hello-algo/docs/chapter_sorting/selection_sort.md
Yudong Jin 2b1a98fb61
Use underline format for the technical terms (#1213)
* Use underline format for the technical terms

* Bug fixes
2024-04-03 03:52:17 +08:00

2.5 KiB
Raw Permalink Blame History

选择排序

选择排序selection sort的工作原理非常简单:开启一个循环,每轮从未排序区间选择最小的元素,将其放到已排序区间的末尾。

设数组的长度为 n ,选择排序的算法流程如下图所示。

  1. 初始状态下,所有元素未排序,即未排序(索引)区间为 [0, n-1]
  2. 选取区间 [0, n-1] 中的最小元素,将其与索引 0 处的元素交换。完成后,数组前 1 个元素已排序。
  3. 选取区间 [1, n-1] 中的最小元素,将其与索引 1 处的元素交换。完成后,数组前 2 个元素已排序。
  4. 以此类推。经过 n - 1 轮选择与交换后,数组前 n - 1 个元素已排序。
  5. 仅剩的一个元素必定是最大元素,无须排序,因此数组排序完成。

=== "<1>" 选择排序步骤

=== "<2>" selection_sort_step2

=== "<3>" selection_sort_step3

=== "<4>" selection_sort_step4

=== "<5>" selection_sort_step5

=== "<6>" selection_sort_step6

=== "<7>" selection_sort_step7

=== "<8>" selection_sort_step8

=== "<9>" selection_sort_step9

=== "<10>" selection_sort_step10

=== "<11>" selection_sort_step11

在代码中,我们用 k 来记录未排序区间内的最小元素:

[file]{selection_sort}-[class]{}-[func]{selection_sort}

算法特性

  • 时间复杂度为 $O(n^2)$、非自适应排序:外循环共 n - 1 轮,第一轮的未排序区间长度为 n ,最后一轮的未排序区间长度为 2 ,即各轮外循环分别包含 $n$、$n - 1$、$\dots$、$3$、2 轮内循环,求和为 \frac{(n - 1)(n + 2)}{2}
  • 空间复杂度为 $O(1)$、原地排序:指针 ij 使用常数大小的额外空间。
  • 非稳定排序:如下图所示,元素 nums[i] 有可能被交换至与其相等的元素的右边,导致两者的相对顺序发生改变。

选择排序非稳定示例