27 KiB
Executable file
comments |
---|
true |
4.2. 链表
内存空间是所有程序的公共资源,排除已被占用的内存空间,空闲内存空间通常散落在内存各处。在上一节中,我们提到存储数组的内存空间必须是连续的,而当我们需要申请一个非常大的数组时,空闲内存中可能没有这么大的连续空间。与数组相比,链表更具灵活性,它可以被存储在非连续的内存空间中。
「链表 Linked List」是一种线性数据结构,其每个元素都是一个节点对象,各个节点之间通过指针连接,从当前节点通过指针可以访问到下一个节点。由于指针记录了下个节点的内存地址,因此无需保证内存地址的连续性,从而可以将各个节点分散存储在内存各处。
链表「节点 Node」包含两项数据,一是节点「值 Value」,二是指向下一节点的「指针 Pointer」,或称「引用 Reference」。
Fig. 链表定义与存储方式
=== "Java"
```java title=""
/* 链表节点类 */
class ListNode {
int val; // 节点值
ListNode next; // 指向下一节点的指针(引用)
ListNode(int x) { val = x; } // 构造函数
}
```
=== "C++"
```cpp title=""
/* 链表节点结构体 */
struct ListNode {
int val; // 节点值
ListNode *next; // 指向下一节点的指针(引用)
ListNode(int x) : val(x), next(nullptr) {} // 构造函数
};
```
=== "Python"
```python title=""
class ListNode:
"""链表节点类"""
def __init__(self, val: int):
self.val: int = val # 节点值
self.next: Optional[ListNode] = None # 指向下一节点的指针(引用)
```
=== "Go"
```go title=""
/* 链表节点结构体 */
type ListNode struct {
Val int // 节点值
Next *ListNode // 指向下一节点的指针(引用)
}
// NewListNode 构造函数,创建一个新的链表
func NewListNode(val int) *ListNode {
return &ListNode{
Val: val,
Next: nil,
}
}
```
=== "JavaScript"
```javascript title=""
/* 链表节点类 */
class ListNode {
val;
next;
constructor(val, next) {
this.val = (val === undefined ? 0 : val); // 节点值
this.next = (next === undefined ? null : next); // 指向下一节点的引用
}
}
```
=== "TypeScript"
```typescript title=""
/* 链表节点类 */
class ListNode {
val: number;
next: ListNode | null;
constructor(val?: number, next?: ListNode | null) {
this.val = val === undefined ? 0 : val; // 节点值
this.next = next === undefined ? null : next; // 指向下一节点的引用
}
}
```
=== "C"
```c title=""
/* 链表节点结构体 */
struct ListNode {
int val; // 节点值
struct ListNode *next; // 指向下一节点的指针(引用)
};
// typedef 作用是为一种数据类型定义一个新名字
typedef struct ListNode ListNode;
/* 构造函数,初始化一个新节点 */
ListNode *newListNode(int val) {
ListNode *node, *next;
node = (ListNode *) malloc(sizeof(ListNode));
node->val = val;
node->next = NULL;
return node;
}
```
=== "C#"
```csharp title=""
/* 链表节点类 */
class ListNode
{
int val; // 节点值
ListNode next; // 指向下一节点的引用
ListNode(int x) => val = x; //构造函数
}
```
=== "Swift"
```swift title=""
/* 链表节点类 */
class ListNode {
var val: Int // 节点值
var next: ListNode? // 指向下一节点的指针(引用)
init(x: Int) { // 构造函数
val = x
}
}
```
=== "Zig"
```zig title=""
// 链表节点类
pub fn ListNode(comptime T: type) type {
return struct {
const Self = @This();
val: T = 0, // 节点值
next: ?*Self = null, // 指向下一节点的指针(引用)
// 构造函数
pub fn init(self: *Self, x: i32) void {
self.val = x;
self.next = null;
}
};
}
```
!!! question "尾节点指向什么?"
我们将链表的最后一个节点称为「尾节点」,其指向的是“空”,在 Java, C++, Python 中分别记为 $\text{null}$ , $\text{nullptr}$ , $\text{None}$ 。在不引起歧义的前提下,本书都使用 $\text{null}$ 来表示空。
!!! question "如何称呼链表?"
