83 KiB
comments |
---|
true |
13.3 子集和問題
13.3.1 無重複元素的情況
!!! question
給定一個正整數陣列 `nums` 和一個目標正整數 `target` ,請找出所有可能的組合,使得組合中的元素和等於 `target` 。給定陣列無重複元素,每個元素可以被選取多次。請以串列形式返回這些組合,串列中不應包含重複組合。
例如,輸入集合 \{3, 4, 5\}
和目標整數 9
,解為 \{3, 3, 3\}, \{4, 5\}
。需要注意以下兩點。
- 輸入集合中的元素可以被無限次重複選取。
- 子集不區分元素順序,比如
\{4, 5\}
和\{5, 4\}
是同一個子集。
1. 參考全排列解法
類似於全排列問題,我們可以把子集的生成過程想象成一系列選擇的結果,並在選擇過程中實時更新“元素和”,當元素和等於 target
時,就將子集記錄至結果串列。
而與全排列問題不同的是,本題集合中的元素可以被無限次選取,因此無須藉助 selected
布林串列來記錄元素是否已被選擇。我們可以對全排列程式碼進行小幅修改,初步得到解題程式碼:
=== "Python"
```python title="subset_sum_i_naive.py"
def backtrack(
state: list[int],
target: int,
total: int,
choices: list[int],
res: list[list[int]],
):
"""回溯演算法:子集和 I"""
# 子集和等於 target 時,記錄解
if total == target:
res.append(list(state))
return
# 走訪所有選擇
for i in range(len(choices)):
# 剪枝:若子集和超過 target ,則跳過該選擇
if total + choices[i] > target:
continue
# 嘗試:做出選擇,更新元素和 total
state.append(choices[i])
# 進行下一輪選擇
backtrack(state, target, total + choices[i], choices, res)
# 回退:撤銷選擇,恢復到之前的狀態
state.pop()
def subset_sum_i_naive(nums: list[int], target: int) -> list[list[int]]:
"""求解子集和 I(包含重複子集)"""
state = [] # 狀態(子集)
total = 0 # 子集和
res = [] # 結果串列(子集串列)
backtrack(state, target, total, nums, res)
return res
```
=== "C++"
```cpp title="subset_sum_i_naive.cpp"
/* 回溯演算法:子集和 I */
void backtrack(vector<int> &state, int target, int total, vector<int> &choices, vector<vector<int>> &res) {
// 子集和等於 target 時,記錄解
if (total == target) {
res.push_back(state);
return;
}
// 走訪所有選擇
for (size_t i = 0; i < choices.size(); i++) {
// 剪枝:若子集和超過 target ,則跳過該選擇
if (total + choices[i] > target) {
continue;
}
// 嘗試:做出選擇,更新元素和 total
state.push_back(choices[i]);
// 進行下一輪選擇
backtrack(state, target, total + choices[i], choices, res);
// 回退:撤銷選擇,恢復到之前的狀態
state.pop_back();
}
}
/* 求解子集和 I(包含重複子集) */
vector<vector<int>> subsetSumINaive(vector<int> &nums, int target) {
vector<int> state; // 狀態(子集)
int total = 0; // 子集和
vector<vector<int>> res; // 結果串列(子集串列)
backtrack(state, target, total, nums, res);
return res;
}
```
=== "Java"
```java title="subset_sum_i_naive.java"
/* 回溯演算法:子集和 I */
void backtrack(List<Integer> state, int target, int total, int[] choices, List<List<Integer>> res) {
// 子集和等於 target 時,記錄解
if (total == target) {
res.add(new ArrayList<>(state));
return;
}
// 走訪所有選擇
for (int i = 0; i < choices.length; i++) {
// 剪枝:若子集和超過 target ,則跳過該選擇
if (total + choices[i] > target) {
continue;
}
// 嘗試:做出選擇,更新元素和 total
state.add(choices[i]);
// 進行下一輪選擇
backtrack(state, target, total + choices[i], choices, res);
// 回退:撤銷選擇,恢復到之前的狀態
state.remove(state.size() - 1);
}
}
/* 求解子集和 I(包含重複子集) */
List<List<Integer>> subsetSumINaive(int[] nums, int target) {
List<Integer> state = new ArrayList<>(); // 狀態(子集)
int total = 0; // 子集和
List<List<Integer>> res = new ArrayList<>(); // 結果串列(子集串列)
backtrack(state, target, total, nums, res);
return res;
}
```
=== "C#"
```csharp title="subset_sum_i_naive.cs"
/* 回溯演算法:子集和 I */
void Backtrack(List<int> state, int target, int total, int[] choices, List<List<int>> res) {
// 子集和等於 target 時,記錄解
if (total == target) {
res.Add(new List<int>(state));
return;
}
// 走訪所有選擇
for (int i = 0; i < choices.Length; i++) {
// 剪枝:若子集和超過 target ,則跳過該選擇
if (total + choices[i] > target) {
continue;
}
// 嘗試:做出選擇,更新元素和 total
state.Add(choices[i]);
// 進行下一輪選擇
Backtrack(state, target, total + choices[i], choices, res);
// 回退:撤銷選擇,恢復到之前的狀態
state.RemoveAt(state.Count - 1);
}
}
/* 求解子集和 I(包含重複子集) */
List<List<int>> SubsetSumINaive(int[] nums, int target) {
List<int> state = []; // 狀態(子集)
int total = 0; // 子集和
List<List<int>> res = []; // 結果串列(子集串列)
Backtrack(state, target, total, nums, res);
return res;
}
```
=== "Go"
```go title="subset_sum_i_naive.go"
/* 回溯演算法:子集和 I */
func backtrackSubsetSumINaive(total, target int, state, choices *[]int, res *[][]int) {
// 子集和等於 target 時,記錄解
if target == total {
newState := append([]int{}, *state...)
*res = append(*res, newState)
return
}
// 走訪所有選擇
for i := 0; i < len(*choices); i++ {
// 剪枝:若子集和超過 target ,則跳過該選擇
if total+(*choices)[i] > target {
continue
}
// 嘗試:做出選擇,更新元素和 total
*state = append(*state, (*choices)[i])
// 進行下一輪選擇
backtrackSubsetSumINaive(total+(*choices)[i], target, state, choices, res)
// 回退:撤銷選擇,恢復到之前的狀態
*state = (*state)[:len(*state)-1]
}
}
/* 求解子集和 I(包含重複子集) */
func subsetSumINaive(nums []int, target int) [][]int {
state := make([]int, 0) // 狀態(子集)
total := 0 // 子集和
res := make([][]int, 0) // 結果串列(子集串列)
backtrackSubsetSumINaive(total, target, &state, &nums, &res)
return res
}
```
=== "Swift"
```swift title="subset_sum_i_naive.swift"
/* 回溯演算法:子集和 I */
func backtrack(state: inout [Int], target: Int, total: Int, choices: [Int], res: inout [[Int]]) {
// 子集和等於 target 時,記錄解
if total == target {
res.append(state)
return
}
// 走訪所有選擇
for i in choices.indices {
// 剪枝:若子集和超過 target ,則跳過該選擇
if total + choices[i] > target {
continue
}
// 嘗試:做出選擇,更新元素和 total
state.append(choices[i])
// 進行下一輪選擇
backtrack(state: &state, target: target, total: total + choices[i], choices: choices, res: &res)
// 回退:撤銷選擇,恢復到之前的狀態
state.removeLast()
}
}
/* 求解子集和 I(包含重複子集) */
func subsetSumINaive(nums: [Int], target: Int) -> [[Int]] {
var state: [Int] = [] // 狀態(子集)
let total = 0 // 子集和
var res: [[Int]] = [] // 結果串列(子集串列)
backtrack(state: &state, target: target, total: total, choices: nums, res: &res)
return res
}
```
=== "JS"
```javascript title="subset_sum_i_naive.js"
/* 回溯演算法:子集和 I */
function backtrack(state, target, total, choices, res) {
// 子集和等於 target 時,記錄解
if (total === target) {
res.push([...state]);
return;
}
// 走訪所有選擇
for (let i = 0; i < choices.length; i++) {
// 剪枝:若子集和超過 target ,則跳過該選擇
if (total + choices[i] > target) {
continue;
}
// 嘗試:做出選擇,更新元素和 total
state.push(choices[i]);
// 進行下一輪選擇
backtrack(state, target, total + choices[i], choices, res);
// 回退:撤銷選擇,恢復到之前的狀態
state.pop();
}
}
/* 求解子集和 I(包含重複子集) */
function subsetSumINaive(nums, target) {
const state = []; // 狀態(子集)
const total = 0; // 子集和
const res = []; // 結果串列(子集串列)
backtrack(state, target, total, nums, res);
return res;
}
```
=== "TS"
```typescript title="subset_sum_i_naive.ts"
/* 回溯演算法:子集和 I */
function backtrack(
state: number[],
target: number,
total: number,
choices: number[],
res: number[][]
): void {
// 子集和等於 target 時,記錄解
if (total === target) {
res.push([...state]);
return;
}
// 走訪所有選擇
for (let i = 0; i < choices.length; i++) {
// 剪枝:若子集和超過 target ,則跳過該選擇
if (total + choices[i] > target) {
continue;
}
// 嘗試:做出選擇,更新元素和 total
state.push(choices[i]);
// 進行下一輪選擇
backtrack(state, target, total + choices[i], choices, res);
// 回退:撤銷選擇,恢復到之前的狀態
state.pop();
}
}
/* 求解子集和 I(包含重複子集) */
function subsetSumINaive(nums: number[], target: number): number[][] {
const state = []; // 狀態(子集)
const total = 0; // 子集和
const res = []; // 結果串列(子集串列)
backtrack(state, target, total, nums, res);
return res;
}
```
=== "Dart"
```dart title="subset_sum_i_naive.dart"
/* 回溯演算法:子集和 I */
void backtrack(
List<int> state,
int target,
int total,
List<int> choices,
List<List<int>> res,
) {
// 子集和等於 target 時,記錄解
if (total == target) {
res.add(List.from(state));
return;
}
// 走訪所有選擇
for (int i = 0; i < choices.length; i++) {
// 剪枝:若子集和超過 target ,則跳過該選擇
