mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 18:46:29 +08:00
5f7385c8a3
* First commit * Update mkdocs.yml * Translate all the docs to traditional Chinese * Translate the code files. * Translate the docker file * Fix mkdocs.yml * Translate all the figures from SC to TC * 二叉搜尋樹 -> 二元搜尋樹 * Update terminology. * Update terminology * 构造函数/构造方法 -> 建構子 异或 -> 互斥或 * 擴充套件 -> 擴展 * constant - 常量 - 常數 * 類 -> 類別 * AVL -> AVL 樹 * 數組 -> 陣列 * 係統 -> 系統 斐波那契數列 -> 費波那契數列 運算元量 -> 運算量 引數 -> 參數 * 聯絡 -> 關聯 * 麵試 -> 面試 * 面向物件 -> 物件導向 歸併排序 -> 合併排序 范式 -> 範式 * Fix 算法 -> 演算法 * 錶示 -> 表示 反碼 -> 一補數 補碼 -> 二補數 列列尾部 -> 佇列尾部 區域性性 -> 區域性 一摞 -> 一疊 * Synchronize with main branch * 賬號 -> 帳號 推匯 -> 推導 * Sync with main branch * First commit * Update mkdocs.yml * Translate all the docs to traditional Chinese * Translate the code files. * Translate the docker file * Fix mkdocs.yml * Translate all the figures from SC to TC * 二叉搜尋樹 -> 二元搜尋樹 * Update terminology * 构造函数/构造方法 -> 建構子 异或 -> 互斥或 * 擴充套件 -> 擴展 * constant - 常量 - 常數 * 類 -> 類別 * AVL -> AVL 樹 * 數組 -> 陣列 * 係統 -> 系統 斐波那契數列 -> 費波那契數列 運算元量 -> 運算量 引數 -> 參數 * 聯絡 -> 關聯 * 麵試 -> 面試 * 面向物件 -> 物件導向 歸併排序 -> 合併排序 范式 -> 範式 * Fix 算法 -> 演算法 * 錶示 -> 表示 反碼 -> 一補數 補碼 -> 二補數 列列尾部 -> 佇列尾部 區域性性 -> 區域性 一摞 -> 一疊 * Synchronize with main branch * 賬號 -> 帳號 推匯 -> 推導 * Sync with main branch * Update terminology.md * 操作数量(num. of operations)-> 操作數量 * 字首和->前綴和 * Update figures * 歸 -> 迴 記憶體洩漏 -> 記憶體流失 * Fix the bug of the file filter * 支援 -> 支持 Add zh-Hant/README.md * Add the zh-Hant chapter covers. Bug fixes. * 外掛 -> 擴充功能 * Add the landing page for zh-Hant version * Unify the font of the chapter covers for the zh, en, and zh-Hant version * Move zh-Hant/ to zh-hant/ * Translate terminology.md to traditional Chinese
2.6 KiB
2.6 KiB
小結
重點回顧
- 圖由頂點和邊組成,可以表示為一組頂點和一組邊構成的集合。
- 相較於線性關係(鏈結串列)和分治關係(樹),網路關係(圖)具有更高的自由度,因而更為複雜。
- 有向圖的邊具有方向性,連通圖中的任意頂點均可達,有權圖的每條邊都包含權重變數。
- 鄰接矩陣利用矩陣來表示圖,每一行(列)代表一個頂點,矩陣元素代表邊,用
1
或0
表示兩個頂點之間有邊或無邊。鄰接矩陣在增刪查改操作上效率很高,但空間佔用較多。 - 鄰接表使用多個鏈結串列來表示圖,第
i
個鏈結串列對應頂點i
,其中儲存了該頂點的所有鄰接頂點。鄰接表相對於鄰接矩陣更加節省空間,但由於需要走訪鏈結串列來查詢邊,因此時間效率較低。 - 當鄰接表中的鏈結串列過長時,可以將其轉換為紅黑樹或雜湊表,從而提升查詢效率。
- 從演算法思想的角度分析,鄰接矩陣體現了“以空間換時間”,鄰接表體現了“以時間換空間”。
- 圖可用於建模各類現實系統,如社交網路、地鐵線路等。
- 樹是圖的一種特例,樹的走訪也是圖的走訪的一種特例。
- 圖的廣度優先走訪是一種由近及遠、層層擴張的搜尋方式,通常藉助佇列實現。
- 圖的深度優先走訪是一種優先走到底、無路可走時再回溯的搜尋方式,常基於遞迴來實現。
Q & A
Q:路徑的定義是頂點序列還是邊序列?
維基百科上不同語言版本的定義不一致:英文版是“路徑是一個邊序列”,而中文版是“路徑是一個頂點序列”。以下是英文版原文:In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices.
在本文中,路徑被視為一個邊序列,而不是一個頂點序列。這是因為兩個頂點之間可能存在多條邊連線,此時每條邊都對應一條路徑。
Q:非連通圖中是否會有無法走訪到的點?
在非連通圖中,從某個頂點出發,至少有一個頂點無法到達。走訪非連通圖需要設定多個起點,以走訪到圖的所有連通分量。
Q:在鄰接表中,“與該頂點相連的所有頂點”的頂點順序是否有要求?
可以是任意順序。但在實際應用中,可能需要按照指定規則來排序,比如按照頂點新增的次序,或者按照頂點值大小的順序等,這樣有助於快速查詢“帶有某種極值”的頂點。