mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-25 23:46:29 +08:00
284 lines
7.7 KiB
Markdown
Executable file
284 lines
7.7 KiB
Markdown
Executable file
# 二分查找
|
||
|
||
「二分查找 Binary Search」利用数据的有序性,通过每轮减少一半搜索范围来定位目标元素。
|
||
|
||
给定一个长度为 $n$ 的有序数组 `nums` ,元素按从小到大的顺序排列。数组索引的取值范围为:
|
||
|
||
$$
|
||
0, 1, 2, \cdots, n-1
|
||
$$
|
||
|
||
我们通常使用以下两种方法来表示这个取值范围:
|
||
|
||
1. **双闭区间 $[0, n-1]$** ,即两个边界都包含自身;在此方法下,区间 $[i, i]$ 仍包含 $1$ 个元素;
|
||
2. **左闭右开 $[0, n)$** ,即左边界包含自身、右边界不包含自身;在此方法下,区间 $[i, i)$ 不包含元素;
|
||
|
||
## 双闭区间实现
|
||
|
||
首先,我们采用“双闭区间”表示法,在数组 `nums` 中查找目标元素 `target` 的对应索引。
|
||
|
||
=== "<1>"
|
||
![二分查找步骤](binary_search.assets/binary_search_step1.png)
|
||
|
||
=== "<2>"
|
||
![binary_search_step2](binary_search.assets/binary_search_step2.png)
|
||
|
||
=== "<3>"
|
||
![binary_search_step3](binary_search.assets/binary_search_step3.png)
|
||
|
||
=== "<4>"
|
||
![binary_search_step4](binary_search.assets/binary_search_step4.png)
|
||
|
||
=== "<5>"
|
||
![binary_search_step5](binary_search.assets/binary_search_step5.png)
|
||
|
||
=== "<6>"
|
||
![binary_search_step6](binary_search.assets/binary_search_step6.png)
|
||
|
||
=== "<7>"
|
||
![binary_search_step7](binary_search.assets/binary_search_step7.png)
|
||
|
||
二分查找在“双闭区间”表示下的代码如下所示。
|
||
|
||
=== "Java"
|
||
|
||
```java title="binary_search.java"
|
||
[class]{binary_search}-[func]{binarySearch}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="binary_search.cpp"
|
||
[class]{}-[func]{binarySearch}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="binary_search.py"
|
||
[class]{}-[func]{binary_search}
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="binary_search.go"
|
||
[class]{}-[func]{binarySearch}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="binary_search.js"
|
||
[class]{}-[func]{binarySearch}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="binary_search.ts"
|
||
[class]{}-[func]{binarySearch}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="binary_search.c"
|
||
[class]{}-[func]{binarySearch}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="binary_search.cs"
|
||
[class]{binary_search}-[func]{binarySearch}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="binary_search.swift"
|
||
[class]{}-[func]{binarySearch}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="binary_search.zig"
|
||
[class]{}-[func]{binarySearch}
|
||
```
|
||
|
||
需要注意的是,**当数组长度非常大时,加法 $i + j$ 的结果可能会超出 `int` 类型的取值范围**。在这种情况下,我们需要采用一种更安全的计算中点的方法。
|
||
|
||
=== "Java"
|
||
|
||
```java title=""
|
||
// (i + j) 有可能超出 int 的取值范围
|
||
int m = (i + j) / 2;
|
||
// 更换为此写法则不会越界
|
||
int m = i + (j - i) / 2;
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title=""
|
||
// (i + j) 有可能超出 int 的取值范围
|
||
int m = (i + j) / 2;
|
||
// 更换为此写法则不会越界
|
||
int m = i + (j - i) / 2;
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```py title=""
|
||
# Python 中的数字理论上可以无限大(取决于内存大小)
|
||
# 因此无需考虑大数越界问题
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title=""
|
||
// (i + j) 有可能超出 int 的取值范围
|
||
m := (i + j) / 2
|
||
// 更换为此写法则不会越界
|
||
m := i + (j - i) / 2
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title=""
|
||
// (i + j) 有可能超出 int 的取值范围
|
||
let m = parseInt((i + j) / 2);
|
||
// 更换为此写法则不会越界
|
||
let m = parseInt(i + (j - i) / 2);
