mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-26 01:26:28 +08:00
build
This commit is contained in:
parent
ec6f3fd337
commit
1184c791c5
14 changed files with 563 additions and 42 deletions
|
@ -1364,7 +1364,7 @@ comments: true
|
|||
- 上文介绍过的剪枝是一种常用的优化方法。它可以避免搜索那些肯定不会产生有效解的路径,从而节省时间和空间。
|
||||
- 另一个常用的优化方法是加入「启发式搜索 Heuristic Search」策略,它在搜索过程中引入一些策略或者估计值,从而优先搜索最有可能产生有效解的路径。
|
||||
|
||||
## 13.1.6. 典型例题
|
||||
## 13.1.6. 回溯典型例题
|
||||
|
||||
**搜索问题**:这类问题的目标是找到满足特定条件的解决方案。
|
||||
|
||||
|
|
|
@ -160,9 +160,32 @@ status: new
|
|||
=== "C#"
|
||||
|
||||
```csharp title="binary_search_recur.cs"
|
||||
[class]{binary_search_recur}-[func]{dfs}
|
||||
/* 二分查找:问题 f(i, j) */
|
||||
int dfs(int[] nums, int target, int i, int j) {
|
||||
// 若区间为空,代表无目标元素,则返回 -1
|
||||
if (i > j) {
|
||||
return -1;
|
||||
}
|
||||
// 计算中点索引 m
|
||||
int m = (i + j) / 2;
|
||||
if (nums[m] < target) {
|
||||
// 递归子问题 f(m+1, j)
|
||||
return dfs(nums, target, m + 1, j);
|
||||
} else if (nums[m] > target) {
|
||||
// 递归子问题 f(i, m-1)
|
||||
return dfs(nums, target, i, m - 1);
|
||||
} else {
|
||||
// 找到目标元素,返回其索引
|
||||
return m;
|
||||
}
|
||||
}
|
||||
|
||||
[class]{binary_search_recur}-[func]{binarySearch}
|
||||
/* 二分查找 */
|
||||
int binarySearch(int[] nums, int target) {
|
||||
int n = nums.Length;
|
||||
// 求解问题 f(0, n-1)
|
||||
return dfs(nums, target, 0, n - 1);
|
||||
}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
|
|
@ -195,9 +195,33 @@ status: new
|
|||
=== "C#"
|
||||
|
||||
```csharp title="build_tree.cs"
|
||||
[class]{build_tree}-[func]{dfs}
|
||||
/* 构建二叉树:分治 */
|
||||
TreeNode dfs(int[] preorder, int[] inorder, Dictionary<int, int> hmap, int i, int l, int r) {
|
||||
// 子树区间为空时终止
|
||||
if (r - l < 0)
|
||||
return null;
|
||||
// 初始化根节点
|
||||
TreeNode root = new TreeNode(preorder[i]);
|
||||
// 查询 m ,从而划分左右子树
|
||||
int m = hmap[preorder[i]];
|
||||
// 子问题:构建左子树
|
||||
root.left = dfs(preorder, inorder, hmap, i + 1, l, m - 1);
|
||||
// 子问题:构建右子树
|
||||
root.right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r);
|
||||
// 返回根节点
|
||||
return root;
|
||||
}
|
||||
|
||||
[class]{build_tree}-[func]{buildTree}
|
||||
/* 构建二叉树 */
|
||||
TreeNode buildTree(int[] preorder, int[] inorder) {
|
||||
// 初始化哈希表,存储 inorder 元素到索引的映射
|
||||
Dictionary<int, int> hmap = new Dictionary<int, int>();
|
||||
for (int i = 0; i < inorder.Length; i++) {
|
||||
hmap.TryAdd(inorder[i], i);
|
||||
}
|
||||
TreeNode root = dfs(preorder, inorder, hmap, 0, 0, inorder.Length - 1);
|
||||
return root;
|
||||
}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
|
|
@ -112,7 +112,7 @@ status: new
|
|||
}
|
||||
|
||||
/* 求解汉诺塔 */
|
||||
void hanota(List<Integer> A, List<Integer> B, List<Integer> C) {