if (total + choices[i] > target) {
continue;
}
// 嘗試:做出選擇,更新元素和 total
state.add(choices[i]);
// 進行下一輪選擇
backtrack(state, target, total + choices[i], choices, res);
// 回退:撤銷選擇,恢復到之前的狀態
state.removeLast();
}
}
/* 求解子集和 I(包含重複子集) */
List<List<int>> subsetSumINaive(List<int> nums, int target) {
List<int> state = []; // 狀態(子集)
int total = 0; // 元素和
List<List<int>> res = []; // 結果串列(子集串列)
backtrack(state, target, total, nums, res);
return res;
}
```
=== "Rust"
```rust title="subset_sum_i_naive.rs"
/* 回溯演算法:子集和 I */
fn backtrack(
mut state: Vec<i32>,
target: i32,
total: i32,
choices: &[i32],
res: &mut Vec<Vec<i32>>,
) {
// 子集和等於 target 時,記錄解
if total == target {
res.push(state);
return;
}
// 走訪所有選擇
for i in 0..choices.len() {
// 剪枝:若子集和超過 target ,則跳過該選擇
if total + choices[i] > target {
continue;
}
// 嘗試:做出選擇,更新元素和 total
state.push(choices[i]);
// 進行下一輪選擇
backtrack(state.clone(), target, total + choices[i], choices, res);
// 回退:撤銷選擇,恢復到之前的狀態
state.pop();
}
}
/* 求解子集和 I(包含重複子集) */
fn subset_sum_i_naive(nums: &[i32], target: i32) -> Vec<Vec<i32>> {
let state = Vec::new(); // 狀態(子集)
let total = 0; // 子集和
let mut res = Vec::new(); // 結果串列(子集串列)
backtrack(state, target, total, nums, &mut res);
res
}
```
=== "C"
```c title="subset_sum_i_naive.c"
/* 回溯演算法:子集和 I */
void backtrack(int target, int total, int *choices, int choicesSize) {
// 子集和等於 target 時,記錄解
if (total == target) {
for (int i = 0; i < stateSize; i++) {
res[resSize][i] = state[i];
}
resColSizes[resSize++] = stateSize;
return;
}
// 走訪所有選擇
for (int i = 0; i < choicesSize; i++) {
// 剪枝:若子集和超過 target ,則跳過該選擇
if (total + choices[i] > target) {
continue;
}
// 嘗試:做出選擇,更新元素和 total
state[stateSize++] = choices[i];
// 進行下一輪選擇
backtrack(target, total + choices[i], choices, choicesSize);
// 回退:撤銷選擇,恢復到之前的狀態
stateSize--;
}
}
/* 求解子集和 I(包含重複子集) */
void subsetSumINaive(int *nums, int numsSize, int target) {
resSize = 0; // 初始化解的數量為0
backtrack(target, 0, nums, numsSize);
}
```
=== "Kotlin"
```kotlin title="subset_sum_i_naive.kt"
/* 回溯演算法:子集和 I */
fun backtrack(
state: MutableList<Int>,
target: Int,
total: Int,
choices: IntArray,
res: MutableList<MutableList<Int>?>
) {
// 子集和等於 target 時,記錄解
if (total == target) {
res.add(state.toMutableList())
return
}
// 走訪所有選擇
for (i in choices.indices) {
// 剪枝:若子集和超過 target ,則跳過該選擇
if (total + choices[i] > target) {
continue
}
// 嘗試:做出選擇,更新元素和 total
state.add(choices[i])
// 進行下一輪選擇
backtrack(state, target, total + choices[i], choices, res)
// 回退:撤銷選擇,恢復到之前的狀態
state.removeAt(state.size - 1)
}
}
/* 求解子集和 I(包含重複子集) */
fun subsetSumINaive(nums: IntArray, target: Int): MutableList<MutableList<Int>?> {
val state = mutableListOf<Int>() // 狀態(子集)
val total = 0 // 子集和
val res = mutableListOf<MutableList<Int>?>() // 結果串列(子集串列)
backtrack(state, target, total, nums, res)
return res
}
```
=== "Ruby"
```ruby title="subset_sum_i_naive.rb"
[class]{}-[func]{backtrack}
[class]{}-[func]{subset_sum_i_naive}
```
=== "Zig"
```zig title="subset_sum_i_naive.zig"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumINaive}
```
??? pythontutor "視覺化執行"
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20backtrack%28%0A%20%20%20%20state%3A%20list%5Bint%5D%2C%0A%20%20%20%20target%3A%20int%2C%0A%20%20%20%20total%3A%20int%2C%0A%20%20%20%20choices%3A%20list%5Bint%5D%2C%0A%20%20%20%20res%3A%20list%5Blist%5Bint%5D%5D%2C%0A%29%3A%0A%20%20%20%20%22%22%22%E5%9B%9E%E6%BA%AF%E6%BC%94%E7%AE%97%E6%B3%95%EF%BC%9A%E5%AD%90%E9%9B%86%E5%92%8C%20I%22%22%22%0A%20%20%20%20%23%20%E5%AD%90%E9%9B%86%E5%92%8C%E7%AD%89%E6%96%BC%20target%20%E6%99%82%EF%BC%8C%E8%A8%98%E9%8C%84%E8%A7%A3%0A%20%20%20%20if%20total%20%3D%3D%20target%3A%0A%20%20%20%20%20%20%20%20res.append%28list%28state%29%29%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%B5%B0%E8%A8%AA%E6%89%80%E6%9C%89%E9%81%B8%E6%93%87%0A%20%20%20%20for%20i%20in%20range%28len%28choices%29%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%EF%BC%9A%E8%8B%A5%E5%AD%90%E9%9B%86%E5%92%8C%E8%B6%85%E9%81%8E%20target%20%EF%BC%8C%E5%89%87%E8%B7%B3%E9%81%8E%E8%A9%B2%E9%81%B8%E6%93%87%0A%20%20%20%20%20%20%20%20if%20total%20%2B%20choices%5Bi%5D%20%3E%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20continue%0A%20%20%20%20%20%20%20%20%23%20%E5%98%97%E8%A9%A6%EF%BC%9A%E5%81%9A%E5%87%BA%E9%81%B8%E6%93%87%EF%BC%8C%E6%9B%B4%E6%96%B0%E5%85%83%E7%B4%A0%E5%92%8C%20total%0A%20%20%20%20%20%20%20%20state.append%28choices%5Bi%5D%29%0A%20%20%20%20%20%20%20%20%23%20%E9%80%B2%E8%A1%8C%E4%B8%8B%E4%B8%80%E8%BC%AA%E9%81%B8%E6%93%87%0A%20%20%20%20%20%20%20%20backtrack%28state%2C%20target%2C%20total%20%2B%20choices%5Bi%5D%2C%20choices%2C%20res%29%0A%20%20%20%20%20%20%20%20%23%20%E5%9B%9E%E9%80%80%EF%BC%9A%E6%92%A4%E9%8A%B7%E9%81%B8%E6%93%87%EF%BC%8C%E6%81%A2%E5%BE%A9%E5%88%B0%E4%B9%8B%E5%89%8D%E7%9A%84%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20state.pop%28%29%0A%0A%0Adef%20subset_sum_i_naive%28nums%3A%20list%5Bint%5D%2C%20target%3A%20int%29%20-%3E%20list%5Blist%5Bint%5D%5D%3A%0A%20%20%20%20%22%22%22%E6%B1%82%E8%A7%A3%E5%AD%90%E9%9B%86%E5%92%8C%20I%EF%BC%88%E5%8C%85%E5%90%AB%E9%87%8D%E8%A4%87%E5%AD%90%E9%9B%86%EF%BC%89%22%22%22%0A%20%20%20%20state%20%3D%20%5B%5D%20%20%23%20%E7%8B%80%E6%85%8B%EF%BC%88%E5%AD%90%E9%9B%86%EF%BC%89%0A%20%20%20%20total%20%3D%200%20%20%23%20%E5%AD%90%E9%9B%86%E5%92%8C%0A%20%20%20%20res%20%3D%20%5B%5D%20%20%23%20%E7%B5%90%E6%9E%9C%E4%B8%B2%E5%88%97%EF%BC%88%E5%AD%90%E9%9B%86%E4%B8%B2%E5%88%97%EF%BC%89%0A%20%20%20%20backtrack%28state%2C%20target%2C%20total%2C%20nums%2C%20res%29%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B3%2C%204%2C%205%5D%0A%20%20%20%20target%20%3D%209%0A%20%20%20%20res%20%3D%20subset_sum_i_naive%28nums%2C%20target%29%0A%0A%20%20%20%20print%28f%22%E8%BC%B8%E5%85%A5%E9%99%A3%E5%88%97%20nums%20%3D%20%7Bnums%7D%2C%20target%20%3D%20%7Btarget%7D%22%29%0A%20%20%20%20print%28f%22%E6%89%80%E6%9C%89%E5%92%8C%E7%AD%89%E6%96%BC%20%7Btarget%7D%20%E7%9A%84%E5%AD%90%E9%9B%86%20res%20%3D%20%7Bres%7D%22%29%0A%20%20%20%20print%28f%22%E8%AB%8B%E6%B3%A8%E6%84%8F%EF%BC%8C%E8%A9%B2%E6%96%B9%E6%B3%95%E8%BC%B8%E5%87%BA%E7%9A%84%E7%B5%90%E6%9E%9C%E5%8C%85%E5%90%AB%E9%87%8D%E8%A4%87%E9%9B%86%E5%90%88%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=16&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20backtrack%28%0A%20%20%20%20state%3A%20list%5Bint%5D%2C%0A%20%20%20%20target%3A%20int%2C%0A%20%20%20%20total%3A%20int%2C%0A%20%20%20%20choices%3A%20list%5Bint%5D%2C%0A%20%20%20%20res%3A%20list%5Blist%5Bint%5D%5D%2C%0A%29%3A%0A%20%20%20%20%22%22%22%E5%9B%9E%E6%BA%AF%E6%BC%94%E7%AE%97%E6%B3%95%EF%BC%9A%E5%AD%90%E9%9B%86%E5%92%8C%20I%22%22%22%0A%20%20%20%20%23%20%E5%AD%90%E9%9B%86%E5%92%8C%E7%AD%89%E6%96%BC%20target%20%E6%99%82%EF%BC%8C%E8%A8%98%E9%8C%84%E8%A7%A3%0A%20%20%20%20if%20total%20%3D%3D%20target%3A%0A%20%20%20%20%20%20%20%20res.append%28list%28state%29%29%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%B5%B0%E8%A8%AA%E6%89%80%E6%9C%89%E9%81%B8%E6%93%87%0A%20%20%20%20for%20i%20in%20range%28len%28choices%29%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%EF%BC%9A%E8%8B%A5%E5%AD%90%E9%9B%86%E5%92%8C%E8%B6%85%E9%81%8E%20target