (int i = 0; i < choices.length; i++) {
int choice = choices[i];
// 剪枝不允許重複選擇元素
if (!selected[i]) {
// 嘗試做出選擇更新狀態
selected[i] = true;
state.add(choice);
// 進行下一輪選擇
backtrack(state, choices, selected, res);
// 回退撤銷選擇恢復到之前的狀態
selected[i] = false;
state.remove(state.size() - 1);
}
}
}
/* 全排列 I */
List<List<Integer>> permutationsI(int[] nums) {
List<List<Integer>> res = new ArrayList<List<Integer>>();
backtrack(new ArrayList<Integer>(), nums, new boolean[nums.length], res);
return res;
}
```
=== "C#"
```csharp title="permutations_i.cs"
/* 回溯演算法:全排列 I */
void Backtrack(List<int> state, int[] choices, bool[] selected, List<List<int>> res) {
// 當狀態長度等於元素數量時,記錄解
if (state.Count == choices.Length) {
res.Add(new List<int>(state));
return;
}
// 走訪所有選擇
for (int i = 0; i < choices.Length; i++) {
int choice = choices[i];
// 剪枝不允許重複選擇元素
if (!selected[i]) {
// 嘗試做出選擇更新狀態
selected[i] = true;
state.Add(choice);
// 進行下一輪選擇
Backtrack(state, choices, selected, res);
// 回退撤銷選擇恢復到之前的狀態
selected[i] = false;
state.RemoveAt(state.Count - 1);
}
}
}
/* 全排列 I */
List<List<int>> PermutationsI(int[] nums) {
List<List<int>> res = [];
Backtrack([], nums, new bool[nums.Length], res);
return res;
}
```
=== "Go"
```go title="permutations_i.go"
/* 回溯演算法:全排列 I */
func backtrackI(state *[]int, choices *[]int, selected *[]bool, res *[][]int) {
// 當狀態長度等於元素數量時,記錄解
if len(*state) == len(*choices) {
newState := append([]int{}, *state...)
*res = append(*res, newState)
}
// 走訪所有選擇
for i := 0; i < len(*choices); i++ {
choice := (*choices)[i]
// 剪枝不允許重複選擇元素
if !(*selected)[i] {
// 嘗試做出選擇更新狀態
(*selected)[i] = true
*state = append(*state, choice)
// 進行下一輪選擇
backtrackI(state, choices, selected, res)
// 回退撤銷選擇恢復到之前的狀態
(*selected)[i] = false
*state = (*state)[:len(*state)-1]
}
}
}
/* 全排列 I */
func permutationsI(nums []int) [][]int {
res := make([][]int, 0)
state := make([]int, 0)
selected := make([]bool, len(nums))
backtrackI(&state, &nums, &selected, &res)
return res
}
```
=== "Swift"
```swift title="permutations_i.swift"
/* 回溯演算法全排列 I */
func backtrack(state: inout [Int], choices: [Int], selected: inout [Bool], res: inout [[Int]]) {
// 當狀態長度等於元素數量時記錄解
if state.count == choices.count {
res.append(state)
return
}
// 走訪所有選擇
for (i, choice) in choices.enumerated() {
// 剪枝不允許重複選擇元素
if !selected[i] {
// 嘗試做出選擇更新狀態
selected[i] = true
state.append(choice)
// 進行下一輪選擇
backtrack(state: &state, choices: choices, selected: &selected, res: &res)
// 回退撤銷選擇恢復到之前的狀態
selected[i] = false
state.removeLast()
}
}
}
/* 全排列 I */
func permutationsI(nums: [Int]) -> [[Int]] {
var state: [Int] = []
var selected = Array(repeating: false, count: nums.count)
var res: [[Int]] = []
backtrack(state: &state, choices: nums, selected: &selected, res: &res)
return res
}
```
=== "JS"
```javascript title="permutations_i.js"
/* 回溯演算法:全排列 I */
function backtrack(state, choices, selected, res) {
// 當狀態長度等於元素數量時,記錄解
if (state.length === choices.length) {
res.push([...state]);
return;
}
// 走訪所有選擇
choices.forEach((choice, i) => {
// 剪枝:不允許重複選擇元素
if (!selected[i]) {
// 嘗試:做出選擇,更新狀態
selected[i] = true;
state.push(choice);
// 進行下一輪選擇
backtrack(state, choices, selected, res);
// 回退:撤銷選擇,恢復到之前的狀態
selected[i] = false;
state.pop();
}
});
}
/* 全排列 I */
function permutationsI(nums) {
const res = [];
backtrack([], nums, Array(nums.length).fill(false), res);
return res;
}
```
=== "TS"
```typescript title="permutations_i.ts"
/* 回溯演算法:全排列 I */
function backtrack(
state: number[],
choices: number[],
selected: boolean[],
res: number[][]
): void {
// 當狀態長度等於元素數量時,記錄解
if (state.length === choices.length) {
res.push([...state]);
return;
}
// 走訪所有選擇
choices.forEach((choice, i) => {
// 剪枝:不允許重複選擇元素
if (!selected[i]) {
// 嘗試:做出選擇,更新狀態
selected[i] = true;
state.push(choice);
// 進行下一輪選擇
backtrack(state, choices, selected, res);
// 回退:撤銷選擇,恢復到之前的狀態
selected[i] = false;
state.pop();
}