在编程语言中,数组整体就是一个变量,例如数组 `nums` ,包含各个元素 `nums[0]` , `nums[1]` 等等。而链表是由多个节点对象组成,我们通常将头节点当作链表的代称,例如头节点 `head` 和链表 `head` 实际上是同义的。
链表初始化方法。建立链表分为两步,第一步是初始化各个节点对象,第二步是构建引用指向关系。完成后,即可以从链表的头节点(即首个节点)出发,通过指针 next
依次访问所有节点。
=== "Java"
```java title="linked_list.java"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
ListNode n0 = new ListNode(1);
ListNode n1 = new ListNode(3);
ListNode n2 = new ListNode(2);
ListNode n3 = new ListNode(5);
ListNode n4 = new ListNode(4);
// 构建引用指向
n0.next = n1;
n1.next = n2;
n2.next = n3;
n3.next = n4;
```
=== "C++"
```cpp title="linked_list.cpp"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
ListNode* n0 = new ListNode(1);
ListNode* n1 = new ListNode(3);
ListNode* n2 = new ListNode(2);
ListNode* n3 = new ListNode(5);
ListNode* n4 = new ListNode(4);
// 构建引用指向
n0->next = n1;
n1->next = n2;
n2->next = n3;
n3->next = n4;
```
=== "Python"
```python title="linked_list.py"
# 初始化链表 1 -> 3 -> 2 -> 5 -> 4
# 初始化各个节点
n0 = ListNode(1)
n1 = ListNode(3)
n2 = ListNode(2)
n3 = ListNode(5)
n4 = ListNode(4)
# 构建引用指向
n0.next = n1
n1.next = n2
n2.next = n3
n3.next = n4
```
=== "Go"
```go title="linked_list.go"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
n0 := NewListNode(1)
n1 := NewListNode(3)
n2 := NewListNode(2)
n3 := NewListNode(5)
n4 := NewListNode(4)
// 构建引用指向
n0.Next = n1
n1.Next = n2
n2.Next = n3
n3.Next = n4
```
=== "JavaScript"
```javascript title="linked_list.js"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
const n0 = new ListNode(1);
const n1 = new ListNode(3);
const n2 = new ListNode(2);
const n3 = new ListNode(5);
const n4 = new ListNode(4);
// 构建引用指向
n0.next = n1;
n1.next = n2;
n2.next = n3;
n3.next = n4;
```
=== "TypeScript"
```typescript title="linked_list.ts"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
const n0 = new ListNode(1);
const n1 = new ListNode(3);
const n2 = new ListNode(2);
const n3 = new ListNode(5);
const n4 = new ListNode(4);
// 构建引用指向
n0.next = n1;
n1.next = n2;
n2.next = n3;
n3.next = n4;
```
=== "C"
```c title="linked_list.c"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
ListNode* n0 = newListNode(1);
ListNode* n1 = newListNode(3);
ListNode* n2 = newListNode(2);
ListNode* n3 = newListNode(5);
ListNode* n4 = newListNode(4);
// 构建引用指向
n0->next = n1;
n1->next = n2;
n2->next = n3;
n3->next = n4;
```
=== "C#"
```csharp title="linked_list.cs"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
ListNode n0 = new ListNode(1);
ListNode n1 = new ListNode(3);
ListNode n2 = new ListNode(2);
ListNode n3 = new ListNode(5);
ListNode n4 = new ListNode(4);
// 构建引用指向
n0.next = n1;
n1.next = n2;
n2.next = n3;
n3.next = n4;
```
=== "Swift"
```swift title="linked_list.swift"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
let n0 = ListNode(x: 1)
let n1 = ListNode(x: 3)
let n2 = ListNode(x: 2)
let n3 = ListNode(x: 5)
let n4 = ListNode(x: 4)
