This commit is contained in:
krahets 2023-07-19 16:10:06 +08:00
parent 1184c791c5
commit f421bbec33
7 changed files with 346 additions and 9 deletions

View file

@ -1098,8 +1098,10 @@ elementAddr = firtstElementAddr + elementLength * elementIndex
## 4.1.4.   数组典型应用
**随机访问**。如果我们想要随机抽取一些样本,那么可以用数组存储,并生成一个随机序列,根据索引实现样本的随机抽取
数组是最基础的数据结构,在各类数据结构和算法中都有广泛应用
**二分查找**。例如前文查字典的例子,我们可以将字典中的所有字按照拼音顺序存储在数组中,然后使用与日常查纸质字典相同的“翻开中间,排除一半”的方式,来实现一个查电子字典的算法。
**深度学习**。神经网络中大量使用了向量、矩阵、张量之间的线性代数运算,这些数据都是以数组的形式构建的。数组是神经网络编程中最常使用的数据结构。
- **随机访问**:如果我们想要随机抽取一些样本,那么可以用数组存储,并生成一个随机序列,根据索引实现样本的随机抽取。
- **排序和搜索**:数组是排序和搜索算法最常用的数据结构。例如,快速排序、归并排序、二分查找等都需要在数组上进行。
- **查找表**:当我们需要快速查找一个元素或者需要查找一个元素的对应关系时,可以使用数组作为查找表。例如,我们有一个字符到其 ASCII 码的映射,可以将字符的 ASCII 码值作为索引,对应的元素存放在数组中的对应位置。
- **机器学习**:神经网络中大量使用了向量、矩阵、张量之间的线性代数运算,这些数据都是以数组的形式构建的。数组是神经网络编程中最常使用的数据结构。
- **数据结构实现**:数组可以用于实现栈、队列、哈希表、堆、图等数据结构。例如,邻接矩阵是图的常见表示之一,它实质上是一个二维数组。

View file

@ -1,6 +1,6 @@
---
comments: true
icon: material/view-grid-outline
icon: material/view-list-outline
---
# 4.   数组与链表

View file

@ -1188,3 +1188,22 @@ comments: true
![常见链表种类](linked_list.assets/linkedlist_common_types.png)
<p align="center"> Fig. 常见链表种类 </p>
## 4.2.5. &nbsp; 链表典型应用
单向链表通常用于实现栈、队列、散列表和图等数据结构。
- **栈与队列**:当插入和删除操作都在链表的一端进行时,它表现出先进后出的的特性,对应栈;当插入操作在链表的一端进行,删除操作在链表的另一端进行,它表现出先进先出的特性,对应队列。
- **散列表**:链地址法是解决哈希冲突的主流方案之一,在该方案中,所有冲突的元素都会被放到一个链表中。
- **图**:邻接表是表示图的一种常用方式,在其中,图的每个顶点都与一个链表相关联,链表中的每个元素都代表与该顶点相连的其他顶点。
双向链表常被用于需要快速查找前一个和下一个元素的场景。
- **高级数据结构**比如在红黑树、B 树中,我们需要知道一个节点的父节点,这可以通过在节点中保存一个指向父节点的指针来实现,类似于双向链表。
- **浏览器历史**:在网页浏览器中,当用户点击前进或后退按钮时,浏览器需要知道用户访问过的前一个和后一个网页。双向链表的特性使得这种操作变得简单。
- **LRU 算法**在缓存淘汰算法LRU我们需要快速找到最近最少使用的数据以及支持快速地添加和删除节点。这时候使用双向链表就非常合适。
循环链表常被用于需要周期性操作的场景,比如操作系统的资源调度。
- **时间片轮转调度算法**:在操作系统中,时间片轮转调度算法是一种常见的 CPU 调度算法它需要对一组进程进行循环。每个进程被赋予一个时间片当时间片用完时CPU 将切换到下一个进程。这种循环的操作就可以通过循环链表来实现。
- **数据缓冲区**:在某些数据缓冲区的实现中,也可能会使用到循环链表。比如在音频、视频播放器中,数据流可能会被分成多个缓冲块并放入一个循环链表,以便实现无缝播放。