%20%EF%BC%8C%E5%89%87%E8%B7%B3%E9%81%8E%E8%A9%B2%E9%81%B8%E6%93%87%0A%20%20%20%20%20%20%20%20if%20total%20%2B%20choices%5Bi%5D%20%3E%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20continue%0A%20%20%20%20%20%20%20%20%23%20%E5%98%97%E8%A9%A6%EF%BC%9A%E5%81%9A%E5%87%BA%E9%81%B8%E6%93%87%EF%BC%8C%E6%9B%B4%E6%96%B0%E5%85%83%E7%B4%A0%E5%92%8C%20total%0A%20%20%20%20%20%20%20%20state.append%28choices%5Bi%5D%29%0A%20%20%20%20%20%20%20%20%23%20%E9%80%B2%E8%A1%8C%E4%B8%8B%E4%B8%80%E8%BC%AA%E9%81%B8%E6%93%87%0A%20%20%20%20%20%20%20%20backtrack%28state%2C%20target%2C%20total%20%2B%20choices%5Bi%5D%2C%20choices%2C%20res%29%0A%20%20%20%20%20%20%20%20%23%20%E5%9B%9E%E9%80%80%EF%BC%9A%E6%92%A4%E9%8A%B7%E9%81%B8%E6%93%87%EF%BC%8C%E6%81%A2%E5%BE%A9%E5%88%B0%E4%B9%8B%E5%89%8D%E7%9A%84%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20state.pop%28%29%0A%0A%0Adef%20subset_sum_i_naive%28nums%3A%20list%5Bint%5D%2C%20target%3A%20int%29%20-%3E%20list%5Blist%5Bint%5D%5D%3A%0A%20%20%20%20%22%22%22%E6%B1%82%E8%A7%A3%E5%AD%90%E9%9B%86%E5%92%8C%20I%EF%BC%88%E5%8C%85%E5%90%AB%E9%87%8D%E8%A4%87%E5%AD%90%E9%9B%86%EF%BC%89%22%22%22%0A%20%20%20%20state%20%3D%20%5B%5D%20%20%23%20%E7%8B%80%E6%85%8B%EF%BC%88%E5%AD%90%E9%9B%86%EF%BC%89%0A%20%20%20%20total%20%3D%200%20%20%23%20%E5%AD%90%E9%9B%86%E5%92%8C%0A%20%20%20%20res%20%3D%20%5B%5D%20%20%23%20%E7%B5%90%E6%9E%9C%E4%B8%B2%E5%88%97%EF%BC%88%E5%AD%90%E9%9B%86%E4%B8%B2%E5%88%97%EF%BC%89%0A%20%20%20%20backtrack%28state%2C%20target%2C%20total%2C%20nums%2C%20res%29%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B3%2C%204%2C%205%5D%0A%20%20%20%20target%20%3D%209%0A%20%20%20%20res%20%3D%20subset_sum_i_naive%28nums%2C%20target%29%0A%0A%20%20%20%20print%28f%22%E8%BC%B8%E5%85%A5%E9%99%A3%E5%88%97%20nums%20%3D%20%7Bnums%7D%2C%20target%20%3D%20%7Btarget%7D%22%29%0A%20%20%20%20print%28f%22%E6%89%80%E6%9C%89%E5%92%8C%E7%AD%89%E6%96%BC%20%7Btarget%7D%20%E7%9A%84%E5%AD%90%E9%9B%86%20res%20%3D%20%7Bres%7D%22%29%0A%20%20%20%20print%28f%22%E8%AB%8B%E6%B3%A8%E6%84%8F%EF%BC%8C%E8%A9%B2%E6%96%B9%E6%B3%95%E8%BC%B8%E5%87%BA%E7%9A%84%E7%B5%90%E6%9E%9C%E5%8C%85%E5%90%AB%E9%87%8D%E8%A4%87%E9%9B%86%E5%90%88%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=16&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
向以上程式碼輸入陣列 [3, 4, 5]
和目標元素 9
,輸出結果為 [3, 3, 3], [4, 5], [5, 4]
。雖然成功找出了所有和為 9
的子集,但其中存在重複的子集 [4, 5]
和 $[5, 4]$ 。
這是因為搜尋過程是區分選擇順序的,然而子集不區分選擇順序。如圖 13-10 所示,先選 4
後選 5
與先選 5
後選 4
是不同的分支,但對應同一個子集。
圖 13-10 子集搜尋與越界剪枝
為了去除重複子集,一種直接的思路是對結果串列進行去重。但這個方法效率很低,有兩方面原因。
- 當陣列元素較多,尤其是當
target
較大時,搜尋過程會產生大量的重複子集。 - 比較子集(陣列)的異同非常耗時,需要先排序陣列,再比較陣列中每個元素的異同。
2. 重複子集剪枝
我們考慮在搜尋過程中透過剪枝進行去重。觀察圖 13-11 ,重複子集是在以不同順序選擇陣列元素時產生的,例如以下情況。
- 當第一輪和第二輪分別選擇
3
和4
時,會生成包含這兩個元素的所有子集,記為[3, 4, \dots]
。 - 之後,當第一輪選擇
4
時,則第二輪應該跳過 $3$ ,因為該選擇產生的子集[4, 3, \dots]
和第1.
步中生成的子集完全重複。
在搜尋過程中,每一層的選擇都是從左到右被逐個嘗試的,因此越靠右的分支被剪掉的越多。
- 前兩輪選擇
3
和5
,生成子集[3, 5, \dots]
。 - 前兩輪選擇
4
和5
,生成子集[4, 5, \dots]
。 - 若第一輪選擇
5
,則第二輪應該跳過3
和 $4$ ,因為子集[5, 3, \dots]
和[5, 4, \dots]
與第1.
步和第2.
步中描述的子集完全重複。
圖 13-11 不同選擇順序導致的重複子集
總結來看,給定輸入陣列 [x_1, x_2, \dots, x_n]
,設搜尋過程中的選擇序列為 [x_{i_1}, x_{i_2}, \dots, x_{i_m}]
,則該選擇序列需要滿足 i_1 \leq i_2 \leq \dots \leq i_m
,不滿足該條件的選擇序列都會造成重複,應當剪枝。
3. 程式碼實現
為實現該剪枝,我們初始化變數 start
,用於指示走訪起始點。當做出選擇 x_{i}
後,設定下一輪從索引 i
開始走訪。這樣做就可以讓選擇序列滿足 i_1 \leq i_2 \leq \dots \leq i_m
,從而保證子集唯一。
除此之外,我們還對程式碼進行了以下兩項最佳化。
- 在開啟搜尋前,先將陣列
nums
排序。在走訪所有選擇時,當子集和超過target
時直接結束迴圈,因為後邊的元素更大,其子集和一定超過target
。 - 省去元素和變數
total
,透過在target
上執行減法來統計元素和,當target
等於0
時記錄解。
=== "Python"
```python title="subset_sum_i.py"
def backtrack(
state: list[int], target: int, choices: list[int], start: int, res: list[list[int]]
):
"""回溯演算法:子集和 I"""
# 子集和等於 target 時,記錄解
if target == 0:
res.append(list(state))
return
# 走訪所有選擇
# 剪枝二:從 start 開始走訪,避免生成重複子集
for i in range(start, len(choices)):
# 剪枝一:若子集和超過 target ,則直接結束迴圈
# 這是因為陣列已排序,後邊元素更大,子集和一定超過 target
if target - choices[i] < 0:
break
# 嘗試:做出選擇,更新 target, start
state.append(choices[i])
# 進行下一輪選擇
backtrack(state, target - choices[i], choices, i, res)
# 回退:撤銷選擇,恢復到之前的狀態
state.pop()
def subset_sum_i(nums: list[int], target: int) -> list[list[int]]:
"""求解子集和 I"""
state = [] # 狀態(子集)
nums.sort() # 對 nums 進行排序
start = 0 # 走訪起始點
res = [] # 結果串列(子集串列)
backtrack(state, target, nums, start, res)
return res
```
=== "C++"
```cpp title="subset_sum_i.cpp"
/* 回溯演算法:子集和 I */
void backtrack(vector<int> &state, int target, vector<int> &choices, int start, vector<vector<int>> &res) {
// 子集和等於 target 時,記錄解
if (target == 0) {
res.push_back(state);
return;
}
// 走訪所有選擇
// 剪枝二:從 start 開始走訪,避免生成重複子集
for (int i = start; i < choices.size(); i++) {
// 剪枝一:若子集和超過 target ,則直接結束迴圈
// 這是因為陣列已排序,後邊元素更大,子集和一定超過 target
if (target - choices[i] < 0) {
break;
}
// 嘗試:做出選擇,更新 target, start
state.push_back(choices[i]);
// 進行下一輪選擇
backtrack(state, target - choices[i], choices, i, res);
// 回退:撤銷選擇,恢復到之前的狀態
state.pop_back();
}
}
/* 求解子集和 I */
vector<vector<int>> subsetSumI(vector<int> &nums, int target) {
vector<int> state; // 狀態(子集)
sort(nums.begin(), nums.end()); // 對 nums 進行排序
int start = 0; // 走訪起始點
vector<vector<int>> res; // 結果串列(子集串列)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "Java"
```java title="subset_sum_i.java"
/* 回溯演算法:子集和 I */
void backtrack(List<Integer> state, int target, int[] choices, int start, List<List<Integer>> res) {
// 子集和等於 target 時,記錄解
if (target == 0) {
res.add(new ArrayList<>(state));
return;
}
// 走訪所有選擇
// 剪枝二:從 start 開始走訪,避免生成重複子集
for (int i = start; i < choices.length; i++) {
// 剪枝一:若子集和超過 target ,則直接結束迴圈
// 這是因為陣列已排序,後邊元素更大,子集和一定超過 target
if (target - choices[i] < 0) {
break;
}
// 嘗試:做出選擇,更新 target, start
state.add(choices[i]);
// 進行下一輪選擇
backtrack(state, target - choices[i], choices, i, res);
// 回退:撤銷選擇,恢復到之前的狀態
state.remove(state.size() - 1);
}
}
/* 求解子集和 I */
List<List<Integer>> subsetSumI(int[] nums, int target) {
List<Integer> state = new ArrayList<>(); // 狀態(子集)
Arrays.sort(nums); // 對 nums 進行排序
int start = 0; // 走訪起始點
List<List<Integer>> res = new ArrayList<>(); // 結果串列(子集串列)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "C#"
```csharp title="subset_sum_i.cs"
/* 回溯演算法:子集和 I */
void Backtrack(List<int> state, int target, int[] choices, int start, List<List<int>> res) {
// 子集和等於 target 時,記錄解
if (target == 0) {
res.Add(new List<int>(state));
return;
}
// 走訪所有選擇
// 剪枝二:從 start 開始走訪,避免生成重複子集
for (int i = start; i < choices.Length; i++) {
// 剪枝一:若子集和超過 target ,則直接結束迴圈
// 這是因為陣列已排序,後邊元素更大,子集和一定超過 target
if (target - choices[i] < 0) {
break;
}
// 嘗試:做出選擇,更新 target, start
state.Add(choices[i]);
// 進行下一輪選擇
Backtrack(state, target - choices[i], choices, i, res);
// 回退:撤銷選擇,恢復到之前的狀態
state.RemoveAt(state.Count - 1);
}
}
/* 求解子集和 I */
List<List<int>> SubsetSumI(int[] nums, int target) {
List<int> state = []; // 狀態(子集)
Array.Sort(nums); // 對 nums 進行排序
int start = 0; // 走訪起始點
List<List<int>> res = []; // 結果串列(子集串列)
Backtrack(state, target, nums, start, res);
return res;
}
```
=== "Go"
```go title="subset_sum_i.go"
/* 回溯演算法:子集和 I */
func backtrackSubsetSumI(start, target int, state, choices *[]int, res *[][]int) {
// 子集和等於 target 時,記錄解
if target == 0 {
newState := append([]int{}, *state...)