// 构建引用指向
n0.next = n1
n1.next = n2
n2.next = n3
n3.next = n4
```
=== "Zig"
```zig title="linked_list.zig"
// 初始化链表
// 初始化各个节点
var n0 = inc.ListNode(i32){.val = 1};
var n1 = inc.ListNode(i32){.val = 3};
var n2 = inc.ListNode(i32){.val = 2};
var n3 = inc.ListNode(i32){.val = 5};
var n4 = inc.ListNode(i32){.val = 4};
// 构建引用指向
n0.next = &n1;
n1.next = &n2;
n2.next = &n3;
n3.next = &n4;
```
4.2.1. 链表优点
链表中插入与删除节点的操作效率高。例如,如果我们想在链表中间的两个节点 A
, B
之间插入一个新节点 P
,我们只需要改变两个节点指针即可,时间复杂度为 O(1)
;相比之下,数组的插入操作效率要低得多。
Fig. 链表插入节点
=== "Java"
```java title="linked_list.java"
/* 在链表的节点 n0 之后插入节点 P */
void insert(ListNode n0, ListNode P) {
ListNode n1 = n0.next;
P.next = n1;
n0.next = P;
}
```
=== "C++"
```cpp title="linked_list.cpp"
/* 在链表的节点 n0 之后插入节点 P */
void insert(ListNode *n0, ListNode *P) {
ListNode *n1 = n0->next;
P->next = n1;
n0->next = P;
}
```
=== "Python"
```python title="linked_list.py"
def insert(n0: ListNode, P: ListNode) -> None:
"""在链表的节点 n0 之后插入节点 P"""
n1 = n0.next
P.next = n1
n0.next = P
```
=== "Go"
```go title="linked_list.go"
/* 在链表的节点 n0 之后插入节点 P */
func insertNode(n0 *ListNode, P *ListNode) {
n1 := n0.Next
P.Next = n1
n0.Next = P
}
```
=== "JavaScript"
```javascript title="linked_list.js"
/* 在链表的节点 n0 之后插入节点 P */
function insert(n0, P) {
const n1 = n0.next;
P.next = n1;
n0.next = P;
}
```
=== "TypeScript"
```typescript title="linked_list.ts"
/* 在链表的节点 n0 之后插入节点 P */
function insert(n0: ListNode, P: ListNode): void {
const n1 = n0.next;
P.next = n1;
n0.next = P;
}
```
=== "C"
```c title="linked_list.c"
[class]{}-[func]{insertNode}
```
=== "C#"
```csharp title="linked_list.cs"
/* 在链表的节点 n0 之后插入节点 P */
void insert(ListNode n0, ListNode P)
{
ListNode? n1 = n0.next;
P.next = n1;
n0.next = P;
}
```
=== "Swift"
```swift title="linked_list.swift"
/* 在链表的节点 n0 之后插入节点 P */
func insert(n0: ListNode, P: ListNode) {
let n1 = n0.next
P.next = n1
n0.next = P
}
```
=== "Zig"
```zig title="linked_list.zig"
// 在链表的节点 n0 之后插入节点 P
fn insert(n0: ?*inc.ListNode(i32), P: ?*inc.ListNode(i32)) void {
var n1 = n0.?.next;
P.?.next = n1;
n0.?.next = P;
}
```
在链表中删除节点也非常方便,只需改变一个节点的指针即可。如下图所示,尽管在删除操作完成后,节点 P
仍然指向 n1
,但实际上 P
已经不再属于此链表,因为遍历此链表时无法访问到 P
。
Fig. 链表删除节点
=== "Java"
```java title="linked_list.java"
/* 删除链表的节点 n0 之后的首个节点 */
void remove(ListNode n0) {
if (n0.next == null)
return;
// n0 -> P -> n1
ListNode P = n0.next;
ListNode n1 = P.next;
n0.next = n1;
}
```
=== "C++"
```cpp title="linked_list.cpp"
/* 删除链表的节点 n0 之后的首个节点 */
void remove(ListNode *n0) {
if (n0->next == nullptr)
return;
// n0 -> P -> n1
ListNode *P = n0->next;
ListNode *n1 = P->next;
n0->next = n1;
// 释放内存
delete P;
}
```
=== "Python"
```python title="linked_list.py"
def remove(n0: ListNode) -> None:
"""删除链表的节点 n0 之后的首个节点"""
if not n0.next:
return
# n0 -> P -> n1
P = n0.next
n1 = P.next
n0.next = n1
```
=== "Go"
```go title="linked_list.go"
