mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-26 14:46:28 +08:00
e720aa2d24
* Sync recent changes to the revised Word. * Revised the preface chapter * Revised the introduction chapter * Revised the computation complexity chapter * Revised the chapter data structure * Revised the chapter array and linked list * Revised the chapter stack and queue * Revised the chapter hashing * Revised the chapter tree * Revised the chapter heap * Revised the chapter graph * Revised the chapter searching * Reivised the sorting chapter * Revised the divide and conquer chapter * Revised the chapter backtacking * Revised the DP chapter * Revised the greedy chapter * Revised the appendix chapter * Revised the preface chapter doubly * Revised the figures
54 lines
5 KiB
Markdown
54 lines
5 KiB
Markdown
# 小结
|
||
|
||
### 重点回顾
|
||
|
||
- 二叉树是一种非线性数据结构,体现“一分为二”的分治逻辑。每个二叉树节点包含一个值以及两个指针,分别指向其左子节点和右子节点。
|
||
- 对于二叉树中的某个节点,其左(右)子节点及其以下形成的树被称为该节点的左(右)子树。
|
||
- 二叉树的相关术语包括根节点、叶节点、层、度、边、高度和深度等。
|
||
- 二叉树的初始化、节点插入和节点删除操作与链表操作方法类似。
|
||
- 常见的二叉树类型有完美二叉树、完全二叉树、完满二叉树和平衡二叉树。完美二叉树是最理想的状态,而链表是退化后的最差状态。
|
||
- 二叉树可以用数组表示,方法是将节点值和空位按层序遍历顺序排列,并根据父节点与子节点之间的索引映射关系来实现指针。
|
||
- 二叉树的层序遍历是一种广度优先搜索方法,它体现了“一圈一圈向外扩展”的逐层遍历方式,通常通过队列来实现。
|
||
- 前序、中序、后序遍历皆属于深度优先搜索,它们体现了“先走到尽头,再回溯继续”的遍历方式,通常使用递归来实现。
|
||
- 二叉搜索树是一种高效的元素查找数据结构,其查找、插入和删除操作的时间复杂度均为 $O(\log n)$ 。当二叉搜索树退化为链表时,各项时间复杂度会劣化至 $O(n)$ 。
|
||
- AVL 树,也称平衡二叉搜索树,它通过旋转操作确保在不断插入和删除节点后树仍然保持平衡。
|
||
- AVL 树的旋转操作包括右旋、左旋、先右旋再左旋、先左旋再右旋。在插入或删除节点后,AVL 树会从底向顶执行旋转操作,使树重新恢复平衡。
|
||
|
||
### Q & A
|
||
|
||
!!! question "对于只有一个节点的二叉树,树的高度和根节点的深度都是 $0$ 吗?"
|
||
|
||
是的,因为高度和深度通常定义为“经过的边的数量”。
|
||
|
||
!!! question "二叉树中的插入与删除一般由一套操作配合完成,这里的“一套操作”指什么呢?可以理解为资源的子节点的资源释放吗?"
|
||
|
||
拿二叉搜索树来举例,删除节点操作要分三种情况处理,其中每种情况都需要进行多个步骤的节点操作。
|
||
|
||
!!! question "为什么 DFS 遍历二叉树有前、中、后三种顺序,分别有什么用呢?"
|
||
|
||
与顺序和逆序遍历数组类似,前序、中序、后序遍历是三种二叉树遍历方法,我们可以使用它们得到一个特定顺序的遍历结果。例如在二叉搜索树中,由于节点大小满足 `左子节点值 < 根节点值 < 右子节点值` ,因此我们只要按照 `左 $\rightarrow$ 根 $\rightarrow$ 右` 的优先级遍历树,就可以获得有序的节点序列。
|
||
|
||
!!! question "右旋操作是处理失衡节点 `node`、`child`、`grand_child` 之间的关系,那 `node` 的父节点和 `node` 原来的连接不需要维护吗?右旋操作后岂不是断掉了?"
|
||
|
||
我们需要从递归的视角来看这个问题。右旋操作 `right_rotate(root)` 传入的是子树的根节点,最终 `return child` 返回旋转之后的子树的根节点。子树的根节点和其父节点的连接是在该函数返回后完成的,不属于右旋操作的维护范围。
|
||
|
||
!!! question "在 C++ 中,函数被划分到 `private` 和 `public` 中,这方面有什么考量吗?为什么要将 `height()` 函数和 `updateHeight()` 函数分别放在 `public` 和 `private` 中呢?"
|
||
|
||
主要看方法的使用范围,如果方法只在类内部使用,那么就设计为 `private` 。例如,用户单独调用 `updateHeight()` 是没有意义的,它只是插入、删除操作中的一步。而 `height()` 是访问节点高度,类似于 `vector.size()` ,因此设置成 `public` 以便使用。
|
||
|
||
!!! question "如何从一组输入数据构建一棵二叉搜索树?根节点的选择是不是很重要?"
|
||
|
||
是的,构建树的方法已在二叉搜索树代码中的 `build_tree()` 方法中给出。至于根节点的选择,我们通常会将输入数据排序,然后将中点元素作为根节点,再递归地构建左右子树。这样做可以最大程度保证树的平衡性。
|
||
|
||
!!! question "在 Java 中,字符串对比是否一定要用 `equals()` 方法?"
|
||
|
||
在 Java 中,对于基本数据类型,`==` 用于对比两个变量的值是否相等。对于引用类型,两种符号的工作原理是不同的。
|
||
|
||
- `==` :用来比较两个变量是否指向同一个对象,即它们在内存中的位置是否相同。
|
||
- `equals()`:用来对比两个对象的值是否相等。
|
||
|
||
因此,如果要对比值,我们应该使用 `equals()` 。然而,通过 `String a = "hi"; String b = "hi";` 初始化的字符串都存储在字符串常量池中,它们指向同一个对象,因此也可以用 `a == b` 来比较两个字符串的内容。
|
||
|
||
!!! question "广度优先遍历到最底层之前,队列中的节点数量是 $2^h$ 吗?"
|
||
|
||
是的,例如高度 $h = 2$ 的满二叉树,其节点总数 $n = 7$ ,则底层节点数量 $4 = 2^h = (n + 1) / 2$ 。
|