|
||||
void solveHanota(List<Integer> A, List<Integer> B, List<Integer> C) {
|
||||
int n = A.size();
|
||||
// 将 A 顶部 n 个圆盘借助 B 移到 C
|
||||
dfs(n, A, B, C);
|
||||
|
@ -227,11 +227,36 @@ status: new
|
|||
=== "C#"
|
||||
|
||||
```csharp title="hanota.cs"
|
||||
[class]{hanota}-[func]{move}
|
||||
/* 移动一个圆盘 */
|
||||
void move(List<int> src, List<int> tar) {
|
||||
// 从 src 顶部拿出一个圆盘
|
||||
int pan = src[^1];
|
||||
src.RemoveAt(src.Count - 1);
|
||||
// 将圆盘放入 tar 顶部
|
||||
tar.Add(pan);
|
||||
}
|
||||
|
||||
[class]{hanota}-[func]{dfs}
|
||||
/* 求解汉诺塔:问题 f(i) */
|
||||
void dfs(int i, List<int> src, List<int> buf, List<int> tar) {
|
||||
// 若 src 只剩下一个圆盘,则直接将其移到 tar
|
||||
if (i == 1) {
|
||||
move(src, tar);
|
||||
return;
|
||||
}
|
||||
// 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
|
||||
dfs(i - 1, src, tar, buf);
|
||||
// 子问题 f(1) :将 src 剩余一个圆盘移到 tar
|
||||
move(src, tar);
|
||||
// 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
|
||||
dfs(i - 1, buf, src, tar);
|
||||
}
|
||||
|
||||
[class]{hanota}-[func]{hanota}
|
||||
/* 求解汉诺塔 */
|
||||
void solveHanota(List<int> A, List<int> B, List<int> C) {
|
||||
int n = A.Count;
|
||||
// 将 A 顶部 n 个圆盘借助 B 移到 C
|
||||
dfs(n, A, B, C);
|
||||
}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
|
|
@ -11,6 +11,6 @@ status: new
|
|||
- 引入分治策略往往可以带来算法效率的提升。一方面,分治策略减少了计算吧操作数量;另一方面,分治后有利于系统的并行优化。
|
||||
- 分治既可以解决许多算法问题,也广泛应用于数据结构与算法设计中,处处可见其身影。
|
||||
- 相较于暴力搜索,自适应搜索效率更高。时间复杂度为 $O(\log n)$ 的搜索算法通常都是基于分治策略实现的。
|
||||
- 二分查找也体现了分治思想,我们可以通过递归分治实现二分查找。
|
||||
- 二分查找是分治思想的另一个典型应用,它不包含将子问题的解进行合并的步骤。我们可以通过递归分治实现二分查找。
|
||||
- 在构建二叉树问题中,构建树(原问题)可以被划分为构建左子树和右子树(子问题),其可以通过划分前序遍历和中序遍历的索引区间来实现。
|
||||
- 在汉诺塔问题中,一个规模为 $n$ 的问题可以被划分为两个规模为 $n-1$ 的子问题和一个规模为 $1$ 的子问题。按顺序解决这三个子问题后,原问题随之得到解决。
|
||||
|
|
|
@ -143,7 +143,23 @@ $$
|
|||
=== "Swift"
|
||||
|
||||
```swift title="min_cost_climbing_stairs_dp.swift"
|
||||
[class]{}-[func]{minCostClimbingStairsDP}
|
||||
/* 爬楼梯最小代价:动态规划 */
|
||||
func minCostClimbingStairsDP(cost: [Int]) -> Int {
|
||||
let n = cost.count - 1
|
||||
if n == 1 || n == 2 {
|
||||
return cost[n]
|
||||
}
|
||||
// 初始化 dp 表,用于存储子问题的解
|
||||
var dp = Array(repeating: 0, count: n + 1)
|
||||
// 初始状态:预设最小子问题的解
|
||||
dp[1] = 1
|
||||
dp[2] = 2
|
||||
// 状态转移:从较小子问题逐步求解较大子问题
|
||||
for i in stride(from: 3, through: n, by: 1) {
|
||||
dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i]
|
||||
}
|
||||
return dp[n]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
@ -275,7 +291,18 @@ $$
|
|||
=== "Swift"
|
||||
|
||||
```swift title="min_cost_climbing_stairs_dp.swift"
|
||||
[class]{}-[func]{minCostClimbingStairsDPComp}
|
||||
/* 爬楼梯最小代价:状态压缩后的动态规划 */
|
||||
func minCostClimbingStairsDPComp(cost: [Int]) -> Int {