});
}
/* 全排列 I */
function permutationsI(nums: number[]): number[][] {
const res: number[][] = [];
backtrack([], nums, Array(nums.length).fill(false), res);
return res;
}
```
=== "Dart"
```dart title="permutations_i.dart"
/* 回溯演算法:全排列 I */
void backtrack(
List<int> state,
List<int> choices,
List<bool> selected,
List<List<int>> res,
) {
// 當狀態長度等於元素數量時,記錄解
if (state.length == choices.length) {
res.add(List.from(state));
return;
}
// 走訪所有選擇
for (int i = 0; i < choices.length; i++) {
int choice = choices[i];
// 剪枝不允許重複選擇元素
if (!selected[i]) {
// 嘗試做出選擇更新狀態
selected[i] = true;
state.add(choice);
// 進行下一輪選擇
backtrack(state, choices, selected, res);
// 回退撤銷選擇恢復到之前的狀態
selected[i] = false;
state.removeLast();
}
}
}
/* 全排列 I */
List<List<int>> permutationsI(List<int> nums) {
List<List<int>> res = [];
backtrack([], nums, List.filled(nums.length, false), res);
return res;
}
```
=== "Rust"
```rust title="permutations_i.rs"
/* 回溯演算法:全排列 I */
fn backtrack(mut state: Vec<i32>, choices: &[i32], selected: &mut [bool], res: &mut Vec<Vec<i32>>) {
// 當狀態長度等於元素數量時,記錄解
if state.len() == choices.len() {
res.push(state);
return;
}
// 走訪所有選擇
for i in 0..choices.len() {
let choice = choices[i];
// 剪枝:不允許重複選擇元素
if !selected[i] {
// 嘗試:做出選擇,更新狀態
selected[i] = true;
state.push(choice);
// 進行下一輪選擇
backtrack(state.clone(), choices, selected, res);
// 回退:撤銷選擇,恢復到之前的狀態
selected[i] = false;
state.remove(state.len() - 1);
}
}
}
/* 全排列 I */
fn permutations_i(nums: &mut [i32]) -> Vec<Vec<i32>> {
let mut res = Vec::new(); // 狀態(子集)
backtrack(Vec::new(), nums, &mut vec![false; nums.len()], &mut res);
res
}
```
=== "C"
```c title="permutations_i.c"
/* 回溯演算法:全排列 I */
void backtrack(int *state, int stateSize, int *choices, int choicesSize, bool *selected, int **res, int *resSize) {
// 當狀態長度等於元素數量時,記錄解
if (stateSize == choicesSize) {
res[*resSize] = (int *)malloc(choicesSize * sizeof(int));
for (int i = 0; i < choicesSize; i++) {
res[*resSize][i] = state[i];
}
(*resSize)++;
return;
}
// 走訪所有選擇
for (int i = 0; i < choicesSize; i++) {
int choice = choices[i];
// 剪枝不允許重複選擇元素
if (!selected[i]) {
// 嘗試做出選擇更新狀態
selected[i] = true;
state[stateSize] = choice;
// 進行下一輪選擇
backtrack(state, stateSize + 1, choices, choicesSize, selected, res, resSize);
// 回退撤銷選擇恢復到之前的狀態
selected[i] = false;
}
}
}
/* 全排列 I */
int **permutationsI(int *nums, int numsSize, int *returnSize) {
int *state = (int *)malloc(numsSize * sizeof(int));
bool *selected = (bool *)malloc(numsSize * sizeof(bool));
for (int i = 0; i < numsSize; i++) {
selected[i] = false;
}
int **res = (int **)malloc(MAX_SIZE * sizeof(int *));
*returnSize = 0;
backtrack(state, 0, nums, numsSize, selected, res, returnSize);
free(state);
free(selected);
return res;
}
```
=== "Kotlin"
```kotlin title="permutations_i.kt"
/* 回溯演算法全排列 I */
fun backtrack(
state: MutableList<Int>,
choices: IntArray,
selected: BooleanArray,
res: MutableList<MutableList<Int>?>
) {
// 當狀態長度等於元素數量時,記錄解
if (state.size == choices.size) {
res.add(state.toMutableList())
return
}
// 走訪所有選擇
for (i in choices.indices) {
val choice = choices[i]
// 剪枝:不允許重複選擇元素
if (!selected[i]) {
// 嘗試:做出選擇,更新狀態
selected[i] = true
state.add(choice)
// 進行下一輪選擇
backtrack(state, choices, selected, res)
// 回退:撤銷選擇,恢復到之前的狀態
selected[i] = false
state.removeAt(state.size - 1)
}
}
}
/* 全排列 I */
fun permutationsI(nums: IntArray): MutableList<MutableList<Int>?> {
val res = mutableListOf<MutableList<Int>?>()
backtrack(mutableListOf(), nums, BooleanArray(nums.size), res)
return res
}
```
=== "Ruby"
```ruby title="permutations_i.rb"
[class]{}-[func]{backtrack}
[class]{}-[func]{permutations_i}
```
=== "Zig"
```zig title="permutations_i.zig"
[class]{}-[func]{backtrack}
[class]{}-[func]{permutationsI}
```
??? pythontutor "視覺化執行"