*res = append(*res, newState)
return
}
// 走訪所有選擇
// 剪枝二:從 start 開始走訪,避免生成重複子集
for i := start; i < len(*choices); i++ {
// 剪枝一:若子集和超過 target ,則直接結束迴圈
// 這是因為陣列已排序,後邊元素更大,子集和一定超過 target
if target-(*choices)[i] < 0 {
break
}
// 嘗試:做出選擇,更新 target, start
*state = append(*state, (*choices)[i])
// 進行下一輪選擇
backtrackSubsetSumI(i, target-(*choices)[i], state, choices, res)
// 回退:撤銷選擇,恢復到之前的狀態
*state = (*state)[:len(*state)-1]
}
}
/* 求解子集和 I */
func subsetSumI(nums []int, target int) [][]int {
state := make([]int, 0) // 狀態(子集)
sort.Ints(nums) // 對 nums 進行排序
start := 0 // 走訪起始點
res := make([][]int, 0) // 結果串列(子集串列)
backtrackSubsetSumI(start, target, &state, &nums, &res)
return res
}
```
=== "Swift"
```swift title="subset_sum_i.swift"
/* 回溯演算法:子集和 I */
func backtrack(state: inout [Int], target: Int, choices: [Int], start: Int, res: inout [[Int]]) {
// 子集和等於 target 時,記錄解
if target == 0 {
res.append(state)
return
}
// 走訪所有選擇
// 剪枝二:從 start 開始走訪,避免生成重複子集
for i in choices.indices.dropFirst(start) {
// 剪枝一:若子集和超過 target ,則直接結束迴圈
// 這是因為陣列已排序,後邊元素更大,子集和一定超過 target
if target - choices[i] < 0 {
break
}
// 嘗試:做出選擇,更新 target, start
state.append(choices[i])
// 進行下一輪選擇
backtrack(state: &state, target: target - choices[i], choices: choices, start: i, res: &res)
// 回退:撤銷選擇,恢復到之前的狀態
state.removeLast()
}
}
/* 求解子集和 I */
func subsetSumI(nums: [Int], target: Int) -> [[Int]] {
var state: [Int] = [] // 狀態(子集)
let nums = nums.sorted() // 對 nums 進行排序
let start = 0 // 走訪起始點
var res: [[Int]] = [] // 結果串列(子集串列)
backtrack(state: &state, target: target, choices: nums, start: start, res: &res)
return res
}
```
=== "JS"
```javascript title="subset_sum_i.js"
/* 回溯演算法:子集和 I */
function backtrack(state, target, choices, start, res) {
// 子集和等於 target 時,記錄解
if (target === 0) {
res.push([...state]);
return;
}
// 走訪所有選擇
// 剪枝二:從 start 開始走訪,避免生成重複子集
for (let i = start; i < choices.length; i++) {
// 剪枝一:若子集和超過 target ,則直接結束迴圈
// 這是因為陣列已排序,後邊元素更大,子集和一定超過 target
if (target - choices[i] < 0) {
break;
}
// 嘗試:做出選擇,更新 target, start
state.push(choices[i]);
// 進行下一輪選擇
backtrack(state, target - choices[i], choices, i, res);
// 回退:撤銷選擇,恢復到之前的狀態
state.pop();
}
}
/* 求解子集和 I */
function subsetSumI(nums, target) {
const state = []; // 狀態(子集)
nums.sort((a, b) => a - b); // 對 nums 進行排序
const start = 0; // 走訪起始點
const res = []; // 結果串列(子集串列)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "TS"
```typescript title="subset_sum_i.ts"
/* 回溯演算法:子集和 I */
function backtrack(
state: number[],
target: number,
choices: number[],
start: number,
res: number[][]
): void {
// 子集和等於 target 時,記錄解
if (target === 0) {
res.push([...state]);
return;
}
// 走訪所有選擇
// 剪枝二:從 start 開始走訪,避免生成重複子集
for (let i = start; i < choices.length; i++) {
// 剪枝一:若子集和超過 target ,則直接結束迴圈
// 這是因為陣列已排序,後邊元素更大,子集和一定超過 target
if (target - choices[i] < 0) {
break;
}
// 嘗試:做出選擇,更新 target, start
state.push(choices[i]);
// 進行下一輪選擇
backtrack(state, target - choices[i], choices, i, res);
// 回退:撤銷選擇,恢復到之前的狀態
state.pop();
}
}
/* 求解子集和 I */
function subsetSumI(nums: number[], target: number): number[][] {
const state = []; // 狀態(子集)
nums.sort((a, b) => a - b); // 對 nums 進行排序
const start = 0; // 走訪起始點
const res = []; // 結果串列(子集串列)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "Dart"
```dart title="subset_sum_i.dart"
/* 回溯演算法:子集和 I */
void backtrack(
List<int> state,
int target,
List<int> choices,
int start,
List<List<int>> res,
) {
// 子集和等於 target 時,記錄解
if (target == 0) {
res.add(List.from(state));
return;
}
// 走訪所有選擇
// 剪枝二:從 start 開始走訪,避免生成重複子集
for (int i = start; i < choices.length; i++) {
// 剪枝一:若子集和超過 target ,則直接結束迴圈
// 這是因為陣列已排序,後邊元素更大,子集和一定超過 target
if (target - choices[i] < 0) {
break;
}
// 嘗試:做出選擇,更新 target, start
state.add(choices[i]);
// 進行下一輪選擇
backtrack(state, target - choices[i], choices, i, res);
// 回退:撤銷選擇,恢復到之前的狀態
state.removeLast();
}
}
/* 求解子集和 I */
List<List<int>> subsetSumI(List<int> nums, int target) {
List<int> state = []; // 狀態(子集)
nums.sort(); // 對 nums 進行排序
int start = 0; // 走訪起始點
List<List<int>> res = []; // 結果串列(子集串列)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "Rust"
```rust title="subset_sum_i.rs"
/* 回溯演算法:子集和 I */
fn backtrack(
mut state: Vec<i32>,
target: i32,
choices: &[i32],
start: usize,
res: &mut Vec<Vec<i32>>,
) {
// 子集和等於 target 時,記錄解
if target == 0 {
res.push(state);
return;
}
// 走訪所有選擇
// 剪枝二:從 start 開始走訪,避免生成重複子集
for i in start..choices.len() {
// 剪枝一:若子集和超過 target ,則直接結束迴圈
// 這是因為陣列已排序,後邊元素更大,子集和一定超過 target
if target - choices[i] < 0 {
break;
}
// 嘗試:做出選擇,更新 target, start
state.push(choices[i]);
// 進行下一輪選擇
backtrack(state.clone(), target - choices[i], choices, i, res);
// 回退:撤銷選擇,恢復到之前的狀態
state.pop();
}
}
/* 求解子集和 I */
fn subset_sum_i(nums: &mut [i32], target: i32) -> Vec<Vec<i32>> {
let state = Vec::new(); // 狀態(子集)
nums.sort(); // 對 nums 進行排序
let start = 0; // 走訪起始點
let mut res = Vec::new(); // 結果串列(子集串列)
backtrack(state, target, nums, start, &mut res);
res
}
```
=== "C"
```c title="subset_sum_i.c"
/* 回溯演算法:子集和 I */
void backtrack(int target, int *choices, int choicesSize, int start) {
// 子集和等於 target 時,記錄解
if (target == 0) {
for (int i = 0; i < stateSize; ++i) {
res[resSize][i] = state[i];
}
resColSizes[resSize++] = stateSize;
return;
}
// 走訪所有選擇
// 剪枝二:從 start 開始走訪,避免生成重複子集
for (int i = start; i < choicesSize; i++) {
// 剪枝一:若子集和超過 target ,則直接結束迴圈
// 這是因為陣列已排序,後邊元素更大,子集和一定超過 target
if (target - choices[i] < 0) {
break;
}
// 嘗試:做出選擇,更新 target, start
state[stateSize] = choices[i];
stateSize++;
// 進行下一輪選擇
backtrack(target - choices[i], choices, choicesSize, i);
// 回退:撤銷選擇,恢復到之前的狀態
stateSize--;
}
}
/* 求解子集和 I */
void subsetSumI(int *nums, int numsSize, int target) {
qsort(nums, numsSize, sizeof(int), cmp); // 對 nums 進行排序
int start = 0; // 走訪起始點
backtrack(target, nums, numsSize, start);
}
```
=== "Kotlin"
```kotlin title="subset_sum_i.kt"
/* 回溯演算法:子集和 I */
fun backtrack(
state: MutableList<Int>,
target: Int,
choices: IntArray,
start: Int,
res: MutableList<MutableList<Int>?>
) {
// 子集和等於 target 時,記錄解
if (target == 0) {
res.add(state.toMutableList())
return
}
// 走訪所有選擇
// 剪枝二:從 start 開始走訪,避免生成重複子集
for (i in start..<choices.size) {
// 剪枝一:若子集和超過 target ,則直接結束迴圈
// 這是因為陣列已排序,後邊元素更大,子集和一定超過 target
if (target - choices[i] < 0) {
break
}
// 嘗試:做出選擇,更新 target, start
state.add(choices[i])
// 進行下一輪選擇
backtrack(state, target - choices[i], choices, i, res)
// 回退:撤銷選擇,恢復到之前的狀態
state.removeAt(state.size - 1)
}
}
/* 求解子集和 I */
fun subsetSumI(nums: IntArray, target: Int): MutableList<MutableList<Int>?> {
val state = mutableListOf<Int>() // 狀態(子集)
nums.sort() // 對 nums 進行排序
val start = 0 // 走訪起始點
val res = mutableListOf<MutableList<Int>?>() // 結果串列(子集串列)
backtrack(state, target, nums, start, res)
return res
}
```
=== "Ruby"
```ruby title="subset_sum_i.rb"
[class]{}-[func]{backtrack}
[class]{}-[func]{subset_sum_i}
```
=== "Zig"
```zig title="subset_sum_i.zig"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumI}
```
??? pythontutor "視覺化執行"