/* 删除链表的节点 n0 之后的首个节点 */
func removeNode(n0 *ListNode) {
if n0.Next == nil {
return
}
// n0 -> P -> n1
P := n0.Next
n1 := P.Next
n0.Next = n1
}
```
=== "JavaScript"
```javascript title="linked_list.js"
/* 删除链表的节点 n0 之后的首个节点 */
function remove(n0) {
if (!n0.next)
return;
// n0 -> P -> n1
const P = n0.next;
const n1 = P.next;
n0.next = n1;
}
```
=== "TypeScript"
```typescript title="linked_list.ts"
/* 删除链表的节点 n0 之后的首个节点 */
function remove(n0: ListNode): void {
if (!n0.next) {
return;
}
// n0 -> P -> n1
const P = n0.next;
const n1 = P.next;
n0.next = n1;
}
```
=== "C"
```c title="linked_list.c"
[class]{}-[func]{removeNode}
```
=== "C#"
```csharp title="linked_list.cs"
/* 删除链表的节点 n0 之后的首个节点 */
void remove(ListNode n0)
{
if (n0.next == null)
return;
// n0 -> P -> n1
ListNode P = n0.next;
ListNode? n1 = P.next;
n0.next = n1;
}
```
=== "Swift"
```swift title="linked_list.swift"
/* 删除链表的节点 n0 之后的首个节点 */
func remove(n0: ListNode) {
if n0.next == nil {
return
}
// n0 -> P -> n1
let P = n0.next
let n1 = P?.next
n0.next = n1
P?.next = nil
}
```
=== "Zig"
```zig title="linked_list.zig"
// 删除链表的节点 n0 之后的首个节点
fn remove(n0: ?*inc.ListNode(i32)) void {
if (n0.?.next == null) return;
// n0 -> P -> n1
var P = n0.?.next;
var n1 = P.?.next;
n0.?.next = n1;
}
```
4.2.2. 链表缺点
链表访问节点效率较低。如上节所述,数组可以在 O(1)
时间下访问任意元素。然而,链表无法直接访问任意节点,这是因为系统需要从头节点出发,逐个向后遍历直至找到目标节点。例如,若要访问链表索引为 index
(即第 index + 1
个)的节点,则需要向后遍历 index
轮。
=== "Java"
```java title="linked_list.java"
/* 访问链表中索引为 index 的节点 */
ListNode access(ListNode head, int index) {
for (int i = 0; i < index; i++) {
if (head == null)
return null;
head = head.next;
}
return head;
}
```
=== "C++"
```cpp title="linked_list.cpp"
/* 访问链表中索引为 index 的节点 */
ListNode *access(ListNode *head, int index) {
for (int i = 0; i < index; i++) {
if (head == nullptr)
return nullptr;
head = head->next;
}
return head;
}
```
=== "Python"
```python title="linked_list.py"
def access(head: ListNode, index: int) -> ListNode | None:
"""访问链表中索引为 index 的节点"""
for _ in range(index):
if not head:
return None
head = head.next
return head
```
=== "Go"
```go title="linked_list.go"
/* 访问链表中索引为 index 的节点 */
func access(head *ListNode, index int) *ListNode {
for i := 0; i < index; i++ {
if head == nil {
return nil
}
head = head.Next
}
return head
}
```
=== "JavaScript"
```javascript title="linked_list.js"
/* 访问链表中索引为 index 的节点 */
function access(head, index) {
for (let i = 0; i < index; i++) {
if (!head) {
return null;
}
head = head.next;
}
return head;
}
```
=== "TypeScript"
```typescript title="linked_list.ts"
/* 访问链表中索引为 index 的节点 */
function access(head: ListNode | null, index: number): ListNode | null {
for (let i = 0; i < index; i++) {
if (!head) {
return null;
}
head = head.next;
}
return head;
}
```
=== "C"
```c title="linked_list.c"
[class]{}-[func]{access}
```
=== "C#"
```csharp title="linked_list.cs"
/* 访问链表中索引为 index 的节点 */
ListNode? access(ListNode head, int index)
{
for (int i = 0; i < index; i++)
{
if (head == null)
return null;
head = head.next;
}
return head;
}
```
=== "Swift"
```swift title="linked_list.swift"
/* 访问链表中索引为 index 的节点 */
func access(head: ListNode, index: Int) -> ListNode? {
var head: ListNode? = head
for _ in 0 ..< index {
if head == nil {
return nil
}
head = head?.next
}
return head
}
```
=== "Zig"
```zig title="linked_list.zig"
// 访问链表中索引为 index 的节点
fn access(node: ?*inc.ListNode(i32), index: i32) ?*inc.ListNode(i32) {
var head = node;
var i: i32 = 0;
while (i < index) : (i += 1) {
head = head.?.next;
if (head == null) return null;
}
return head;
}
```
链表的内存占用较大。链表以节点为单位,每个节点除了保存值之外,还需额外保存指针(引用)。这意味着在相同数据量的情况下,链表比数组需要占用更多的内存空间。
4.2.3. 链表常用操作
遍历链表查找。遍历链表,查找链表内值为 target
的节点,输出节点在链表中的索引。
=== "Java"
```java title="linked_list.java"
/* 在链表中查找值为 target 的首个节点 */
int find(ListNode head, int target) {
int index = 0;
while (head != null) {
if (head.val == target)
return index;
head = head.next;
index++;
}
return -1;
}
```
=== "C++"
```cpp title="linked_list.cpp"
/* 在链表中查找值为 target 的首个节点 */
int find(ListNode *head, int target) {
int index = 0;
while (head != nullptr) {
if (head->val == target)
return index;
head = head->next;
index++;
}
return -1;
}
```
=== "Python"
```python title="linked_list.py"
def find(head: ListNode, target: int) -> int:
"""在链表中查找值为 target 的首个节点"""
index = 0
while head:
if head.val == target:
return index
head = head.next
index += 1
return -1
```
=== "Go"
```go title="linked_list.go"
/* 在链表中查找值为 target 的首个节点 */
func findNode(head *ListNode, target int) int {
index := 0
for head != nil {
if head.Val == target {
return index
}
head = head.Next
index++
}
return -1
}
```
=== "JavaScript"
```javascript title="linked_list.js"
/* 在链表中查找值为 target 的首个节点 */
function find(head, target) {
let index = 0;
while (head !== null) {
if (head.val === target) {
return index;
}
head = head.next;
index += 1;
}
return -1;
}
```
=== "TypeScript"
```typescript title="linked_list.ts"
/* 在链表中查找值为 target 的首个节点 */
function find(head: ListNode | null, target: number): number {
let index = 0;
while (head !== null) {
if (head.val === target) {
return index;
}
head = head.next;
index += 1;
}
return -1;
}
```
=== "C"
```c title="linked_list.c"
[class]{}-[func]{findNode}
```
=== "C#"
```csharp title="linked_list.cs"
/* 在链表中查找值为 target 的首个节点 */
int find(ListNode head, int target)
{
int index = 0;
while (head != null)
{
if (head.val == target)
return index;
head = head.next;
index++;
}
return -1;
}
```
=== "Swift"
```swift title="linked_list.swift"
/* 在链表中查找值为 target 的首个节点 */
func find(head: ListNode, target: Int) -> Int {
var head: ListNode? = head
var index = 0
while head != nil {
if head?.val == target {
return index
}
head = head?.next
index += 1
}
return -1
}
```
=== "Zig"
```zig title="linked_list.zig"