|
||||
let n = cost.count - 1
|
||||
if n == 1 || n == 2 {
|
||||
return cost[n]
|
||||
}
|
||||
var (a, b) = (cost[1], cost[2])
|
||||
for i in stride(from: 3, through: n, by: 1) {
|
||||
(a, b) = (b, min(a, b) + cost[i])
|
||||
}
|
||||
return b
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
@ -465,7 +492,25 @@ $$
|
|||
=== "Swift"
|
||||
|
||||
```swift title="climbing_stairs_constraint_dp.swift"
|
||||
[class]{}-[func]{climbingStairsConstraintDP}
|
||||
/* 带约束爬楼梯:动态规划 */
|
||||
func climbingStairsConstraintDP(n: Int) -> Int {
|
||||
if n == 1 || n == 2 {
|
||||
return n
|
||||
}
|
||||
// 初始化 dp 表,用于存储子问题的解
|
||||
var dp = Array(repeating: Array(repeating: 0, count: 3), count: n + 1)
|
||||
// 初始状态:预设最小子问题的解
|
||||
dp[1][1] = 1
|
||||
dp[1][2] = 0
|
||||
dp[2][1] = 0
|
||||
dp[2][2] = 1
|
||||
// 状态转移:从较小子问题逐步求解较大子问题
|
||||
for i in stride(from: 3, through: n, by: 1) {
|
||||
dp[i][1] = dp[i - 1][2]
|
||||
dp[i][2] = dp[i - 2][1] + dp[i - 2][2]
|
||||
}
|
||||
return dp[n][1] + dp[n][2]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
|
|
@ -216,7 +216,22 @@ $$
|
|||
=== "Swift"
|
||||
|
||||
```swift title="min_path_sum.swift"
|
||||
[class]{}-[func]{minPathSumDFS}
|
||||
/* 最小路径和:暴力搜索 */
|
||||
func minPathSumDFS(grid: [[Int]], i: Int, j: Int) -> Int {
|
||||
// 若为左上角单元格,则终止搜索
|
||||
if i == 0, j == 0 {
|
||||
return grid[0][0]
|
||||
}
|
||||
// 若行列索引越界,则返回 +∞ 代价
|
||||
if i < 0 || j < 0 {
|
||||
return .max
|
||||
}
|
||||
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
||||
let left = minPathSumDFS(grid: grid, i: i - 1, j: j)
|
||||
let up = minPathSumDFS(grid: grid, i: i, j: j - 1)
|
||||
// 返回从左上角到 (i, j) 的最小路径代价
|
||||
return min(left, up) + grid[i][j]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
@ -389,7 +404,27 @@ $$
|
|||
=== "Swift"
|
||||
|
||||
```swift title="min_path_sum.swift"
|
||||
[class]{}-[func]{minPathSumDFSMem}
|
||||
/* 最小路径和:记忆化搜索 */
|
||||
func minPathSumDFSMem(grid: [[Int]], mem: inout [[Int]], i: Int, j: Int) -> Int {
|
||||
// 若为左上角单元格,则终止搜索
|
||||
if i == 0, j == 0 {
|
||||
return grid[0][0]
|
||||
}
|
||||
// 若行列索引越界,则返回 +∞ 代价
|
||||
if i < 0 || j < 0 {
|
||||
return .max
|
||||
}
|
||||
// 若已有记录,则直接返回
|
||||
if mem[i][j] != -1 {
|
||||
return mem[i][j]
|
||||
}
|
||||
// 左边和上边单元格的最小路径代价
|
||||
let left = minPathSumDFSMem(grid: grid, mem: &mem, i: i - 1, j: j)
|
||||
let up = minPathSumDFSMem(grid: grid, mem: &mem, i: i, j: j - 1)
|
||||
// 记录并返回左上角到 (i, j) 的最小路径代价
|
||||
mem[i][j] = min(left, up) + grid[i][j]
|
||||
return mem[i][j]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
@ -565,7 +600,29 @@ $$
|
|||
=== "Swift"
|
||||
|
||||
```swift title="min_path_sum.swift"
|
||||
[class]{}-[func]{minPathSumDP}