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20backtrack%28%0A%20%20%20%20state%3A%20list%5Bint%5D%2C%20target%3A%20int%2C%20choices%3A%20list%5Bint%5D%2C%20start%3A%20int%2C%20res%3A%20list%5Blist%5Bint%5D%5D%0A%29%3A%0A%20%20%20%20%22%22%22%E5%9B%9E%E6%BA%AF%E6%BC%94%E7%AE%97%E6%B3%95%EF%BC%9A%E5%AD%90%E9%9B%86%E5%92%8C%20I%22%22%22%0A%20%20%20%20%23%20%E5%AD%90%E9%9B%86%E5%92%8C%E7%AD%89%E6%96%BC%20target%20%E6%99%82%EF%BC%8C%E8%A8%98%E9%8C%84%E8%A7%A3%0A%20%20%20%20if%20target%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20res.append%28list%28state%29%29%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%B5%B0%E8%A8%AA%E6%89%80%E6%9C%89%E9%81%B8%E6%93%87%0A%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%E4%BA%8C%EF%BC%9A%E5%BE%9E%20start%20%E9%96%8B%E5%A7%8B%E8%B5%B0%E8%A8%AA%EF%BC%8C%E9%81%BF%E5%85%8D%E7%94%9F%E6%88%90%E9%87%8D%E8%A4%87%E5%AD%90%E9%9B%86%0A%20%20%20%20for%20i%20in%20range%28start%2C%20len%28choices%29%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%E4%B8%80%EF%BC%9A%E8%8B%A5%E5%AD%90%E9%9B%86%E5%92%8C%E8%B6%85%E9%81%8E%20target%20%EF%BC%8C%E5%89%87%E7%9B%B4%E6%8E%A5%E7%B5%90%E6%9D%9F%E8%BF%B4%E5%9C%88%0A%20%20%20%20%20%20%20%20%23%20%E9%80%99%E6%98%AF%E5%9B%A0%E7%82%BA%E9%99%A3%E5%88%97%E5%B7%B2%E6%8E%92%E5%BA%8F%EF%BC%8C%E5%BE%8C%E9%82%8A%E5%85%83%E7%B4%A0%E6%9B%B4%E5%A4%A7%EF%BC%8C%E5%AD%90%E9%9B%86%E5%92%8C%E4%B8%80%E5%AE%9A%E8%B6%85%E9%81%8E%20target%0A%20%20%20%20%20%20%20%20if%20target%20-%20choices%5Bi%5D%20%3C%200%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20break%0A%20%20%20%20%20%20%20%20%23%20%E5%98%97%E8%A9%A6%EF%BC%9A%E5%81%9A%E5%87%BA%E9%81%B8%E6%93%87%EF%BC%8C%E6%9B%B4%E6%96%B0%20target%2C%20start%0A%20%20%20%20%20%20%20%20state.append%28choices%5Bi%5D%29%0A%20%20%20%20%20%20%20%20%23%20%E9%80%B2%E8%A1%8C%E4%B8%8B%E4%B8%80%E8%BC%AA%E9%81%B8%E6%93%87%0A%20%20%20%20%20%20%20%20backtrack%28state%2C%20target%20-%20choices%5Bi%5D%2C%20choices%2C%20i%2C%20res%29%0A%20%20%20%20%20%20%20%20%23%20%E5%9B%9E%E9%80%80%EF%BC%9A%E6%92%A4%E9%8A%B7%E9%81%B8%E6%93%87%EF%BC%8C%E6%81%A2%E5%BE%A9%E5%88%B0%E4%B9%8B%E5%89%8D%E7%9A%84%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20state.pop%28%29%0A%0A%0Adef%20subset_sum_i%28nums%3A%20list%5Bint%5D%2C%20target%3A%20int%29%20-%3E%20list%5Blist%5Bint%5D%5D%3A%0A%20%20%20%20%22%22%22%E6%B1%82%E8%A7%A3%E5%AD%90%E9%9B%86%E5%92%8C%20I%22%22%22%0A%20%20%20%20state%20%3D%20%5B%5D%20%20%23%20%E7%8B%80%E6%85%8B%EF%BC%88%E5%AD%90%E9%9B%86%EF%BC%89%0A%20%20%20%20nums.sort%28%29%20%20%23%20%E5%B0%8D%20nums%20%E9%80%B2%E8%A1%8C%E6%8E%92%E5%BA%8F%0A%20%20%20%20start%20%3D%200%20%20%23%20%E8%B5%B0%E8%A8%AA%E8%B5%B7%E5%A7%8B%E9%BB%9E%0A%20%20%20%20res%20%3D%20%5B%5D%20%20%23%20%E7%B5%90%E6%9E%9C%E4%B8%B2%E5%88%97%EF%BC%88%E5%AD%90%E9%9B%86%E4%B8%B2%E5%88%97%EF%BC%89%0A%20%20%20%20backtrack%28state%2C%20target%2C%20nums%2C%20start%2C%20res%29%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B3%2C%204%2C%205%5D%0A%20%20%20%20target%20%3D%209%0A%20%20%20%20res%20%3D%20subset_sum_i%28nums%2C%20target%29%0A%0A%20%20%20%20print%28f%22%E8%BC%B8%E5%85%A5%E9%99%A3%E5%88%97%20nums%20%3D%20%7Bnums%7D%2C%20target%20%3D%20%7Btarget%7D%22%29%0A%20%20%20%20print%28f%22%E6%89%80%E6%9C%89%E5%92%8C%E7%AD%89%E6%96%BC%20%7Btarget%7D%20%E7%9A%84%E5%AD%90%E9%9B%86%20res%20%3D%20%7Bres%7D%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=16&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20backtrack%28%0A%20%20%20%20state%3A%20list%5Bint%5D%2C%20target%3A%20int%2C%20choices%3A%20list%5Bint%5D%2C%20start%3A%20int%2C%20res%3A%20list%5Blist%5Bint%5D%5D%0A%29%3A%0A%20%20%20%20%22%22%22%E5%9B%9E%E6%BA%AF%E6%BC%94%E7%AE%97%E6%B3%95%EF%BC%9A%E5%AD%90%E9%9B%86%E5%92%8C%20I%22%22%22%0A%20%20%20%20%23%20%E5%AD%90%E9%9B%86%E5%92%8C%E7%AD%89%E6%96%BC%20target%20%E6%99%82%EF%BC%8C%E8%A8%98%E9%8C%84%E8%A7%A3%0A%20%20%20%20if%20target%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20res.append%28list%28state%29%29%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%B5%B0%E8%A8%AA%E6%89%80%E6%9C%89%E9%81%B8%E6%93%87%0A%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%E4%BA%8C%EF%BC%9A%E5%BE%9E%20start%20%E9%96%8B%E5%A7%8B%E8%B5%B0%E8%A8%AA%EF%BC%8C%E9%81%BF%E5%85%8D%E7%94%9F%E6%88%90%E9%87%8D%E8%A4%87%E5%AD%90%E9%9B%86%0A%20%20%20%20for%20i%20in%20range%28start%2C%20len%28choices%29%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%E4%B8%80%EF%BC%9A%E8%8B%A5%E5%AD%90%E9%9B%86%E5%92%8C%E8%B6%85%E9%81%8E%20target%20%EF%BC%8C%E5%89%87%E7%9B%B4%E6%8E%A5%E7%B5%90%E6%9D%9F%E8%BF%B4%E5%9C%88%0A%20%20%20%20%20%20%20%20%23%20%E9%80%99%E6%98%AF%E5%9B%A0%E7%82%BA%E9%99%A3%E5%88%97%E5%B7%B2%E6%8E%92%E5%BA%8F%EF%BC%8C%E5%BE%8C%E9%82%8A%E5%85%83%E7%B4%A0%E6%9B%B4%E5%A4%A7%EF%BC%8C%E5%AD%90%E9%9B%86%E5%92%8C%E4%B8%80%E5%AE%9A%E8%B6%85%E9%81%8E%20target%0A%20%20%20%20%20%20%20%20if%20target%20-%20choices%5Bi%5D%20%3C%200%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20break%0A%20%20%20%20%20%20%20%20%23%20%E5%98%97%E8%A9%A6%EF%BC%9A%E5%81%9A%E5%87%BA%E9%81%B8%E6%93%87%EF%BC%8C%E6%9B%B4%E6%96%B0%20target%2C%20start%0A%20%20%20%20%20%20%20%20state.append%28choices%5Bi%5D%29%0A%20%20%20%20%20%20%20%20%23%20%E9%80%B2%E8%A1%8C%E4%B8%8B%E4%B8%80%E8%BC%AA%E9%81%B8%E6%93%87%0A%20%20%20%20%20%20%20%20backtrack%28state%2C%20target%20-%20choices%5Bi%5D%2C%20choices%2C%20i%2C%20res%29%0A%20%20%20%20%20%20%20%20%23%20%E5%9B%9E%E9%80%80%EF%BC%9A%E6%92%A4%E9%8A%B7%E9%81%B8%E6%93%87%EF%BC%8C%E6%81%A2%E5%BE%A9%E5%88%B0%E4%B9%8B%E5%89%8D%E7%9A%84%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20state.pop%28%29%0A%0A%0Adef%20subset_sum_i%28nums%3A%20list%5Bint%5D%2C%20target%3A%20int%29%20-%3E%20list%5Blist%5Bint%5D%5D%3A%0A%20%20%20%20%22%22%22%E6%B1%82%E8%A7%A3%E5%AD%90%E9%9B%86%E5%92%8C%20I%22%22%22%0A%20%20%20%20state%20%3D%20%5B%5D%20%20%23%20%E7%8B%80%E6%85%8B%EF%BC%88%E5%AD%90%E9%9B%86%EF%BC%89%0A%20%20%20%20nums.sort%28%29%20%20%23%20%E5%B0%8D%20nums%20%E9%80%B2%E8%A1%8C%E6%8E%92%E5%BA%8F%0A%20%20%20%20start%20%3D%200%20%20%23%20%E8%B5%B0%E8%A8%AA%E8%B5%B7%E5%A7%8B%E9%BB%9E%0A%20%20%20%20res%20%3D%20%5B%5D%20%20%23%20%E7%B5%90%E6%9E%9C%E4%B8%B2%E5%88%97%EF%BC%88%E5%AD%90%E9%9B%86%E4%B8%B2%E5%88%97%EF%BC%89%0A%20%20%20%20backtrack%28state%2C%20target%2C%20nums%2C%20start%2C%20res%29%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B3%2C%204%2C%205%5D%0A%20%20%20%20target%20%3D%209%0A%20%20%20%20res%20%3D%20subset_sum_i%28nums%2C%20target%29%0A%0A%20%20%20%20print%28f%22%E8%BC%B8%E5%85%A5%E9%99%A3%E5%88%97%20nums%20%3D%20%7Bnums%7D%2C%20target%20%3D%20%7Btarget%7D%22%29%0A%20%20%20%20print%28f%22%E6%89%80%E6%9C%89%E5%92%8C%E7%AD%89%E6%96%BC%20%7Btarget%7D%20%E7%9A%84%E5%AD%90%E9%9B%86%20res%20%3D%20%7Bres%7D%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=16&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
圖 13-12 所示為將陣列 [3, 4, 5]
和目標元素 9
輸入以上程式碼後的整體回溯過程。
圖 13-12 子集和 I 回溯過程
13.3.2 考慮重複元素的情況
!!! question
給定一個正整數陣列 `nums` 和一個目標正整數 `target` ,請找出所有可能的組合,使得組合中的元素和等於 `target` 。**給定陣列可能包含重複元素,每個元素只可被選擇一次**。請以串列形式返回這些組合,串列中不應包含重複組合。