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20backtrack%28%0A%20%20%20%20state%3A%20list%5Bint%5D%2C%20choices%3A%20list%5Bint%5D%2C%20selected%3A%20list%5Bbool%5D%2C%20res%3A%20list%5Blist%5Bint%5D%5D%0A%29%3A%0A%20%20%20%20%22%22%22%E5%9B%9E%E6%BA%AF%E6%BC%94%E7%AE%97%E6%B3%95%EF%BC%9A%E5%85%A8%E6%8E%92%E5%88%97%20I%22%22%22%0A%20%20%20%20%23%20%E7%95%B6%E7%8B%80%E6%85%8B%E9%95%B7%E5%BA%A6%E7%AD%89%E6%96%BC%E5%85%83%E7%B4%A0%E6%95%B8%E9%87%8F%E6%99%82%EF%BC%8C%E8%A8%98%E9%8C%84%E8%A7%A3%0A%20%20%20%20if%20len%28state%29%20%3D%3D%20len%28choices%29%3A%0A%20%20%20%20%20%20%20%20res.append%28list%28state%29%29%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%B5%B0%E8%A8%AA%E6%89%80%E6%9C%89%E9%81%B8%E6%93%87%0A%20%20%20%20for%20i%2C%20choice%20in%20enumerate%28choices%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%EF%BC%9A%E4%B8%8D%E5%85%81%E8%A8%B1%E9%87%8D%E8%A4%87%E9%81%B8%E6%93%87%E5%85%83%E7%B4%A0%0A%20%20%20%20%20%20%20%20if%20not%20selected%5Bi%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%98%97%E8%A9%A6%EF%BC%9A%E5%81%9A%E5%87%BA%E9%81%B8%E6%93%87%EF%BC%8C%E6%9B%B4%E6%96%B0%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20%20%20%20%20selected%5Bi%5D%20%3D%20True%0A%20%20%20%20%20%20%20%20%20%20%20%20state.append%28choice%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E9%80%B2%E8%A1%8C%E4%B8%8B%E4%B8%80%E8%BC%AA%E9%81%B8%E6%93%87%0A%20%20%20%20%20%20%20%20%20%20%20%20backtrack%28state%2C%20choices%2C%20selected%2C%20res%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%9B%9E%E9%80%80%EF%BC%9A%E6%92%A4%E9%8A%B7%E9%81%B8%E6%93%87%EF%BC%8C%E6%81%A2%E5%BE%A9%E5%88%B0%E4%B9%8B%E5%89%8D%E7%9A%84%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20%20%20%20%20selected%5Bi%5D%20%3D%20False%0A%20%20%20%20%20%20%20%20%20%20%20%20state.pop%28%29%0A%0A%0Adef%20permutations_i%28nums%3A%20list%5Bint%5D%29%20-%3E%20list%5Blist%5Bint%5D%5D%3A%0A%20%20%20%20%22%22%22%E5%85%A8%E6%8E%92%E5%88%97%20I%22%22%22%0A%20%20%20%20res%20%3D%20%5B%5D%0A%20%20%20%20backtrack%28state%3D%5B%5D%2C%20choices%3Dnums%2C%20selected%3D%5BFalse%5D%20%2A%20len%28nums%29%2C%20res%3Dres%29%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B1%2C%202%2C%203%5D%0A%0A%20%20%20%20res%20%3D%20permutations_i%28nums%29%0A%0A%20%20%20%20print%28f%22%E8%BC%B8%E5%85%A5%E9%99%A3%E5%88%97%20nums%20%3D%20%7Bnums%7D%22%29%0A%20%20%20%20print%28f%22%E6%89%80%E6%9C%89%E6%8E%92%E5%88%97%20res%20%3D%20%7Bres%7D%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=13&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20backtrack%28%0A%20%20%20%20state%3A%20list%5Bint%5D%2C%20choices%3A%20list%5Bint%5D%2C%20selected%3A%20list%5Bbool%5D%2C%20res%3A%20list%5Blist%5Bint%5D%5D%0A%29%3A%0A%20%20%20%20%22%22%22%E5%9B%9E%E6%BA%AF%E6%BC%94%E7%AE%97%E6%B3%95%EF%BC%9A%E5%85%A8%E6%8E%92%E5%88%97%20I%22%22%22%0A%20%20%20%20%23%20%E7%95%B6%E7%8B%80%E6%85%8B%E9%95%B7%E5%BA%A6%E7%AD%89%E6%96%BC%E5%85%83%E7%B4%A0%E6%95%B8%E9%87%8F%E6%99%82%EF%BC%8C%E8%A8%98%E9%8C%84%E8%A7%A3%0A%20%20%20%20if%20len%28state%29%20%3D%3D%20len%28choices%29%3A%0A%20%20%20%20%20%20%20%20res.append%28list%28state%29%29%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%B5%B0%E8%A8%AA%E6%89%80%E6%9C%89%E9%81%B8%E6%93%87%0A%20%20%20%20for%20i%2C%20choice%20in%20enumerate%28choices%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%EF%BC%9A%E4%B8%8D%E5%85%81%E8%A8%B1%E9%87%8D%E8%A4%87%E9%81%B8%E6%93%87%E5%85%83%E7%B4%A0%0A%20%20%20%20%20%20%20%20if%20not%20selected%5Bi%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%98%97%E8%A9%A6%EF%BC%9A%E5%81%9A%E5%87%BA%E9%81%B8%E6%93%87%EF%BC%8C%E6%9B%B4%E6%96%B0%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20%20%20%20%20selected%5Bi%5D%20%3D%20True%0A%20%20%20%20%20%20%20%20%20%20%20%20state.append%28choice%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E9%80%B2%E8%A1%8C%E4%B8%8B%E4%B8%80%E8%BC%AA%E9%81%B8%E6%93%87%0A%20%20%20%20%20%20%20%20%20%20%20%20backtrack%28state%2C%20choices%2C%20selected%2C%20res%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%9B%9E%E9%80%80%EF%BC%9A%E6%92%A4%E9%8A%B7%E9%81%B8%E6%93%87%EF%BC%8C%E6%81%A2%E5%BE%A9%E5%88%B0%E4%B9%8B%E5%89%8D%E7%9A%84%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20%20%20%20%20selected%5Bi%5D%20%3D%20False%0A%20%20%20%20%20%20%20%20%20%20%20%20state.pop%28%29%0A%0A%0Adef%20permutations_i%28nums%3A%20list%5Bint%5D%29%20-%3E%20list%5Blist%5Bint%5D%5D%3A%0A%20%20%20%20%22%22%22%E5%85%A8%E6%8E%92%E5%88%97%20I%22%22%22%0A%20%20%20%20res%20%3D%20%5B%5D%0A%20%20%20%20backtrack%28state%3D%5B%5D%2C%20choices%3Dnums%2C%20selected%3D%5BFalse%5D%20%2A%20len%28nums%29%2C%20res%3Dres%29%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B1%2C%202%2C%203%5D%0A%0A%20%20%20%20res%20%3D%20permutations_i%28nums%29%0A%0A%20%20%20%20print%28f%22%E8%BC%B8%E5%85%A5%E9%99%A3%E5%88%97%20nums%20%3D%20%7Bnums%7D%22%29%0A%20%20%20%20print%28f%22%E6%89%80%E6%9C%89%E6%8E%92%E5%88%97%20res%20%3D%20%7Bres%7D%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=13&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
## 13.2.2 &nbsp; 考慮相等元素的情況
!!! question
輸入一個整數陣列,**陣列中可能包含重複元素**,返回所有不重複的排列。
假設輸入陣列為 $[1, 1, 2]$ 。為了方便區分兩個重複元素 $1$ ,我們將第二個 $1$ 記為 $\hat{1}$ 。
如圖 13-7 所示,上述方法生成的排列有一半是重複的。
![重複排列](permutations_problem.assets/permutations_ii.png){ class="animation-figure" }
<p align="center"> 圖 13-7 &nbsp; 重複排列 </p>
那麼如何去除重複的排列呢?最直接地,考慮藉助一個雜湊表,直接對排列結果進行去重。然而這樣做不夠優雅,**因為生成重複排列的搜尋分支沒有必要,應當提前識別並剪枝**,這樣可以進一步提升演算法效率。
### 1. &nbsp; 相等元素剪枝
觀察圖 13-8 ,在第一輪中,選擇 $1$ 或選擇 $\hat{1}$ 是等價的,在這兩個選擇之下生成的所有排列都是重複的。因此應該把 $\hat{1}$ 剪枝。
同理,在第一輪選擇 $2$ 之後,第二輪選擇中的 $1$ 和 $\hat{1}$ 也會產生重複分支,因此也應將第二輪的 $\hat{1}$ 剪枝。
從本質上看,**我們的目標是在某一輪選擇中,保證多個相等的元素僅被選擇一次**。
![重複排列剪枝](permutations_problem.assets/permutations_ii_pruning.png){ class="animation-figure" }
<p align="center"> 圖 13-8 &nbsp; 重複排列剪枝 </p>
### 2. &nbsp; 程式碼實現
在上一題的程式碼的基礎上,我們考慮在每一輪選擇中開啟一個雜湊表 `duplicated` ,用於記錄該輪中已經嘗試過的元素,並將重複元素剪枝:
=== "Python"
```python title="permutations_ii.py"
def backtrack(
state: list[int], choices: list[int], selected: list[bool], res: list[list[int]]
):
"""回溯演算法:全排列 II"""
# 當狀態長度等於元素數量時,記錄解
if len(state) == len(choices):
res.append(list(state))
return
# 走訪所有選擇
duplicated = set[int]()
for i, choice in enumerate(choices):
# 剪枝:不允許重複選擇元素 且 不允許重複選擇相等元素
if not selected[i] and choice not in duplicated:
# 嘗試:做出選擇,更新狀態
duplicated.add(choice) # 記錄選擇過的元素值
selected[i] = True
state.append(choice)
# 進行下一輪選擇
backtrack(state, choices, selected, res)
# 回退:撤銷選擇,恢復到之前的狀態
selected[i] = False
state.pop()
def permutations_ii(nums: list[int]) -> list[list[int]]:
"""全排列 II"""
res = []
backtrack(state=[], choices=nums, selected=[False] * len(nums), res=res)
return res
```
=== "C++"
```cpp title="permutations_ii.cpp"
/* 回溯演算法:全排列 II */
void backtrack(vector<int> &state, const vector<int> &choices, vector<bool> &selected, vector<vector<int>> &res) {
// 當狀態長度等於元素數量時,記錄解
if (state.size() == choices.size()) {
res.push_back(state);
return;
}
// 走訪所有選擇
unordered_set<int> duplicated;
for (int i = 0; i < choices.size(); i++) {
int choice = choices[i];
// 剪枝不允許重複選擇元素 不允許重複選擇相等元素
if (!selected[i] && duplicated.find(choice) == duplicated.end()) {
// 嘗試做出選擇更新狀態
duplicated.emplace(choice); // 記錄選擇過的元素值
selected[i] = true;
state.push_back(choice);
// 進行下一輪選擇
backtrack(state, choices, selected, res);
// 回退撤銷選擇恢復到之前的狀態
selected[i] = false;
state.pop_back();
}
}
}
/* 全排列 II */
vector<vector<int>> permutationsII(vector<int> nums) {
vector<int> state;
vector<bool> selected(nums.size(), false);
vector<vector<int>> res;
backtrack(state, nums, selected, res);
return res;
}
```
=== "Java"
```java title="permutations_ii.java"
/* 回溯演算法:全排列 II */
void backtrack(List<Integer> state, int[] choices, boolean[] selected, List<List<Integer>> res) {
// 當狀態長度等於元素數量時,記錄解
if (state.size() == choices.length) {
