9.8 KiB
comments |
---|
true |
10.2. 二分查找边界
上一节规定目标元素在数组中是唯一的。如果目标元素在数组中多次出现,上节介绍的方法只能保证返回其中一个目标元素的索引,而无法确定该索引的左边和右边还有多少目标元素。
!!! question
给定一个长度为 $n$ 的有序数组 `nums` ,数组可能包含重复元素。请查找并返回元素 `target` 在数组中首次出现的索引。若数组中不包含该元素,则返回 $-1$ 。
10.2.1. 简单方法
为了查找数组中最左边的 target
,我们可以分为两步:
- 进行二分查找,定位到任意一个
target
的索引,记为k
; - 以索引
k
为起始点,向左进行线性遍历,找到最左边的target
返回即可。
Fig. 线性查找最左边的元素
这个方法虽然有效,但由于包含线性查找,其时间复杂度可能会劣化至 $O(n)$ 。
10.2.2. 二分方法
实际上,我们可以仅通过二分查找解决以上问题。整体算法流程不变,先计算中点索引 m
,再判断 target
和 nums[m]
大小关系:
- 当
nums[m] < target
或nums[m] > target
时,说明还没有找到target
,因此采取与上节代码相同的缩小区间操作,从而使指针i
和j
向target
靠近。 - 当
nums[m] == target
时,说明“小于target
的元素”在区间[i, m - 1]
中,因此采用j = m - 1
来缩小区间,从而使指针j
向小于target
的元素靠近。
二分查找完成后,i
指向最左边的 target
,j
指向首个小于 target
的元素,因此返回索引 i
即可。
注意,数组可能不包含目标元素 target
。因此在函数返回前,我们需要先判断 nums[i]
与 target
是否相等,以及索引 i
是否越界。
=== "Java"
```java title="binary_search_edge.java"
/* 二分查找最左一个元素 */
int binarySearchLeftEdge(int[] nums, int target) {
int i = 0, j = nums.length - 1; // 初始化双闭区间 [0, n-1]
while (i <= j) {
int m = i + (j - i) / 2; // 计算中点索引 m
if (nums[m] < target)
i = m + 1; // target 在区间 [m+1, j] 中
else if (nums[m] > target)
j = m - 1; // target 在区间 [i, m-1] 中
else
j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
}
if (i == nums.length || nums[i] != target)
return -1; // 未找到目标元素,返回 -1
return i;
}
```
=== "C++"
```cpp title="binary_search_edge.cpp"
/* 二分查找最左一个元素 */
int binarySearchLeftEdge(vector<int> &nums, int target) {
int i = 0, j = nums.size() - 1; // 初始化双闭区间 [0, n-1]
while (i <= j) {
int m = i + (j - i) / 2; // 计算中点索引 m
if (nums[m] < target)
i = m + 1; // target 在区间 [m+1, j] 中
else if (nums[m] > target)
j = m - 1; // target 在区间 [i, m-1] 中
else
j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
}
if (i == nums.size() || nums[i] != target)
return -1; // 未找到目标元素,返回 -1
return i;
}
```
=== "Python"
```python title="binary_search_edge.py"
def binary_search_left_edge(nums: list[int], target: int) -> int:
"""二分查找最左一个元素"""
# 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
i, j = 0, len(nums) - 1
while i <= j:
m = (i + j) // 2 # 计算中点索引 m
if nums[m] < target:
i = m + 1 # target 在区间 [m+1, j] 中
elif nums[m] > target:
j = m - 1 # target 在区间 [i, m-1] 中
else:
j = m - 1 # 首个小于 target 的元素在区间 [i, m-1] 中
if i == len(nums) or nums[i] != target:
return -1 # 未找到目标元素,返回 -1
return i
```
=== "Go"
```go title="binary_search_edge.go"
[class]{}-[func]{binarySearchLeftEdge}
```
=== "JavaScript"
```javascript title="binary_search_edge.js"
[class]{}-[func]{binarySearchLeftEdge}
```
=== "TypeScript"
```typescript title="binary_search_edge.ts"
[class]{}-[func]{binarySearchLeftEdge}
```
=== "C"
```c title="binary_search_edge.c"
[class]{}-[func]{binarySearchLeftEdge}
```
=== "C#"
```csharp title="binary_search_edge.cs"