// 在链表中查找值为 target 的首个节点
fn find(node: ?*inc.ListNode(i32), target: i32) i32 {
var head = node;
var index: i32 = 0;
while (head != null) {
if (head.?.val == target) return index;
head = head.?.next;
index += 1;
}
return -1;
}
```
4.2.4. 常见链表类型
单向链表。即上述介绍的普通链表。单向链表的节点包含值和指向下一节点的指针(引用)两项数据。我们将首个节点称为头节点,将最后一个节点成为尾节点,尾节点指向 \text{null}
。
环形链表。如果我们令单向链表的尾节点指向头节点(即首尾相接),则得到一个环形链表。在环形链表中,任意节点都可以视作头节点。
双向链表。与单向链表相比,双向链表记录了两个方向的指针(引用)。双向链表的节点定义同时包含指向后继节点(下一节点)和前驱节点(上一节点)的指针。相较于单向链表,双向链表更具灵活性,可以朝两个方向遍历链表,但相应地也需要占用更多的内存空间。
=== "Java"
```java title=""
/* 双向链表节点类 */
class ListNode {
int val; // 节点值
ListNode next; // 指向后继节点的指针(引用)
ListNode prev; // 指向前驱节点的指针(引用)
ListNode(int x) { val = x; } // 构造函数
}
```
=== "C++"
```cpp title=""
/* 双向链表节点结构体 */
struct ListNode {
int val; // 节点值
ListNode *next; // 指向后继节点的指针(引用)
ListNode *prev; // 指向前驱节点的指针(引用)
ListNode(int x) : val(x), next(nullptr), prev(nullptr) {} // 构造函数
};
```
=== "Python"
```python title=""
class ListNode:
"""双向链表节点类"""
def __init__(self, val: int):
self.val: int = val # 节点值
self.next: Optional[ListNode] = None # 指向后继节点的指针(引用)
self.prev: Optional[ListNode] = None # 指向前驱节点的指针(引用)
```
=== "Go"
```go title=""
/* 双向链表节点结构体 */
type DoublyListNode struct {
Val int // 节点值
Next *DoublyListNode // 指向后继节点的指针(引用)
Prev *DoublyListNode // 指向前驱节点的指针(引用)
}
// NewDoublyListNode 初始化
func NewDoublyListNode(val int) *DoublyListNode {
return &DoublyListNode{
Val: val,
Next: nil,
Prev: nil,
}
}
```
=== "JavaScript"
```javascript title=""
/* 双向链表节点类 */
class ListNode {
val;
next;
prev;
constructor(val, next) {
this.val = val === undefined ? 0 : val; // 节点值
this.next = next === undefined ? null : next; // 指向后继节点的指针(引用)
this.prev = prev === undefined ? null : prev; // 指向前驱节点的指针(引用)
}
}
```
=== "TypeScript"
```typescript title=""
/* 双向链表节点类 */
class ListNode {
val: number;
next: ListNode | null;
prev: ListNode | null;
constructor(val?: number, next?: ListNode | null, prev?: ListNode | null) {
this.val = val === undefined ? 0 : val; // 节点值
this.next = next === undefined ? null : next; // 指向后继节点的指针(引用)
this.prev = prev === undefined ? null : prev; // 指向前驱节点的指针(引用)
}
}
```
=== "C"
```c title=""
```
=== "C#"
```csharp title=""
/* 双向链表节点类 */
class ListNode {
int val; // 节点值
ListNode next; // 指向后继节点的指针(引用)
ListNode prev; // 指向前驱节点的指针(引用)
ListNode(int x) => val = x; // 构造函数
}
```
=== "Swift"
```swift title=""
/* 双向链表节点类 */
class ListNode {
var val: Int // 节点值
var next: ListNode? // 指向后继节点的指针(引用)
var prev: ListNode? // 指向前驱节点的指针(引用)
init(x: Int) { // 构造函数
val = x
}
}
```
=== "Zig"
```zig title=""
// 双向链表节点类
pub fn ListNode(comptime T: type) type {
return struct {
const Self = @This();
val: T = 0, // 节点值
next: ?*Self = null, // 指向后继节点的指针(引用)
prev: ?*Self = null, // 指向前驱节点的指针(引用)
// 构造函数
pub fn init(self: *Self, x: i32) void {
self.val = x;
self.next = null;
self.prev = null;
}
};
}
```
Fig. 常见链表种类