View file

@ -1,6 +1,6 @@
---
comments: true
icon: material/database-outline
icon: material/shape-outline
---
# 3. &nbsp; 数据结构

View file

@ -1,6 +1,6 @@
---
comments: true
icon: material/file-tree-outline
icon: material/set-split
status: new
---

View file

@ -1,6 +1,6 @@
---
comments: true
icon: material/code-tags
icon: material/calculator-variant-outline
---
# 1. &nbsp; 初识算法

View file

@ -42,7 +42,7 @@ comments: true
```cpp title=""
/* 二叉树的数组表示 */
// 使用 int 最大值标记空位,因此要求节点值不能为 INT_MAX
// 使用 int 最大值 INT_MAX 标记空位
vector<int> tree = {1, 2, 3, 4, INT_MAX, 6, 7, 8, 9, INT_MAX, INT_MAX, 12, INT_MAX, INT_MAX, 15};
```
@ -120,6 +120,322 @@ comments: true
<p align="center"> Fig. 任意类型二叉树的数组表示 </p>
以下为数组表示下二叉树的实现,包括:
- 获取节点数量、节点值、左(右)子节点、父节点等基础操作;
- 获取前序遍历、中序遍历、后序遍历、层序遍历的节点值序列;
=== "Java"
```java title="array_binary_tree.java"
/* 数组表示下的二叉树类 */
class ArrayBinaryTree {
private List<Integer> tree;
/* 构造方法 */
public ArrayBinaryTree(List<Integer> arr) {
tree = new ArrayList<>(arr);
}
/* 节点数量 */
public int size() {
return tree.size();
}
/* 获取索引为 i 节点的值 */
public Integer val(int i) {
// 若索引越界,则返回 null ,代表空位
if (i < 0 || i >= size())
return null;
return tree.get(i);
}
/* 获取索引为 i 节点的左子节点的索引 */
public Integer left(int i) {
return 2 * i + 1;
}
/* 获取索引为 i 节点的右子节点的索引 */
public Integer right(int i) {
return 2 * i + 2;
}
/* 获取索引为 i 节点的父节点的索引 */
public Integer parent(int i) {
return (i - 1) / 2;
}
/* 层序遍历 */
public List<Integer> levelOrder() {
List<Integer> res = new ArrayList<>();
// 直接遍历数组
for (int i = 0; i < size(); i++) {
if (val(i) != null)
res.add(val(i));
}
return res;
}
/* 深度优先遍历 */
private void dfs(Integer i, String order, List<Integer> res) {
// 若为空位,则返回
if (val(i) == null)
return;
// 前序遍历
if (order == "pre")
res.add(val(i));
dfs(left(i), order, res);
// 中序遍历
if (order == "in")
res.add(val(i));
dfs(right(i), order, res);
// 后序遍历
if (order == "post")
res.add(val(i));
}
/* 前序遍历 */
public List<Integer> preOrder() {
List<Integer> res = new ArrayList<>();
dfs(0, "pre", res);
return res;
}
/* 中序遍历 */
public List<Integer> inOrder() {
List<Integer> res = new ArrayList<>();
dfs(0, "in", res);
return res;
}
/* 后序遍历 */
public List<Integer> postOrder() {
List<Integer> res = new ArrayList<>();
dfs(0, "post", res);
return res;
}
}
```
=== "C++"
```cpp title="array_binary_tree.cpp"
/* 数组表示下的二叉树类 */
class ArrayBinaryTree {
public:
/* 构造方法 */
ArrayBinaryTree(vector<int> arr) {
tree = arr;
}
/* 节点数量 */
int size() {
return tree.size();
}
/* 获取索引为 i 节点的值 */
int val(int i) {
// 若索引越界,则返回 INT_MAX ,代表空位
if (i < 0 || i >= size())
return INT_MAX;
return tree[i];
}
/* 获取索引为 i 节点的左子节点的索引 */
int left(int i) {
return 2 * i + 1;
}
/* 获取索引为 i 节点的右子节点的索引 */
int right(int i) {
return 2 * i + 2;
}
/* 获取索引为 i 节点的父节点的索引 */
int parent(int i) {
return (i - 1) / 2;
}
/* 层序遍历 */
vector<int> levelOrder() {
vector<int> res;
// 直接遍历数组