[class]{binary_search_edge}-[func]{binarySearchLeftEdge}
```
=== "Swift"
```swift title="binary_search_edge.swift"
[class]{}-[func]{binarySearchLeftEdge}
```
=== "Zig"
```zig title="binary_search_edge.zig"
[class]{}-[func]{binarySearchLeftEdge}
```
10.2.3. 查找右边界
类似地,我们也可以二分查找最右边的 target
。当 nums[m] == target
时,说明大于 target
的元素在区间 [m + 1, j]
中,因此执行 i = m + 1
,使得指针 i
向大于 target
的元素靠近。
完成二分后,i
指向首个大于 target
的元素,j
指向最右边的 target
,因此返回索引 j
即可。
=== "Java"
```java title="binary_search_edge.java"
/* 二分查找最右一个元素 */
int binarySearchRightEdge(int[] nums, int target) {
int i = 0, j = nums.length - 1; // 初始化双闭区间 [0, n-1]
while (i <= j) {
int m = i + (j - i) / 2; // 计算中点索引 m
if (nums[m] < target)
i = m + 1; // target 在区间 [m+1, j] 中
else if (nums[m] > target)
j = m - 1; // target 在区间 [i, m-1] 中
else
i = m + 1; // 首个大于 target 的元素在区间 [m+1, j] 中
}
if (j < 0 || nums[j] != target)
return -1; // 未找到目标元素,返回 -1
return j;
}
```
=== "C++"
```cpp title="binary_search_edge.cpp"
/* 二分查找最右一个元素 */
int binarySearchRightEdge(vector<int> &nums, int target) {
int i = 0, j = nums.size() - 1; // 初始化双闭区间 [0, n-1]
while (i <= j) {
int m = i + (j - i) / 2; // 计算中点索引 m
if (nums[m] < target)
i = m + 1; // target 在区间 [m+1, j] 中
else if (nums[m] > target)
j = m - 1; // target 在区间 [i, m-1] 中
else
i = m + 1; // 首个大于 target 的元素在区间 [m+1, j] 中
}
if (j < 0 || nums[j] != target)
return -1; // 未找到目标元素,返回 -1
return j;
}
```
=== "Python"
```python title="binary_search_edge.py"
def binary_search_right_edge(nums: list[int], target: int) -> int:
"""二分查找最右一个元素"""
# 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
i, j = 0, len(nums) - 1
while i <= j:
m = (i + j) // 2 # 计算中点索引 m
if nums[m] < target:
i = m + 1 # target 在区间 [m+1, j] 中
elif nums[m] > target:
j = m - 1 # target 在区间 [i, m-1] 中
else:
i = m + 1 # 首个大于 target 的元素在区间 [m+1, j] 中
if j == len(nums) or nums[j] != target:
return -1 # 未找到目标元素,返回 -1
return j
```
=== "Go"
```go title="binary_search_edge.go"
[class]{}-[func]{binarySearchRightEdge}
```
=== "JavaScript"
```javascript title="binary_search_edge.js"
[class]{}-[func]{binarySearchRightEdge}
```
=== "TypeScript"
```typescript title="binary_search_edge.ts"
[class]{}-[func]{binarySearchRightEdge}
```
=== "C"
```c title="binary_search_edge.c"
[class]{}-[func]{binarySearchRightEdge}
```
=== "C#"
```csharp title="binary_search_edge.cs"
[class]{binary_search_edge}-[func]{binarySearchRightEdge}
```
=== "Swift"
```swift title="binary_search_edge.swift"
[class]{}-[func]{binarySearchRightEdge}
```
=== "Zig"
```zig title="binary_search_edge.zig"
[class]{}-[func]{binarySearchRightEdge}
```
观察下图,搜索最右边元素时指针 j
的作用与搜索最左边元素时指针 i
的作用一致,反之亦然。也就是说,搜索最左边元素和最右边元素的实现是镜像对称的。
Fig. 查找最左边和最右边元素的对称性
!!! tip
以上代码采取的都是“双闭区间”写法。有兴趣的读者可以自行实现“左闭右开”写法。