|
||||
/* 最小路径和:动态规划 */
|
||||
func minPathSumDP(grid: [[Int]]) -> Int {
|
||||
let n = grid.count
|
||||
let m = grid[0].count
|
||||
// 初始化 dp 表
|
||||
var dp = Array(repeating: Array(repeating: 0, count: m), count: n)
|
||||
dp[0][0] = grid[0][0]
|
||||
// 状态转移:首行
|
||||
for j in stride(from: 1, to: m, by: 1) {
|
||||
dp[0][j] = dp[0][j - 1] + grid[0][j]
|
||||
}
|
||||
// 状态转移:首列
|
||||
for i in stride(from: 1, to: n, by: 1) {
|
||||
dp[i][0] = dp[i - 1][0] + grid[i][0]
|
||||
}
|
||||
// 状态转移:其余行列
|
||||
for i in stride(from: 1, to: n, by: 1) {
|
||||
for j in stride(from: 1, to: m, by: 1) {
|
||||
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]
|
||||
}
|
||||
}
|
||||
return dp[n - 1][m - 1]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
@ -771,7 +828,28 @@ $$
|
|||
=== "Swift"
|
||||
|
||||
```swift title="min_path_sum.swift"
|
||||
[class]{}-[func]{minPathSumDPComp}
|
||||
/* 最小路径和:状态压缩后的动态规划 */
|
||||
func minPathSumDPComp(grid: [[Int]]) -> Int {
|
||||
let n = grid.count
|
||||
let m = grid[0].count
|
||||
// 初始化 dp 表
|
||||
var dp = Array(repeating: 0, count: m)
|
||||
// 状态转移:首行
|
||||
dp[0] = grid[0][0]
|
||||
for j in stride(from: 1, to: m, by: 1) {
|
||||
dp[j] = dp[j - 1] + grid[0][j]
|
||||
}
|
||||
// 状态转移:其余行
|
||||
for i in stride(from: 1, to: n, by: 1) {
|
||||
// 状态转移:首列
|
||||
dp[0] = dp[0] + grid[i][0]
|
||||
// 状态转移:其余列
|
||||
for j in stride(from: 1, to: m, by: 1) {
|
||||
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j]
|
||||
}
|
||||
}
|
||||
return dp[m - 1]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
|
|
@ -213,7 +213,32 @@ $$
|
|||
=== "Swift"
|
||||
|
||||
```swift title="edit_distance.swift"
|
||||
[class]{}-[func]{editDistanceDP}
|
||||
/* 编辑距离:动态规划 */
|
||||
func editDistanceDP(s: String, t: String) -> Int {
|
||||
let n = s.utf8CString.count
|
||||
let m = t.utf8CString.count
|
||||
var dp = Array(repeating: Array(repeating: 0, count: m + 1), count: n + 1)
|
||||
// 状态转移:首行首列
|
||||
for i in stride(from: 1, through: n, by: 1) {
|
||||
dp[i][0] = i
|
||||
}
|
||||
for j in stride(from: 1, through: m, by: 1) {
|
||||
dp[0][j] = j
|
||||
}
|
||||
// 状态转移:其余行列
|
||||
for i in stride(from: 1, through: n, by: 1) {
|
||||
for j in stride(from: 1, through: m, by: 1) {
|
||||
if s.utf8CString[i - 1] == t.utf8CString[j - 1] {
|
||||
// 若两字符相等,则直接跳过此两字符
|
||||
dp[i][j] = dp[i - 1][j - 1]
|
||||
} else {
|
||||
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
|
||||
dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][m]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
@ -458,7 +483,35 @@ $$
|
|||
=== "Swift"
|
||||
|
||||
```swift title="edit_distance.swift"
|
||||
[class]{}-[func]{editDistanceDPComp}
|
||||