相比於上題,本題的輸入陣列可能包含重複元素,這引入了新的問題。例如,給定陣列 [4, \hat{4}, 5]
和目標元素 9
,則現有程式碼的輸出結果為 [4, 5], [\hat{4}, 5]
,出現了重複子集。
造成這種重複的原因是相等元素在某輪中被多次選擇。在圖 13-13 中,第一輪共有三個選擇,其中兩個都為 4
,會產生兩個重複的搜尋分支,從而輸出重複子集;同理,第二輪的兩個 4
也會產生重複子集。
圖 13-13 相等元素導致的重複子集
1. 相等元素剪枝
為解決此問題,我們需要限制相等元素在每一輪中只能被選擇一次。實現方式比較巧妙:由於陣列是已排序的,因此相等元素都是相鄰的。這意味著在某輪選擇中,若當前元素與其左邊元素相等,則說明它已經被選擇過,因此直接跳過當前元素。
與此同時,本題規定每個陣列元素只能被選擇一次。幸運的是,我們也可以利用變數 start
來滿足該約束:當做出選擇 x_{i}
後,設定下一輪從索引 i + 1
開始向後走訪。這樣既能去除重複子集,也能避免重複選擇元素。
2. 程式碼實現
=== "Python"
```python title="subset_sum_ii.py"
def backtrack(
state: list[int], target: int, choices: list[int], start: int, res: list[list[int]]
):
"""回溯演算法:子集和 II"""
# 子集和等於 target 時,記錄解
if target == 0:
res.append(list(state))
return
# 走訪所有選擇
# 剪枝二:從 start 開始走訪,避免生成重複子集
# 剪枝三:從 start 開始走訪,避免重複選擇同一元素
for i in range(start, len(choices)):
# 剪枝一:若子集和超過 target ,則直接結束迴圈
# 這是因為陣列已排序,後邊元素更大,子集和一定超過 target
if target - choices[i] < 0:
break
# 剪枝四:如果該元素與左邊元素相等,說明該搜尋分支重複,直接跳過
if i > start and choices[i] == choices[i - 1]:
continue
# 嘗試:做出選擇,更新 target, start
state.append(choices[i])
# 進行下一輪選擇
backtrack(state, target - choices[i], choices, i + 1, res)
# 回退:撤銷選擇,恢復到之前的狀態
state.pop()
def subset_sum_ii(nums: list[int], target: int) -> list[list[int]]:
"""求解子集和 II"""
state = [] # 狀態(子集)
nums.sort() # 對 nums 進行排序
start = 0 # 走訪起始點
res = [] # 結果串列(子集串列)
backtrack(state, target, nums, start, res)
return res
```
=== "C++"
```cpp title="subset_sum_ii.cpp"
/* 回溯演算法:子集和 II */
void backtrack(vector<int> &state, int target, vector<int> &choices, int start, vector<vector<int>> &res) {
// 子集和等於 target 時,記錄解
if (target == 0) {
res.push_back(state);
return;
}
// 走訪所有選擇
// 剪枝二:從 start 開始走訪,避免生成重複子集
// 剪枝三:從 start 開始走訪,避免重複選擇同一元素
for (int i = start; i < choices.size(); i++) {
// 剪枝一:若子集和超過 target ,則直接結束迴圈
// 這是因為陣列已排序,後邊元素更大,子集和一定超過 target
if (target - choices[i] < 0) {
break;
}
// 剪枝四:如果該元素與左邊元素相等,說明該搜尋分支重複,直接跳過
if (i > start && choices[i] == choices[i - 1]) {
continue;
}
// 嘗試:做出選擇,更新 target, start
state.push_back(choices[i]);
// 進行下一輪選擇
backtrack(state, target - choices[i], choices, i + 1, res);
// 回退:撤銷選擇,恢復到之前的狀態
state.pop_back();
}
}
/* 求解子集和 II */
vector<vector<int>> subsetSumII(vector<int> &nums, int target) {
vector<int> state; // 狀態(子集)
sort(nums.begin(), nums.end()); // 對 nums 進行排序
int start = 0; // 走訪起始點
vector<vector<int>> res; // 結果串列(子集串列)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "Java"
```java title="subset_sum_ii.java"
/* 回溯演算法:子集和 II */
void backtrack(List<Integer> state, int target, int[] choices, int start, List<List<Integer>> res) {
// 子集和等於 target 時,記錄解
if (target == 0) {
res.add(new ArrayList<>(state));
return;
}
// 走訪所有選擇
// 剪枝二:從 start 開始走訪,避免生成重複子集
// 剪枝三:從 start 開始走訪,避免重複選擇同一元素
for (int i = start; i < choices.length; i++) {
// 剪枝一:若子集和超過 target ,則直接結束迴圈
// 這是因為陣列已排序,後邊元素更大,子集和一定超過 target
if (target - choices[i] < 0) {
break;
}
// 剪枝四:如果該元素與左邊元素相等,說明該搜尋分支重複,直接跳過
if (i > start && choices[i] == choices[i - 1]) {
continue;
}
// 嘗試:做出選擇,更新 target, start
state.add(choices[i]);
// 進行下一輪選擇
backtrack(state, target - choices[i], choices, i + 1, res);
// 回退:撤銷選擇,恢復到之前的狀態
state.remove(state.size() - 1);
}
}
/* 求解子集和 II */
List<List<Integer>> subsetSumII(int[] nums, int target) {
List<Integer> state = new ArrayList<>(); // 狀態(子集)
Arrays.sort(nums); // 對 nums 進行排序
int start = 0; // 走訪起始點
List<List<Integer>> res = new ArrayList<>(); // 結果串列(子集串列)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "C#"
```csharp title="subset_sum_ii.cs"
/* 回溯演算法:子集和 II */
void Backtrack(List<int> state, int target, int[] choices, int start, List<List<int>> res) {
// 子集和等於 target 時,記錄解
if (target == 0) {
res.Add(new List<int>(state));
return;
}
// 走訪所有選擇
// 剪枝二:從 start 開始走訪,避免生成重複子集
// 剪枝三:從 start 開始走訪,避免重複選擇同一元素
for (int i = start; i < choices.Length; i++) {
// 剪枝一:若子集和超過 target ,則直接結束迴圈
// 這是因為陣列已排序,後邊元素更大,子集和一定超過 target
if (target - choices[i] < 0) {
break;
}
// 剪枝四:如果該元素與左邊元素相等,說明該搜尋分支重複,直接跳過
if (i > start && choices[i] == choices[i - 1]) {
continue;
}
// 嘗試:做出選擇,更新 target, start
state.Add(choices[i]);
// 進行下一輪選擇
Backtrack(state, target - choices[i], choices, i + 1, res);
// 回退:撤銷選擇,恢復到之前的狀態
state.RemoveAt(state.Count - 1);
}
}
/* 求解子集和 II */
List<List<int>> SubsetSumII(int[] nums, int target) {
List<int> state = []; // 狀態(子集)
Array.Sort(nums); // 對 nums 進行排序
int start = 0; // 走訪起始點
List<List<int>> res = []; // 結果串列(子集串列)
Backtrack(state, target, nums, start, res);
return res;
}
```
=== "Go"
```go title="subset_sum_ii.go"
/* 回溯演算法:子集和 II */
func backtrackSubsetSumII(start, target int, state, choices *[]int, res *[][]int) {
// 子集和等於 target 時,記錄解
if target == 0 {
newState := append([]int{}, *state...)
*res = append(*res, newState)
return
}
// 走訪所有選擇
// 剪枝二:從 start 開始走訪,避免生成重複子集
// 剪枝三:從 start 開始走訪,避免重複選擇同一元素
for i := start; i < len(*choices); i++ {
// 剪枝一:若子集和超過 target ,則直接結束迴圈
// 這是因為陣列已排序,後邊元素更大,子集和一定超過 target
if target-(*choices)[i] < 0 {
break
}
// 剪枝四:如果該元素與左邊元素相等,說明該搜尋分支重複,直接跳過
if i > start && (*choices)[i] == (*choices)[i-1] {
continue
}
// 嘗試:做出選擇,更新 target, start
*state = append(*state, (*choices)[i])
// 進行下一輪選擇
backtrackSubsetSumII(i+1, target-(*choices)[i], state, choices, res)
// 回退:撤銷選擇,恢復到之前的狀態
*state = (*state)[:len(*state)-1]
}
}
/* 求解子集和 II */
func subsetSumII(nums []int, target int) [][]int {
state := make([]int, 0) // 狀態(子集)
sort.Ints(nums) // 對 nums 進行排序
start := 0 // 走訪起始點
res := make([][]int, 0) // 結果串列(子集串列)
backtrackSubsetSumII(start, target, &state, &nums, &res)
return res
}
```
=== "Swift"
```swift title="subset_sum_ii.swift"
/* 回溯演算法:子集和 II */
func backtrack(state: inout [Int], target: Int, choices: [Int], start: Int, res: inout [[Int]]) {
// 子集和等於 target 時,記錄解
if target == 0 {
res.append(state)
return
}
// 走訪所有選擇
// 剪枝二:從 start 開始走訪,避免生成重複子集
// 剪枝三:從 start 開始走訪,避免重複選擇同一元素
for i in choices.indices.dropFirst(start) {
// 剪枝一:若子集和超過 target ,則直接結束迴圈
// 這是因為陣列已排序,後邊元素更大,子集和一定超過 target
if target - choices[i] < 0 {
break
}
// 剪枝四:如果該元素與左邊元素相等,說明該搜尋分支重複,直接跳過
if i > start, choices[i] == choices[i - 1] {
continue
}
// 嘗試:做出選擇,更新 target, start
state.append(choices[i])
// 進行下一輪選擇
backtrack(state: &state, target: target - choices[i], choices: choices, start: i + 1, res: &res)
// 回退:撤銷選擇,恢復到之前的狀態
state.removeLast()
}
}
/* 求解子集和 II */
func subsetSumII(nums: [Int], target: Int) -> [[Int]] {
var state: [Int] = [] // 狀態(子集)
let nums = nums.sorted() // 對 nums 進行排序
let start = 0 // 走訪起始點
var res: [[Int]] = [] // 結果串列(子集串列)
backtrack(state: &state, target: target, choices: nums, start: start, res: &res)
return res
}
```
=== "JS"
```javascript title="subset_sum_ii.js"
/* 回溯演算法:子集和 II */
function backtrack(state, target, choices, start, res) {
// 子集和等於 target 時,記錄解
if (target === 0) {
res.push([...state]);
return;
}
// 走訪所有選擇
// 剪枝二:從 start 開始走訪,避免生成重複子集
// 剪枝三:從 start 開始走訪,避免重複選擇同一元素
for (let i = start; i < choices.length; i++) {
// 剪枝一:若子集和超過 target ,則直接結束迴圈
// 這是因為陣列已排序,後邊元素更大,子集和一定超過 target
if (target - choices[i] < 0) {
break;
}
// 剪枝四:如果該元素與左邊元素相等,說明該搜尋分支重複,直接跳過
if (i > start && choices[i] === choices[i - 1]) {
continue;
}
// 嘗試:做出選擇,更新 target, start
state.push(choices[i]);
// 進行下一輪選擇
backtrack(state, target - choices[i], choices, i + 1, res);
// 回退:撤銷選擇,恢復到之前的狀態
state.pop();
}
}
/* 求解子集和 II */
function subsetSumII(nums, target) {
const state = []; // 狀態(子集)
nums.sort((a, b) => a - b); // 對 nums 進行排序
const start = 0; // 走訪起始點
const res = []; // 結果串列(子集串列)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "TS"
```typescript title="subset_sum_ii.ts"
/* 回溯演算法:子集和 II */
function backtrack(
state: number[],
target: number,
choices: number[],
start: number,
res: number[][]
): void {
// 子集和等於 target 時,記錄解
if (target === 0) {
res.push([...state]);
return;
}
// 走訪所有選擇
// 剪枝二:從 start 開始走訪,避免生成重複子集
// 剪枝三:從 start 開始走訪,避免重複選擇同一元素
for (let i = start; i < choices.length; i++) {
// 剪枝一:若子集和超過 target ,則直接結束迴圈
// 這是因為陣列已排序,後邊元素更大,子集和一定超過 target
if (target - choices[i] < 0) {
break;
}
// 剪枝四:如果該元素與左邊元素相等,說明該搜尋分支重複,直接跳過
if (i > start && choices[i] === choices[i - 1]) {
continue;
}
// 嘗試:做出選擇,更新 target, start
state.push(choices[i]);
// 進行下一輪選擇
backtrack(state, target - choices[i], choices, i + 1, res);
// 回退:撤銷選擇,恢復到之前的狀態
state.pop();
}
}
/* 求解子集和 II */
function subsetSumII(nums: number[], target: number): number[][] {
const state = []; // 狀態(子集)
nums.sort((a, b) => a - b); // 對 nums 進行排序
const start = 0; // 走訪起始點
const res = []; // 結果串列(子集串列)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "Dart"
```dart title="subset_sum_ii.dart"
/* 回溯演算法:子集和 II */
void backtrack(
List<int> state,
int target,
List<int> choices,
int start,
List<List<int>> res,
) {
// 子集和等於 target 時,記錄解
if (target == 0) {
res.add(List.from(state));
return;
}
// 走訪所有選擇
// 剪枝二:從 start 開始走訪,避免生成重複子集
// 剪枝三:從 start 開始走訪,避免重複選擇同一元素
for (int i = start; i < choices.length; i++) {
// 剪枝一:若子集和超過 target ,則直接結束迴圈
// 這是因為陣列已排序,後邊元素更大,子集和一定超過 target
if (target - choices[i] < 0) {
break;
}
// 剪枝四:如果該元素與左邊元素相等,說明該搜尋分支重複,直接跳過
if (i > start && choices[i] == choices[i - 1]) {
continue;
}
// 嘗試:做出選擇,更新 target, start
state.add(choices[i]);
// 進行下一輪選擇
backtrack(state, target - choices[i], choices, i + 1, res);
// 回退:撤銷選擇,恢復到之前的狀態
state.removeLast();
}
}
/* 求解子集和 II */
List<List<int>> subsetSumII(List<int> nums, int target) {
List<int> state = []; // 狀態(子集)
nums.sort(); // 對 nums 進行排序
int start = 0; // 走訪起始點
List<List<int>> res = []; // 結果串列(子集串列)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "Rust"
```rust title="subset_sum_ii.rs"
/* 回溯演算法:子集和 II */
fn backtrack(
mut state: Vec<i32>,
target: i32,
choices: &[i32],
start: usize,
res: &mut Vec<Vec<i32>>,
) {
// 子集和等於 target 時,記錄解
if target == 0 {
res.push(state);
return;
}
// 走訪所有選擇
// 剪枝二:從 start 開始走訪,避免生成重複子集
// 剪枝三:從 start 開始走訪,避免重複選擇同一元素
for i in start..choices.len() {
// 剪枝一:若子集和超過 target ,則直接結束迴圈
// 這是因為陣列已排序,後邊元素更大,子集和一定超過 target
if target - choices[i] < 0 {
break;
}
// 剪枝四:如果該元素與左邊元素相等,說明該搜尋分支重複,直接跳過
if i > start && choices[i] == choices[i - 1] {
continue;
}
// 嘗試:做出選擇,更新 target, start
state.push(choices[i]);
// 進行下一輪選擇
backtrack(state.clone(), target - choices[i], choices, i, res);
// 回退:撤銷選擇,恢復到之前的狀態
state.pop();
}
}
/* 求解子集和 II */
fn subset_sum_ii(nums: &mut [i32], target: i32) -> Vec<Vec<i32>> {
let state = Vec::new(); // 狀態(子集)
nums.sort(); // 對 nums 進行排序
let start = 0; // 走訪起始點
let mut res = Vec::new(); // 結果串列(子集串列)
backtrack(state, target, nums, start, &mut res);
res
}
```
=== "C"
```c title="subset_sum_ii.c"
/* 回溯演算法:子集和 II */
void backtrack(int target, int *choices, int choicesSize, int start) {
// 子集和等於 target 時,記錄解
if (target == 0) {
for (int i = 0; i < stateSize; i++) {
res[resSize][i] = state[i];
}
resColSizes[resSize++] = stateSize;
return;
}
// 走訪所有選擇
// 剪枝二:從 start 開始走訪,避免生成重複子集
// 剪枝三:從 start 開始走訪,避免重複選擇同一元素
for (int i = start; i < choicesSize; i++) {
// 剪枝一:若子集和超過 target ,則直接跳過
if (target - choices[i] < 0) {
continue;
}
// 剪枝四:如果該元素與左邊元素相等,說明該搜尋分支重複,直接跳過
if (i > start && choices[i] == choices[i - 1]) {
continue;
}
// 嘗試:做出選擇,更新 target, start
state[stateSize] = choices[i];
stateSize++;
// 進行下一輪選擇
backtrack(target - choices[i], choices, choicesSize, i + 1);
// 回退:撤銷選擇,恢復到之前的狀態
stateSize--;
}
}
/* 求解子集和 II */
void subsetSumII(int *nums, int numsSize, int target) {
// 對 nums 進行排序
qsort(nums, numsSize, sizeof(int), cmp);
// 開始回溯
backtrack(target, nums, numsSize, 0);
}
```
=== "Kotlin"
```kotlin title="subset_sum_ii.kt"
/* 回溯演算法:子集和 II */
fun backtrack(
state: MutableList<Int>,
target: Int,
choices: IntArray,
start: Int,
res: MutableList<MutableList<Int>?>
) {
// 子集和等於 target 時,記錄解
if (target == 0) {
res.add(state.toMutableList())
return
}
// 走訪所有選擇
// 剪枝二:從 start 開始走訪,避免生成重複子集
// 剪枝三:從 start 開始走訪,避免重複選擇同一元素
for (i in start..<choices.size) {
// 剪枝一:若子集和超過 target ,則直接結束迴圈
// 這是因為陣列已排序,後邊元素更大,子集和一定超過 target
if (target - choices[i] < 0) {
break
}
// 剪枝四:如果該元素與左邊元素相等,說明該搜尋分支重複,直接跳過
if (i > start && choices[i] == choices[i - 1]) {
continue
}
// 嘗試:做出選擇,更新 target, start
state.add(choices[i])
// 進行下一輪選擇
backtrack(state, target - choices[i], choices, i + 1, res)
// 回退:撤銷選擇,恢復到之前的狀態
state.removeAt(state.size - 1)
}
}
/* 求解子集和 II */
fun subsetSumII(nums: IntArray, target: Int): MutableList<MutableList<Int>?> {
val state = mutableListOf<Int>() // 狀態(子集)
nums.sort() // 對 nums 進行排序
val start = 0 // 走訪起始點
val res = mutableListOf<MutableList<Int>?>() // 結果串列(子集串列)
backtrack(state, target, nums, start, res)
return res
}
```
=== "Ruby"
```ruby title="subset_sum_ii.rb"
[class]{}-[func]{backtrack}
[class]{}-[func]{subset_sum_ii}
```
=== "Zig"
```zig title="subset_sum_ii.zig"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumII}
```
??? pythontutor "視覺化執行"
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20backtrack%28%0A%20%20%20%20state%3A%20list%5Bint%5D%2C%20target%3A%20int%2C%20choices%3A%20list%5Bint%5D%2C%20start%3A%20int%2C%20res%3A%20list%5Blist%5Bint%5D%5D%0A%29%3A%0A%20%20%20%20%22%22%22%E5%9B%9E%E6%BA%AF%E6%BC%94%E7%AE%97%E6%B3%95%EF%BC%9A%E5%AD%90%E9%9B%86%E5%92%8C%20II%22%22%22%0A%20%20%20%20%23%20%E5%AD%90%E9%9B%86%E5%92%8C%E7%AD%89%E6%96%BC%20target%20%E6%99%82%EF%BC%8C%E8%A8%98%E9%8C%84%E8%A7%A3%0A%20%20%20%20if%20target%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20res.append%28list%28state%29%29%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%B5%B0%E8%A8%AA%E6%89%80%E6%9C%89%E9%81%B8%E6%93%87%0A%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%E4%BA%8C%EF%BC%9A%E5%BE%9E%20start%20%E9%96%8B%E5%A7%8B%E8%B5%B0%E8%A8%AA%EF%BC%8C%E9%81%BF%E5%85%8D%E7%94%9F%E6%88%90%E9%87%8D%E8%A4%87%E5%AD%90%E9%9B%86%0A%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%E4%B8%89%EF%BC%9A%E5%BE%9E%20start%20%E9%96%8B%E5%A7%8B%E8%B5%B0%E8%A8%AA%EF%BC%8C%E9%81%BF%E5%85%8D%E9%87%8D%E8%A4%87%E9%81%B8%E6%93%87%E5%90%8C%E4%B8%80%E5%85%83%E7%B4%A0%0A%20%20%20%20for%20i%20in%20range%28start%2C%20len%28choices%29%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%E4%B8%80%EF%BC%9A%E8%8B%A5%E5%AD%90%E9%9B%86%E5%92%8C%E8%B6%85%E9%81%8E%20target%20%EF%BC%8C%E5%89%87%E7%9B%B4%E6%8E%A5%E7%B5%90%E6%9D%9F%E8%BF%B4%E5%9C%88%0A%20