res.add(new ArrayList<Integer>(state));
return;
}
// 走訪所有選擇
Set<Integer> duplicated = new HashSet<Integer>();
for (int i = 0; i < choices.length; i++) {
int choice = choices[i];
// 剪枝不允許重複選擇元素 不允許重複選擇相等元素
if (!selected[i] && !duplicated.contains(choice)) {
// 嘗試做出選擇更新狀態
duplicated.add(choice); // 記錄選擇過的元素值
selected[i] = true;
state.add(choice);
// 進行下一輪選擇
backtrack(state, choices, selected, res);
// 回退撤銷選擇恢復到之前的狀態
selected[i] = false;
state.remove(state.size() - 1);
}
}
}
/* 全排列 II */
List<List<Integer>> permutationsII(int[] nums) {
List<List<Integer>> res = new ArrayList<List<Integer>>();
backtrack(new ArrayList<Integer>(), nums, new boolean[nums.length], res);
return res;
}
```
=== "C#"
```csharp title="permutations_ii.cs"
/* 回溯演算法:全排列 II */
void Backtrack(List<int> state, int[] choices, bool[] selected, List<List<int>> res) {
// 當狀態長度等於元素數量時,記錄解
if (state.Count == choices.Length) {
res.Add(new List<int>(state));
return;
}
// 走訪所有選擇
HashSet<int> duplicated = [];
for (int i = 0; i < choices.Length; i++) {
int choice = choices[i];
// 剪枝不允許重複選擇元素 不允許重複選擇相等元素
if (!selected[i] && !duplicated.Contains(choice)) {
// 嘗試做出選擇更新狀態
duplicated.Add(choice); // 記錄選擇過的元素值
selected[i] = true;
state.Add(choice);
// 進行下一輪選擇
Backtrack(state, choices, selected, res);
// 回退撤銷選擇恢復到之前的狀態
selected[i] = false;
state.RemoveAt(state.Count - 1);
}
}
}
/* 全排列 II */
List<List<int>> PermutationsII(int[] nums) {
List<List<int>> res = [];
Backtrack([], nums, new bool[nums.Length], res);
return res;
}
```
=== "Go"
```go title="permutations_ii.go"
/* 回溯演算法:全排列 II */
func backtrackII(state *[]int, choices *[]int, selected *[]bool, res *[][]int) {
// 當狀態長度等於元素數量時,記錄解
if len(*state) == len(*choices) {
newState := append([]int{}, *state...)
*res = append(*res, newState)
}
// 走訪所有選擇
duplicated := make(map[int]struct{}, 0)
for i := 0; i < len(*choices); i++ {
choice := (*choices)[i]
// 剪枝不允許重複選擇元素 不允許重複選擇相等元素
if _, ok := duplicated[choice]; !ok && !(*selected)[i] {
// 嘗試做出選擇更新狀態
// 記錄選擇過的元素值
duplicated[choice] = struct{}{}
(*selected)[i] = true
*state = append(*state, choice)
// 進行下一輪選擇
backtrackI(state, choices, selected, res)
// 回退撤銷選擇恢復到之前的狀態
(*selected)[i] = false
*state = (*state)[:len(*state)-1]
}
}
}
/* 全排列 II */
func permutationsII(nums []int) [][]int {
res := make([][]int, 0)
state := make([]int, 0)
selected := make([]bool, len(nums))
backtrackII(&state, &nums, &selected, &res)
return res
}
```
=== "Swift"
```swift title="permutations_ii.swift"
/* 回溯演算法全排列 II */
func backtrack(state: inout [Int], choices: [Int], selected: inout [Bool], res: inout [[Int]]) {
// 當狀態長度等於元素數量時記錄解
if state.count == choices.count {
res.append(state)
return
}
// 走訪所有選擇
var duplicated: Set<Int> = []
for (i, choice) in choices.enumerated() {
// 剪枝:不允許重複選擇元素 且 不允許重複選擇相等元素
if !selected[i], !duplicated.contains(choice) {
// 嘗試:做出選擇,更新狀態
duplicated.insert(choice) // 記錄選擇過的元素值
selected[i] = true
state.append(choice)
// 進行下一輪選擇
backtrack(state: &state, choices: choices, selected: &selected, res: &res)
// 回退:撤銷選擇,恢復到之前的狀態
selected[i] = false
state.removeLast()
}
}
}
/* 全排列 II */
func permutationsII(nums: [Int]) -> [[Int]] {
var state: [Int] = []
var selected = Array(repeating: false, count: nums.count)
var res: [[Int]] = []
backtrack(state: &state, choices: nums, selected: &selected, res: &res)
return res
}
```
=== "JS"
```javascript title="permutations_ii.js"
/* 回溯演算法:全排列 II */
function backtrack(state, choices, selected, res) {
// 當狀態長度等於元素數量時,記錄解
if (state.length === choices.length) {
res.push([...state]);
return;
}
// 走訪所有選擇
const duplicated = new Set();
choices.forEach((choice, i) => {
// 剪枝:不允許重複選擇元素 且 不允許重複選擇相等元素
if (!selected[i] && !duplicated.has(choice)) {
// 嘗試:做出選擇,更新狀態
duplicated.add(choice); // 記錄選擇過的元素值
selected[i] = true;
state.push(choice);
// 進行下一輪選擇
backtrack(state, choices, selected, res);
