hello-algo/chapter_tree/summary.md
2023-04-10 23:59:31 +08:00

17 lines
1.7 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
comments: true
---
# 7.5.   小结
- 二叉树是一种非线性数据结构,体现“一分为二”的分治逻辑。每个二叉树节点包含一个值以及两个指针,分别指向其左子节点和右子节点。
- 对于二叉树中的某个节点,其左(右)子节点及其以下形成的树被称为该节点的左(右)子树。
- 二叉树的相关术语包括根节点、叶节点、层、度、边、高度和深度等。
- 二叉树的初始化、节点插入和节点删除操作与链表操作方法类似。
- 常见的二叉树类型有完美二叉树、完全二叉树、满二叉树和平衡二叉树。完美二叉树是最理想的状态,而链表是退化后的最差状态。
- 二叉树可以用数组表示,方法是将节点值和空位按层序遍历顺序排列,并根据父节点与子节点之间的索引映射关系来实现指针。
- 二叉树的层序遍历是一种广度优先搜索方法,它体现了“一圈一圈向外”的分层遍历方式,通常通过队列来实现。
- 前序、中序、后序遍历皆属于深度优先搜索,它们体现了“走到尽头,再回头继续”的回溯遍历方式,通常使用递归来实现。
- 二叉搜索树是一种高效的元素查找数据结构,其查找、插入和删除操作的时间复杂度均为 $O(\log n)$ 。当二叉搜索树退化为链表时,各项时间复杂度会劣化至 $O(n)$ 。
- AVL 树,也称为平衡二叉搜索树,它通过旋转操作,确保在不断插入和删除节点后,树仍然保持平衡。
- AVL 树的旋转操作包括右旋、左旋、先右旋再左旋、先左旋再右旋。在插入或删除节点后AVL 树会从底向顶执行旋转操作,使树重新恢复平衡。