%20%20%20%20%20%20%20%23%20%E9%80%99%E6%98%AF%E5%9B%A0%E7%82%BA%E9%99%A3%E5%88%97%E5%B7%B2%E6%8E%92%E5%BA%8F%EF%BC%8C%E5%BE%8C%E9%82%8A%E5%85%83%E7%B4%A0%E6%9B%B4%E5%A4%A7%EF%BC%8C%E5%AD%90%E9%9B%86%E5%92%8C%E4%B8%80%E5%AE%9A%E8%B6%85%E9%81%8E%20target%0A%20%20%20%20%20%20%20%20if%20target%20-%20choices%5Bi%5D%20%3C%200%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20break%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%E5%9B%9B%EF%BC%9A%E5%A6%82%E6%9E%9C%E8%A9%B2%E5%85%83%E7%B4%A0%E8%88%87%E5%B7%A6%E9%82%8A%E5%85%83%E7%B4%A0%E7%9B%B8%E7%AD%89%EF%BC%8C%E8%AA%AA%E6%98%8E%E8%A9%B2%E6%90%9C%E5%B0%8B%E5%88%86%E6%94%AF%E9%87%8D%E8%A4%87%EF%BC%8C%E7%9B%B4%E6%8E%A5%E8%B7%B3%E9%81%8E%0A%20%20%20%20%20%20%20%20if%20i%20%3E%20start%20and%20choices%5Bi%5D%20%3D%3D%20choices%5Bi%20-%201%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20continue%0A%20%20%20%20%20%20%20%20%23%20%E5%98%97%E8%A9%A6%EF%BC%9A%E5%81%9A%E5%87%BA%E9%81%B8%E6%93%87%EF%BC%8C%E6%9B%B4%E6%96%B0%20target%2C%20start%0A%20%20%20%20%20%20%20%20state.append%28choices%5Bi%5D%29%0A%20%20%20%20%20%20%20%20%23%20%E9%80%B2%E8%A1%8C%E4%B8%8B%E4%B8%80%E8%BC%AA%E9%81%B8%E6%93%87%0A%20%20%20%20%20%20%20%20backtrack%28state%2C%20target%20-%20choices%5Bi%5D%2C%20choices%2C%20i%20%2B%201%2C%20res%29%0A%20%20%20%20%20%20%20%20%23%20%E5%9B%9E%E9%80%80%EF%BC%9A%E6%92%A4%E9%8A%B7%E9%81%B8%E6%93%87%EF%BC%8C%E6%81%A2%E5%BE%A9%E5%88%B0%E4%B9%8B%E5%89%8D%E7%9A%84%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20state.pop%28%29%0A%0A%0Adef%20subset_sum_ii%28nums%3A%20list%5Bint%5D%2C%20target%3A%20int%29%20-%3E%20list%5Blist%5Bint%5D%5D%3A%0A%20%20%20%20%22%22%22%E6%B1%82%E8%A7%A3%E5%AD%90%E9%9B%86%E5%92%8C%20II%22%22%22%0A%20%20%20%20state%20%3D%20%5B%5D%20%20%23%20%E7%8B%80%E6%85%8B%EF%BC%88%E5%AD%90%E9%9B%86%EF%BC%89%0A%20%20%20%20nums.sort%28%29%20%20%23%20%E5%B0%8D%20nums%20%E9%80%B2%E8%A1%8C%E6%8E%92%E5%BA%8F%0A%20%20%20%20start%20%3D%200%20%20%23%20%E8%B5%B0%E8%A8%AA%E8%B5%B7%E5%A7%8B%E9%BB%9E%0A%20%20%20%20res%20%3D%20%5B%5D%20%20%23%20%E7%B5%90%E6%9E%9C%E4%B8%B2%E5%88%97%EF%BC%88%E5%AD%90%E9%9B%86%E4%B8%B2%E5%88%97%EF%BC%89%0A%20%20%20%20backtrack%28state%2C%20target%2C%20nums%2C%20start%2C%20res%29%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B4%2C%204%2C%205%5D%0A%20%20%20%20target%20%3D%209%0A%20%20%20%20res%20%3D%20subset_sum_ii%28nums%2C%20target%29%0A%0A%20%20%20%20print%28f%22%E8%BC%B8%E5%85%A5%E9%99%A3%E5%88%97%20nums%20%3D%20%7Bnums%7D%2C%20target%20%3D%20%7Btarget%7D%22%29%0A%20%20%20%20print%28f%22%E6%89%80%E6%9C%89%E5%92%8C%E7%AD%89%E6%96%BC%20%7Btarget%7D%20%E7%9A%84%E5%AD%90%E9%9B%86%20res%20%3D%20%7Bres%7D%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=16&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20backtrack%28%0A%20%20%20%20state%3A%20list%5Bint%5D%2C%20target%3A%20int%2C%20choices%3A%20list%5Bint%5D%2C%20start%3A%20int%2C%20res%3A%20list%5Blist%5Bint%5D%5D%0A%29%3A%0A%20%20%20%20%22%22%22%E5%9B%9E%E6%BA%AF%E6%BC%94%E7%AE%97%E6%B3%95%EF%BC%9A%E5%AD%90%E9%9B%86%E5%92%8C%20II%22%22%22%0A%20%20%20%20%23%20%E5%AD%90%E9%9B%86%E5%92%8C%E7%AD%89%E6%96%BC%20target%20%E6%99%82%EF%BC%8C%E8%A8%98%E9%8C%84%E8%A7%A3%0A%20%20%20%20if%20target%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20res.append%28list%28state%29%29%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%B5%B0%E8%A8%AA%E6%89%80%E6%9C%89%E9%81%B8%E6%93%87%0A%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%E4%BA%8C%EF%BC%9A%E5%BE%9E%20start%20%E9%96%8B%E5%A7%8B%E8%B5%B0%E8%A8%AA%EF%BC%8C%E9%81%BF%E5%85%8D%E7%94%9F%E6%88%90%E9%87%8D%E8%A4%87%E5%AD%90%E9%9B%86%0A%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%E4%B8%89%EF%BC%9A%E5%BE%9E%20start%20%E9%96%8B%E5%A7%8B%E8%B5%B0%E8%A8%AA%EF%BC%8C%E9%81%BF%E5%85%8D%E9%87%8D%E8%A4%87%E9%81%B8%E6%93%87%E5%90%8C%E4%B8%80%E5%85%83%E7%B4%A0%0A%20%20%20%20for%20i%20in%20range%28start%2C%20len%28choices%29%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%E4%B8%80%EF%BC%9A%E8%8B%A5%E5%AD%90%E9%9B%86%E5%92%8C%E8%B6%85%E9%81%8E%20target%20%EF%BC%8C%E5%89%87%E7%9B%B4%E6%8E%A5%E7%B5%90%E6%9D%9F%E8%BF%B4%E5%9C%88%0A%20%20%20%20%20%20%20%20%23%20%E9%80%99%E6%98%AF%E5%9B%A0%E7%82%BA%E9%99%A3%E5%88%97%E5%B7%B2%E6%8E%92%E5%BA%8F%EF%BC%8C%E5%BE%8C%E9%82%8A%E5%85%83%E7%B4%A0%E6%9B%B4%E5%A4%A7%EF%BC%8C%E5%AD%90%E9%9B%86%E5%92%8C%E4%B8%80%E5%AE%9A%E8%B6%85%E9%81%8E%20target%0A%20%20%20%20%20%20%20%20if%20target%20-%20choices%5Bi%5D%20%3C%200%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20break%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%E5%9B%9B%EF%BC%9A%E5%A6%82%E6%9E%9C%E8%A9%B2%E5%85%83%E7%B4%A0%E8%88%87%E5%B7%A6%E9%82%8A%E5%85%83%E7%B4%A0%E7%9B%B8%E7%AD%89%EF%BC%8C%E8%AA%AA%E6%98%8E%E8%A9%B2%E6%90%9C%E5%B0%8B%E5%88%86%E6%94%AF%E9%87%8D%E8%A4%87%EF%BC%8C%E7%9B%B4%E6%8E%A5%E8%B7%B3%E9%81%8E%0A%20%20%20%20%20%20%20%20if%20i%20%3E%20start%20and%20choices%5Bi%5D%20%3D%3D%20choices%5Bi%20-%201%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20continue%0A%20%20%20%20%20%20%20%20%23%20%E5%98%97%E8%A9%A6%EF%BC%9A%E5%81%9A%E5%87%BA%E9%81%B8%E6%93%87%EF%BC%8C%E6%9B%B4%E6%96%B0%20target%2C%20start%0A%20%20%20%20%20%20%20%20state.append%28choices%5Bi%5D%29%0A%20%20%20%20%20%20%20%20%23%20%E9%80%B2%E8%A1%8C%E4%B8%8B%E4%B8%80%E8%BC%AA%E9%81%B8%E6%93%87%0A%20%20%20%20%20%20%20%20backtrack%28state%2C%20target%20-%20choices%5Bi%5D%2C%20choices%2C%20i%20%2B%201%2C%20res%29%0A%20%20%20%20%20%20%20%20%23%20%E5%9B%9E%E9%80%80%EF%BC%9A%E6%92%A4%E9%8A%B7%E9%81%B8%E6%93%87%EF%BC%8C%E6%81%A2%E5%BE%A9%E5%88%B0%E4%B9%8B%E5%89%8D%E7%9A%84%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20state.pop%28%29%0A%0A%0Adef%20subset_sum_ii%28nums%3A%20list%5Bint%5D%2C%20target%3A%20int%29%20-%3E%20list%5Blist%5Bint%5D%5D%3A%0A%20%20%20%20%22%22%22%E6%B1%82%E8%A7%A3%E5%AD%90%E9%9B%86%E5%92%8C%20II%22%22%22%0A%20%20%20%20state%20%3D%20%5B%5D%20%20%23%20%E7%8B%80%E6%85%8B%EF%BC%88%E5%AD%90%E9%9B%86%EF%BC%89%0A%20%20%20%20nums.sort%28%29%20%20%23%20%E5%B0%8D%20nums%20%E9%80%B2%E8%A1%8C%E6%8E%92%E5%BA%8F%0A%20%20%20%20start%20%3D%200%20%20%23%20%E8%B5%B0%E8%A8%AA%E8%B5%B7%E5%A7%8B%E9%BB%9E%0A%20%20%20%20res%20%3D%20%5B%5D%20%20%23%20%E7%B5%90%E6%9E%9C%E4%B8%B2%E5%88%97%EF%BC%88%E5%AD%90%E9%9B%86%E4%B8%B2%E5%88%97%EF%BC%89%0A%20%20%20%20backtrack%28state%2C%20target%2C%20nums%2C%20start%2C%20res%29%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B4%2C%204%2C%205%5D%0A%20%20%20%20target%20%3D%209%0A%20%20%20%20res%20%3D%20subset_sum_ii%28nums%2C%20target%29%0A%0A%20%20%20%20print%28f%22%E8%BC%B8%E5%85%A5%E9%99%A3%E5%88%97%20nums%20%3D%20%7Bnums%7D%2C%20target%20%3D%20%7Btarget%7D%22%29%0A%20%20%20%20print%28f%22%E6%89%80%E6%9C%89%E5%92%8C%E7%AD%89%E6%96%BC%20%7Btarget%7D%20%E7%9A%84%E5%AD%90%E9%9B%86%20res%20%3D%20%7Bres%7D%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=16&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
圖 13-14 展示了陣列 [4, 4, 5]
和目標元素 9
的回溯過程,共包含四種剪枝操作。請你將圖示與程式碼註釋相結合,理解整個搜尋過程,以及每種剪枝操作是如何工作的。
圖 13-14 子集和 II 回溯過程