// 回退:撤銷選擇,恢復到之前的狀態
selected[i] = false;
state.pop();
}
});
}
/* 全排列 II */
function permutationsII(nums) {
const res = [];
backtrack([], nums, Array(nums.length).fill(false), res);
return res;
}
```
=== "TS"
```typescript title="permutations_ii.ts"
/* 回溯演算法:全排列 II */
function backtrack(
state: number[],
choices: number[],
selected: boolean[],
res: number[][]
): void {
// 當狀態長度等於元素數量時,記錄解
if (state.length === choices.length) {
res.push([...state]);
return;
}
// 走訪所有選擇
const duplicated = new Set();
choices.forEach((choice, i) => {
// 剪枝:不允許重複選擇元素 且 不允許重複選擇相等元素
if (!selected[i] && !duplicated.has(choice)) {
// 嘗試:做出選擇,更新狀態
duplicated.add(choice); // 記錄選擇過的元素值
selected[i] = true;
state.push(choice);
// 進行下一輪選擇
backtrack(state, choices, selected, res);
// 回退:撤銷選擇,恢復到之前的狀態
selected[i] = false;
state.pop();
}
});
}
/* 全排列 II */
function permutationsII(nums: number[]): number[][] {
const res: number[][] = [];
backtrack([], nums, Array(nums.length).fill(false), res);
return res;
}
```
=== "Dart"
```dart title="permutations_ii.dart"
/* 回溯演算法:全排列 II */
void backtrack(
List<int> state,
List<int> choices,
List<bool> selected,
List<List<int>> res,
) {
// 當狀態長度等於元素數量時,記錄解
if (state.length == choices.length) {
res.add(List.from(state));
return;
}
// 走訪所有選擇
Set<int> duplicated = {};
for (int i = 0; i < choices.length; i++) {
int choice = choices[i];
// 剪枝不允許重複選擇元素 不允許重複選擇相等元素
if (!selected[i] && !duplicated.contains(choice)) {
// 嘗試做出選擇更新狀態
duplicated.add(choice); // 記錄選擇過的元素值
selected[i] = true;
state.add(choice);
// 進行下一輪選擇
backtrack(state, choices, selected, res);
// 回退撤銷選擇恢復到之前的狀態
selected[i] = false;
state.removeLast();
}
}
}
/* 全排列 II */
List<List<int>> permutationsII(List<int> nums) {
List<List<int>> res = [];
backtrack([], nums, List.filled(nums.length, false), res);
return res;
}
```
=== "Rust"
```rust title="permutations_ii.rs"
/* 回溯演算法:全排列 II */
fn backtrack(mut state: Vec<i32>, choices: &[i32], selected: &mut [bool], res: &mut Vec<Vec<i32>>) {
// 當狀態長度等於元素數量時,記錄解
if state.len() == choices.len() {
res.push(state);
return;
}
// 走訪所有選擇
let mut duplicated = HashSet::<i32>::new();
for i in 0..choices.len() {
let choice = choices[i];
// 剪枝:不允許重複選擇元素 且 不允許重複選擇相等元素
if !selected[i] && !duplicated.contains(&choice) {
// 嘗試:做出選擇,更新狀態
duplicated.insert(choice); // 記錄選擇過的元素值
selected[i] = true;
state.push(choice);
// 進行下一輪選擇
backtrack(state.clone(), choices, selected, res);
// 回退:撤銷選擇,恢復到之前的狀態
selected[i] = false;
state.remove(state.len() - 1);
}
}
}
/* 全排列 II */
fn permutations_ii(nums: &mut [i32]) -> Vec<Vec<i32>> {
let mut res = Vec::new();
backtrack(Vec::new(), nums, &mut vec![false; nums.len()], &mut res);
res
}
```
=== "C"
```c title="permutations_ii.c"
/* 回溯演算法:全排列 II */
void backtrack(int *state, int stateSize, int *choices, int choicesSize, bool *selected, int **res, int *resSize) {
// 當狀態長度等於元素數量時,記錄解
if (stateSize == choicesSize) {
res[*resSize] = (int *)malloc(choicesSize * sizeof(int));
for (int i = 0; i < choicesSize; i++) {
res[*resSize][i] = state[i];
}
(*resSize)++;
return;
}
// 走訪所有選擇
bool duplicated[MAX_SIZE] = {false};
for (int i = 0; i < choicesSize; i++) {
int choice = choices[i];
// 剪枝不允許重複選擇元素 不允許重複選擇相等元素
if (!selected[i] && !duplicated[choice]) {
// 嘗試做出選擇更新狀態
duplicated[choice] = true; // 記錄選擇過的元素值
selected[i] = true;
state[stateSize] = choice;
// 進行下一輪選擇
backtrack(state, stateSize + 1, choices, choicesSize, selected, res, resSize);
// 回退撤銷選擇恢復到之前的狀態
selected[i] = false;
}
}
}
/* 全排列 II */
int **permutationsII(int *nums, int numsSize, int *returnSize) {
int *state = (int *)malloc(numsSize * sizeof(int));
bool *selected = (bool *)malloc(numsSize * sizeof(bool));
for (int i = 0; i < numsSize; i++) {
selected[i] = false;
}
int **res = (int **)malloc(MAX_SIZE * sizeof(int *));
*returnSize = 0;
backtrack(state, 0, nums, numsSize, selected, res, returnSize);
free(state);