/* 编辑距离:状态压缩后的动态规划 */
|
||||
func editDistanceDPComp(s: String, t: String) -> Int {
|
||||
let n = s.utf8CString.count
|
||||
let m = t.utf8CString.count
|
||||
var dp = Array(repeating: 0, count: m + 1)
|
||||
// 状态转移:首行
|
||||
for j in stride(from: 1, through: m, by: 1) {
|
||||
dp[j] = j
|
||||
}
|
||||
// 状态转移:其余行
|
||||
for i in stride(from: 1, through: n, by: 1) {
|
||||
// 状态转移:首列
|
||||
var leftup = dp[0] // 暂存 dp[i-1, j-1]
|
||||
dp[0] = i
|
||||
// 状态转移:其余列
|
||||
for j in stride(from: 1, through: m, by: 1) {
|
||||
let temp = dp[j]
|
||||
if s.utf8CString[i - 1] == t.utf8CString[j - 1] {
|
||||
// 若两字符相等,则直接跳过此两字符
|
||||
dp[j] = leftup
|
||||
} else {
|
||||
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
|
||||
dp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1
|
||||
}
|
||||
leftup = temp // 更新为下一轮的 dp[i-1, j-1]
|
||||
}
|
||||
}
|
||||
return dp[m]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
|
|
@ -170,9 +170,31 @@ status: new
|
|||
=== "Swift"
|
||||
|
||||
```swift title="climbing_stairs_backtrack.swift"
|
||||
[class]{}-[func]{backtrack}
|
||||
/* 回溯 */
|
||||
func backtrack(choices: [Int], state: Int, n: Int, res: inout [Int]) {
|
||||
// 当爬到第 n 阶时,方案数量加 1
|
||||
if state == n {
|
||||
res[0] += 1
|
||||
}
|
||||
// 遍历所有选择
|
||||
for choice in choices {
|
||||
// 剪枝:不允许越过第 n 阶
|
||||
if state + choice > n {
|
||||
break
|
||||
}
|
||||
backtrack(choices: choices, state: state + choice, n: n, res: &res)
|
||||
}
|
||||
}
|
||||
|
||||
[class]{}-[func]{climbingStairsBacktrack}
|
||||
/* 爬楼梯:回溯 */
|
||||
func climbingStairsBacktrack(n: Int) -> Int {
|
||||
let choices = [1, 2] // 可选择向上爬 1 或 2 阶
|
||||
let state = 0 // 从第 0 阶开始爬
|
||||
var res: [Int] = []
|
||||
res.append(0) // 使用 res[0] 记录方案数量
|
||||
backtrack(choices: choices, state: state, n: n, res: &res)
|
||||
return res[0]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
@ -353,9 +375,21 @@ $$
|
|||
=== "Swift"
|
||||
|
||||
```swift title="climbing_stairs_dfs.swift"
|
||||
[class]{}-[func]{dfs}
|
||||
/* 搜索 */
|
||||
func dfs(i: Int) -> Int {
|
||||
// 已知 dp[1] 和 dp[2] ,返回之
|
||||
if i == 1 || i == 2 {
|
||||
return i
|
||||
}
|
||||
// dp[i] = dp[i-1] + dp[i-2]
|
||||
let count = dfs(i: i - 1) + dfs(i: i - 2)
|
||||
return count
|
||||
}
|
||||
|
||||
[class]{}-[func]{climbingStairsDFS}
|
||||
/* 爬楼梯:搜索 */
|
||||
func climbingStairsDFS(n: Int) -> Int {
|
||||
dfs(i: n)
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
@ -540,9 +574,29 @@ $$
|
|||
=== "Swift"
|
||||
|
||||
```swift title="climbing_stairs_dfs_mem.swift"
|
||||
[class]{}-[func]{dfs}
|
||||
/* 记忆化搜索 */
|
||||
func dfs(i: Int, mem: inout [Int]) -> Int {
|
||||
// 已知 dp[1] 和 dp[2] ,返回之
|
||||
if i == 1 || i == 2 {