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title=""
|
||
// (i + j) 有可能超出 Number 的取值范围
|
||
let m = Math.floor((i + j) / 2);
|
||
// 更换为此写法则不会越界
|
||
let m = Math.floor(i + (j - i) / 2);
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title=""
|
||
// (i + j) 有可能超出 int 的取值范围
|
||
int m = (i + j) / 2;
|
||
// 更换为此写法则不会越界
|
||
int m = i + (j - i) / 2;
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title=""
|
||
// (i + j) 有可能超出 int 的取值范围
|
||
int m = (i + j) / 2;
|
||
// 更换为此写法则不会越界
|
||
int m = i + (j - i) / 2;
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title=""
|
||
// (i + j) 有可能超出 int 的取值范围
|
||
let m = (i + j) / 2
|
||
// 更换为此写法则不会越界
|
||
let m = i + (j - 1) / 2
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title=""
|
||
|
||
```
|
||
|
||
## 左闭右开实现
|
||
|
||
我们可以采用“左闭右开”的表示法,编写具有相同功能的二分查找代码。
|
||
|
||
=== "Java"
|
||
|
||
```java title="binary_search.java"
|
||
[class]{binary_search}-[func]{binarySearch1}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="binary_search.cpp"
|
||
[class]{}-[func]{binarySearch1}
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="binary_search.py"
|
||
[class]{}-[func]{binary_search1}
|
||
```
|
||
|
||
=== "Go"
|
||
|
||
```go title="binary_search.go"
|
||
[class]{}-[func]{binarySearch1}
|
||
```
|
||
|
||
=== "JavaScript"
|
||
|
||
```javascript title="binary_search.js"
|
||
[class]{}-[func]{binarySearch1}
|
||
```
|
||
|
||
=== "TypeScript"
|
||
|
||
```typescript title="binary_search.ts"
|
||
[class]{}-[func]{binarySearch1}
|
||
```
|
||
|
||
=== "C"
|
||
|
||
```c title="binary_search.c"
|
||
[class]{}-[func]{binarySearch1}
|
||
```
|
||
|
||
=== "C#"
|
||
|
||
```csharp title="binary_search.cs"
|
||
[class]{binary_search}-[func]{binarySearch1}
|
||
```
|
||
|
||
=== "Swift"
|
||
|
||
```swift title="binary_search.swift"
|
||
[class]{}-[func]{binarySearch1}
|
||
```
|
||
|
||
=== "Zig"
|
||
|
||
```zig title="binary_search.zig"
|
||
[class]{}-[func]{binarySearch1}
|
||
```
|
||
|
||
对比这两种代码写法,我们可以发现以下不同点:
|
||
|
||
<div class="center-table" markdown>
|
||
|
||
| 表示方法 | 初始化指针 | 缩小区间 | 循环终止条件 |
|
||
| ------------------- | ------------------- | ------------------------- | ------------ |
|
||
| 双闭区间 $[0, n-1]$ | $i = 0$ , $j = n-1$ | $i = m + 1$ , $j = m - 1$ | $i > j$ |
|
||
| 左闭右开 $[0, n)$ | $i = 0$ , $j = n$ | $i = m + 1$ , $j = m$ | $i = j$ |
|
||
|
||
</div>
|
||
|
||
在“双闭区间”表示法中,由于对左右两边界的定义相同,因此缩小区间的 $i$ 和 $j$ 的处理方法也是对称的,这样更不容易出错。因此,**建议采用“双闭区间”的写法**。
|
||
|
||
## 复杂度分析
|
||
|
||
**时间复杂度 $O(\log n)$** :其中 $n$ 为数组长度;每轮排除一半的区间,因此循环轮数为 $\log_2 n$ ,使用 $O(\log n)$ 时间。
|
||
|
||
**空间复杂度 $O(1)$** :指针 `i` , `j` 使用常数大小空间。
|
||
|
||
## 优点与局限性
|
||
|
||
二分查找效率很高,主要体现在:
|
||
|
||
- **二分查找的时间复杂度较低**。对数阶在大数据量情况下具有显著优势。例如,当数据大小 $n = 2^{20}$ 时,线性查找需要 $2^{20} = 1048576$ 轮循环,而二分查找仅需 $\log_2 2^{20} = 20$ 轮循环。
|
||
- **二分查找无需额外空间**。与哈希查找相比,二分查找更加节省空间。
|
||
|
||
然而,并非所有情况下都可使用二分查找,原因如下:
|
||
|
||
- **二分查找仅适用于有序数据**。若输入数据无序,为了使用二分查找而专门进行排序,得不偿失。因为排序算法的时间复杂度通常为 $O(n \log n)$ ,比线性查找和二分查找都更高。对于频繁插入元素的场景,为保持数组有序性,需要将元素插入到特定位置,时间复杂度为 $O(n)$ ,也是非常昂贵的。
|
||
- **二分查找仅适用于数组**。二分查找需要跳跃式(非连续地)访问元素,而在链表中执行跳跃式访问的效率较低,因此不适合应用在链表或基于链表实现的数据结构。
|
||
- **小数据量下,线性查找性能更佳**。在线性查找中,每轮只需要 1 次判断操作;而在二分查找中,需要 1 次加法、1 次除法、1 ~ 3 次判断操作、1 次加法(减法),共 4 ~ 6 个单元操作;因此,当数据量 $n$ 较小时,线性查找反而比二分查找更快。
|