for (int i = 0; i < size(); i++) {
if (val(i) != INT_MAX)
res.push_back(val(i));
}
return res;
}
/* 前序遍历 */
vector<int> preOrder() {
vector<int> res;
dfs(0, "pre", res);
return res;
}
/* 中序遍历 */
vector<int> inOrder() {
vector<int> res;
dfs(0, "in", res);
return res;
}
/* 后序遍历 */
vector<int> postOrder() {
vector<int> res;
dfs(0, "post", res);
return res;
}
private:
vector<int> tree;
/* 深度优先遍历 */
void dfs(int i, string order, vector<int> &res) {
// 若为空位,则返回
if (val(i) == INT_MAX)
return;
// 前序遍历
if (order == "pre")
res.push_back(val(i));
dfs(left(i), order, res);
// 中序遍历
if (order == "in")
res.push_back(val(i));
dfs(right(i), order, res);
// 后序遍历
if (order == "post")
res.push_back(val(i));
}
};
```
=== "Python"
```python title="array_binary_tree.py"
class ArrayBinaryTree:
"""数组表示下的二叉树类"""
def __init__(self, arr: list[int | None]):
"""构造方法"""
self.__tree = list(arr)
def size(self):
"""节点数量"""
return len(self.__tree)
def val(self, i: int) -> int:
"""获取索引为 i 节点的值"""
# 若索引越界,则返回 None ,代表空位
if i < 0 or i >= self.size():
return None
return self.__tree[i]
def left(self, i: int) -> int | None:
"""获取索引为 i 节点的左子节点的索引"""
return 2 * i + 1
def right(self, i: int) -> int | None:
"""获取索引为 i 节点的右子节点的索引"""
return 2 * i + 2
def parent(self, i: int) -> int | None:
"""获取索引为 i 节点的父节点的索引"""
return (i - 1) // 2
def level_order(self) -> list[int]:
"""层序遍历"""
self.res = []
# 直接遍历数组
for i in range(self.size()):
if self.val(i) is not None:
self.res.append(self.val(i))
return self.res
def __dfs(self, i: int, order: str):
"""深度优先遍历"""
if self.val(i) is None:
return
# 前序遍历
if order == "pre":
self.res.append(self.val(i))
self.__dfs(self.left(i), order)
# 中序遍历
if order == "in":
self.res.append(self.val(i))
self.__dfs(self.right(i), order)
# 后序遍历
if order == "post":
self.res.append(self.val(i))
def pre_order(self) -> list[int]:
"""前序遍历"""
self.res = []
self.__dfs(0, order="pre")
return self.res
def in_order(self) -> list[int]:
"""中序遍历"""
self.res = []
self.__dfs(0, order="in")
return self.res
def post_order(self) -> list[int]:
"""后序遍历"""
self.res = []
self.__dfs(0, order="post")
return self.res
```
=== "Go"
```go title="array_binary_tree.go"
[class]{arrayBinaryTree}-[func]{}
```
=== "JavaScript"
```javascript title="array_binary_tree.js"
[class]{ArrayBinaryTree}-[func]{}
```
=== "TypeScript"
```typescript title="array_binary_tree.ts"
[class]{ArrayBinaryTree}-[func]{}
```
=== "C"
```c title="array_binary_tree.c"
[class]{arrayBinaryTree}-[func]{}
```
=== "C#"
```csharp title="array_binary_tree.cs"
[class]{ArrayBinaryTree}-[func]{}
```
=== "Swift"
```swift title="array_binary_tree.swift"
[class]{ArrayBinaryTree}-[func]{}
```
=== "Zig"
```zig title="array_binary_tree.zig"
[class]{ArrayBinaryTree}-[func]{}
```
=== "Dart"
```dart title="array_binary_tree.dart"
[class]{ArrayBinaryTree}-[func]{}
```
## 7.3.3. &nbsp; 优势与局限性
二叉树的数组表示存在以下优点: