mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-24 04:26:30 +08:00
f616dac7da
* Fix is_empty() implementation in the stack and queue chapter * Update en/CONTRIBUTING.md * Remove "剩余" from the state definition of knapsack problem * Sync zh and zh-hant versions * Update the stylesheets of code tabs * Fix quick_sort.rb * Fix TS code * Update chapter_paperbook * Upload the manuscript of 0.1 section * Fix binary_tree_dfs.rb * Bug fixes * Update README * Update README * Update README * Update README.md * Update README * Sync zh and zh-hant versions * Bug fixes
2.9 KiB
2.9 KiB
基数排序
上一节介绍了计数排序,它适用于数据量 n
较大但数据范围 m
较小的情况。假设我们需要对 n = 10^6
个学号进行排序,而学号是一个 8
位数字,这意味着数据范围 m = 10^8
非常大,使用计数排序需要分配大量内存空间,而基数排序可以避免这种情况。
基数排序(radix sort)的核心思想与计数排序一致,也通过统计个数来实现排序。在此基础上,基数排序利用数字各位之间的递进关系,依次对每一位进行排序,从而得到最终的排序结果。
算法流程
以学号数据为例,假设数字的最低位是第 1
位,最高位是第 8
位,基数排序的流程如下图所示。
- 初始化位数
k = 1
。 - 对学号的第
k
位执行“计数排序”。完成后,数据会根据第k
位从小到大排序。 - 将
k
增加1
,然后返回步骤2.
继续迭代,直到所有位都排序完成后结束。
下面剖析代码实现。对于一个 d
进制的数字 x
,要获取其第 k
位 x_k
,可以使用以下计算公式:
$$
x_k = \lfloor\frac{x}{d^{k-1}}\rfloor \bmod d
其中 \lfloor a \rfloor
表示对浮点数 a
向下取整,而 \bmod \: d
表示对 d
取模(取余)。对于学号数据,d = 10
且 k \in [1, 8]
。
此外,我们需要小幅改动计数排序代码,使之可以根据数字的第 k
位进行排序:
[file]{radix_sort}-[class]{}-[func]{radix_sort}
!!! question "为什么从最低位开始排序?"
在连续的排序轮次中,后一轮排序会覆盖前一轮排序的结果。举例来说,如果第一轮排序结果 $a < b$ ,而第二轮排序结果 $a > b$ ,那么第二轮的结果将取代第一轮的结果。由于数字的高位优先级高于低位,因此应该先排序低位再排序高位。
算法特性
相较于计数排序,基数排序适用于数值范围较大的情况,但前提是数据必须可以表示为固定位数的格式,且位数不能过大。例如,浮点数不适合使用基数排序,因为其位数 k
过大,可能导致时间复杂度 O(nk) \gg O(n^2)
。
- 时间复杂度为 $O(nk)$、非自适应排序:设数据量为 $n$、数据为
d
进制、最大位数为k
,则对某一位执行计数排序使用O(n + d)
时间,排序所有k
位使用O((n + d)k)
时间。通常情况下,d
和k
都相对较小,时间复杂度趋向O(n)
。 - 空间复杂度为 $O(n + d)$、非原地排序:与计数排序相同,基数排序需要借助长度为
n
和d
的数组res
和counter
。 - 稳定排序:当计数排序稳定时,基数排序也稳定;当计数排序不稳定时,基数排序无法保证得到正确的排序结果。