free(selected);
return res;
}
```
=== "Kotlin"
```kotlin title="permutations_ii.kt"
/* 回溯演算法全排列 II */
fun backtrack(
state: MutableList<Int>,
choices: IntArray,
selected: BooleanArray,
res: MutableList<MutableList<Int>?>
) {
// 當狀態長度等於元素數量時,記錄解
if (state.size == choices.size) {
res.add(state.toMutableList())
return
}
// 走訪所有選擇
val duplicated = HashSet<Int>()
for (i in choices.indices) {
val choice = choices[i]
// 剪枝:不允許重複選擇元素 且 不允許重複選擇相等元素
if (!selected[i] && !duplicated.contains(choice)) {
// 嘗試:做出選擇,更新狀態
duplicated.add(choice) // 記錄選擇過的元素值
selected[i] = true
state.add(choice)
// 進行下一輪選擇
backtrack(state, choices, selected, res)
// 回退:撤銷選擇,恢復到之前的狀態
selected[i] = false
state.removeAt(state.size - 1)
}
}
}
/* 全排列 II */
fun permutationsII(nums: IntArray): MutableList<MutableList<Int>?> {
val res = mutableListOf<MutableList<Int>?>()
backtrack(mutableListOf(), nums, BooleanArray(nums.size), res)
return res
}
```
=== "Ruby"
```ruby title="permutations_ii.rb"
[class]{}-[func]{backtrack}
[class]{}-[func]{permutations_ii}
```
=== "Zig"
```zig title="permutations_ii.zig"
[class]{}-[func]{backtrack}
[class]{}-[func]{permutationsII}
```
??? pythontutor "視覺化執行"
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20backtrack%28%0A%20%20%20%20state%3A%20list%5Bint%5D%2C%20choices%3A%20list%5Bint%5D%2C%20selected%3A%20list%5Bbool%5D%2C%20res%3A%20list%5Blist%5Bint%5D%5D%0A%29%3A%0A%20%20%20%20%22%22%22%E5%9B%9E%E6%BA%AF%E6%BC%94%E7%AE%97%E6%B3%95%EF%BC%9A%E5%85%A8%E6%8E%92%E5%88%97%20II%22%22%22%0A%20%20%20%20%23%20%E7%95%B6%E7%8B%80%E6%85%8B%E9%95%B7%E5%BA%A6%E7%AD%89%E6%96%BC%E5%85%83%E7%B4%A0%E6%95%B8%E9%87%8F%E6%99%82%EF%BC%8C%E8%A8%98%E9%8C%84%E8%A7%A3%0A%20%20%20%20if%20len%28state%29%20%3D%3D%20len%28choices%29%3A%0A%20%20%20%20%20%20%20%20res.append%28list%28state%29%29%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%B5%B0%E8%A8%AA%E6%89%80%E6%9C%89%E9%81%B8%E6%93%87%0A%20%20%20%20duplicated%20%3D%20set%5Bint%5D%28%29%0A%20%20%20%20for%20i%2C%20choice%20in%20enumerate%28choices%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%EF%BC%9A%E4%B8%8D%E5%85%81%E8%A8%B1%E9%87%8D%E8%A4%87%E9%81%B8%E6%93%87%E5%85%83%E7%B4%A0%20%E4%B8%94%20%E4%B8%8D%E5%85%81%E8%A8%B1%E9%87%8D%E8%A4%87%E9%81%B8%E6%93%87%E7%9B%B8%E7%AD%89%E5%85%83%E7%B4%A0%0A%20%20%20%20%20%20%20%20if%20not%20selected%5Bi%5D%20and%20choice%20not%20in%20duplicated%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%98%97%E8%A9%A6%EF%BC%9A%E5%81%9A%E5%87%BA%E9%81%B8%E6%93%87%EF%BC%8C%E6%9B%B4%E6%96%B0%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20%20%20%20%20duplicated.add%28choice%29%20%20%23%20%E8%A8%98%E9%8C%84%E9%81%B8%E6%93%87%E9%81%8E%E7%9A%84%E5%85%83%E7%B4%A0%E5%80%BC%0A%20%20%20%20%20%20%20%20%20%20%20%20selected%5Bi%5D%20%3D%20True%0A%20%20%20%20%20%20%20%20%20%20%20%20state.append%28choice%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E9%80%B2%E8%A1%8C%E4%B8%8B%E4%B8%80%E8%BC%AA%E9%81%B8%E6%93%87%0A%20%20%20%20%20%20%20%20%20%20%20%20backtrack%28state%2C%20choices%2C%20selected%2C%20res%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%9B%9E%E9%80%80%EF%BC%9A%E6%92%A4%E9%8A%B7%E9%81%B8%E6%93%87%EF%BC%8C%E6%81%A2%E5%BE%A9%E5%88%B0%E4%B9%8B%E5%89%8D%E7%9A%84%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20%20%20%20%20selected%5Bi%5D%20%3D%20False%0A%20%20%20%20%20%20%20%20%20%20%20%20state.pop%28%29%0A%0A%0Adef%20permutations_ii%28nums%3A%20list%5Bint%5D%29%20-%3E%20list%5Blist%5Bint%5D%5D%3A%0A%20%20%20%20%22%22%22%E5%85%A8%E6%8E%92%E5%88%97%20II%22%22%22%0A%20%20%20%20res%20%3D%20%5B%5D%0A%20%20%20%20backtrack%28state%3D%5B%5D%2C%20choices%3Dnums%2C%20selected%3D%5BFalse%5D%20%2A%20len%28nums%29%2C%20res%3Dres%29%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B1%2C%202%2C%202%5D%0A%0A%20%20%20%20res%20%3D%20permutations_ii%28nums%29%0A%0A%20%20%20%20print%28f%22%E8%BC%B8%E5%85%A5%E9%99%A3%E5%88%97%20nums%20%3D%20%7Bnums%7D%22%29%0A%20%20%20%20print%28f%22%E6%89%80%E6%9C%89%E6%8E%92%E5%88%97%20res%20%3D%20%7Bres%7D%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=13&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20backtrack%28%0A%20%20%20%20state%3A%20list%5Bint%5D%2C%20choices%3A%20list%5Bint%5D%2C%20selected%3A%20list%5Bbool%5D%2C%20res%3A%20list%5Blist%5Bint%5D%5D%0A%29%3A%0A%20%20%20%20%22%22%22%E5%9B%9E%E6%BA%AF%E6%BC%94%E7%AE%97%E6%B3%95%EF%BC%9A%E5%85%A8%E6%8E%92%E5%88%97%20II%22%22%22%0A%20%20%20%20%23%20%E7%95%B6%E7%8B%80%E6%85%8B%E9%95%B7%E5%BA%A6%E7%AD%89%E6%96%BC%E5%85%83%E7%B4%A0%E6%95%B8%E9%87%8F%E6%99%82%EF%BC%8C%E8%A8%98%E9%8C%84%E8%A7%A3%0A%20%20%20%20if%20len%28state%29%20%3D%3D%20len%28choices%29%3A%0A%20%20%20%20%20%20%20%20res.append%28list%28state%29%29%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%B5%B0%E8%A8%AA%E6%89%80%E6%9C%89%E9%81%B8%E6%93%87%0A%20%20%20%20duplicated%20%3D%20set%5Bint%5D%28%29%0A%20%20%20%20for%20i%2C%20choice%20in%20enumerate%28choices%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%EF%BC%9A%E4%B8%8D%E5%85%81%E8%A8%B1%E9%87%8D%E8%A4%87%E9%81%B8%E6%93%87%E5%85%83%E7%B4%A0%20%E4%B8%94%20%E4%B8%8D%E5%85%81%E8%A8%B1%E9%87%8D%E8%A4%87%E9%81%B8%E6%93%87%E7%9B%B8%E7%AD%89%E5%85%83%E7%B4%A0%0A%20%20%20%20%20%20%20%20if%20not%20selected%5Bi%5D%20and%20choice%20not%20in%20duplicated%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%98%97%E8%A9%A6%EF%BC%9A%E5%81%9A%E5%87%BA%E9%81%B8%E6%93%87%EF%BC%8C%E6%9B%B4%E6%96%B0%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20%20%20%20%20duplicated.add%28choice%29%20%20%23%20%E8%A8%98%E9%8C%84%E9%81%B8%E6%93%87%E9%81%8E%E7%9A%84%E5%85%83%E7%B4%A0%E5%80%BC%0A%20%20%20%20%20%20%20%20%20%20%20%20selected%5Bi%5D%20%3D%20True%0A%20%20%20%20%20%20%20%20%20%20%20%20state.append%28choice%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E9%80%B2%E8%A1%8C%E4%B8%8B%E4%B8%80%E8%BC%AA%E9%81%B8%E6%93%87%0A%20%20%20%20%20%20%20%20%20%20%20%20backtrack%28state%2C%20choices%2C%20selected%2C%20res%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%9B%9E%E9%80%80%EF%BC%9A%E6%92%A4%E9%8A%B7%E9%81%B8%E6%93%87%EF%BC%8C%E6%81%A2%E5%BE%A9%E5%88%B0%E4%B9%8B%E5%89%8D%E7%9A%84%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20%20%20%20%20selected%5Bi%5D%20%3D%20False%0A%20%20%20%20%20%20%20%20%20%20%20%20state.pop%28%29%0A%0A%0Adef%20permutations_ii%28nums%3A%20list%5Bint%5D%29%20-%3E%20list%5Blist%5Bint%5D%5D%3A%0A%20%20%20%20%22%22%22%E5%85%A8%E6%8E%92%E5%88%97%20II%22%22%22%0A%20%20%20%20res%20%3D%20%5B%5D%0A%20%20%20%20backtrack%28state%3D%5B%5D%2C%20choices%3Dnums%2C%20selected%3D%5BFalse%5D%20%2A%20len%28nums%29%2C%20res%3Dres%29%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B1%2C%202%2C%202%5D%0A%0A%20%20%20%20res%20%3D%20permutations_ii%28nums%29%0A%0A%20%20%20%20print%28f%22%E8%BC%B8%E5%85%A5%E9%99%A3%E5%88%97%20nums%20%3D%20%7Bnums%7D%22%29%0A%20%20%20%20print%28f%22%E6%89%80%E6%9C%89%E6%8E%92%E5%88%97%20res%20%3D%20%7Bres%7D%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=13&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
假設元素兩兩之間互不相同,則 $n$ 個元素共有 $n!$ 種排列(階乘);在記錄結果時,需要複製長度為 $n$ 的串列,使用 $O(n)$ 時間。**因此時間複雜度為 $O(n!n)$** 。
最大遞迴深度為 $n$ ,使用 $O(n)$ 堆疊幀空間。`selected` 使用 $O(n)$ 空間。同一時刻最多共有 $n$ 個 `duplicated` ,使用 $O(n^2)$ 空間。**因此空間複雜度為 $O(n^2)$** 。
### 3. &nbsp; 兩種剪枝對比
請注意,雖然 `selected``duplicated` 都用於剪枝,但兩者的目標不同。
- **重複選擇剪枝**:整個搜尋過程中只有一個 `selected` 。它記錄的是當前狀態中包含哪些元素,其作用是避免某個元素在 `state` 中重複出現。
- **相等元素剪枝**:每輪選擇(每個呼叫的 `backtrack` 函式)都包含一個 `duplicated` 。它記錄的是在本輪走訪(`for` 迴圈)中哪些元素已被選擇過,其作用是保證相等元素只被選擇一次。
圖 13-9 展示了兩個剪枝條件的生效範圍。注意,樹中的每個節點代表一個選擇,從根節點到葉節點的路徑上的各個節點構成一個排列。
![兩種剪枝條件的作用範圍](permutations_problem.assets/permutations_ii_pruning_summary.png){ class="animation-figure" }
<p align="center"> 圖 13-9 &nbsp; 兩種剪枝條件的作用範圍 </p>