|
||||
return i
|
||||
}
|
||||
// 若存在记录 dp[i] ,则直接返回之
|
||||
if mem[i] != -1 {
|
||||
return mem[i]
|
||||
}
|
||||
// dp[i] = dp[i-1] + dp[i-2]
|
||||
let count = dfs(i: i - 1, mem: &mem) + dfs(i: i - 2, mem: &mem)
|
||||
// 记录 dp[i]
|
||||
mem[i] = count
|
||||
return count
|
||||
}
|
||||
|
||||
[class]{}-[func]{climbingStairsDFSMem}
|
||||
/* 爬楼梯:记忆化搜索 */
|
||||
func climbingStairsDFSMem(n: Int) -> Int {
|
||||
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
|
||||
var mem = Array(repeating: -1, count: n + 1)
|
||||
return dfs(i: n, mem: &mem)
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
@ -699,7 +753,22 @@ $$
|
|||
=== "Swift"
|
||||
|
||||
```swift title="climbing_stairs_dp.swift"
|
||||
[class]{}-[func]{climbingStairsDP}
|
||||
/* 爬楼梯:动态规划 */
|
||||
func climbingStairsDP(n: Int) -> Int {
|
||||
if n == 1 || n == 2 {
|
||||
return n
|
||||
}
|
||||
// 初始化 dp 表,用于存储子问题的解
|
||||
var dp = Array(repeating: 0, count: n + 1)
|
||||
// 初始状态:预设最小子问题的解
|
||||
dp[1] = 1
|
||||
dp[2] = 2
|
||||
// 状态转移:从较小子问题逐步求解较大子问题
|
||||
for i in stride(from: 3, through: n, by: 1) {
|
||||
dp[i] = dp[i - 1] + dp[i - 2]
|
||||
}
|
||||
return dp[n]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
@ -833,7 +902,18 @@ $$
|
|||
=== "Swift"
|
||||
|
||||
```swift title="climbing_stairs_dp.swift"
|
||||
[class]{}-[func]{climbingStairsDPComp}
|
||||
/* 爬楼梯:状态压缩后的动态规划 */
|
||||
func climbingStairsDPComp(n: Int) -> Int {
|
||||
if n == 1 || n == 2 {
|
||||
return n
|
||||
}
|
||||
var a = 1
|
||||
var b = 2
|
||||
for _ in stride(from: 3, through: n, by: 1) {
|
||||
(a, b) = (b, a + b)
|
||||
}
|
||||
return b
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
|
|
@ -172,7 +172,22 @@ $$
|
|||
=== "Swift"
|
||||
|
||||
```swift title="knapsack.swift"
|
||||
[class]{}-[func]{knapsackDFS}
|
||||
/* 0-1 背包:暴力搜索 */
|
||||
func knapsackDFS(wgt: [Int], val: [Int], i: Int, c: Int) -> Int {
|
||||
// 若已选完所有物品或背包无容量,则返回价值 0
|
||||
if i == 0 || c == 0 {
|
||||
return 0
|
||||
}
|
||||
// 若超过背包容量,则只能不放入背包
|
||||
if wgt[i - 1] > c {
|
||||
return knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c)
|
||||
}
|
||||
// 计算不放入和放入物品 i 的最大价值
|
||||
let no = knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c)
|
||||
let yes = knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c - wgt[i - 1]) + val[i - 1]
|
||||
// 返回两种方案中价值更大的那一个
|
||||
return max(no, yes)
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
@ -343,7 +358,27 @@ $$
|
|||
=== "Swift"
|
||||
|
||||
```swift title="knapsack.swift"
|
||||
[class]{}-[func]{knapsackDFSMem}
|
||||
/* 0-1 背包:记忆化搜索 */
|
||||
func knapsackDFSMem(wgt: [Int], val: [Int], mem: inout [[Int]], i: Int, c: Int) -> Int {
|
||||
// 若已选完所有物品或背包无容量,则返回价值 0
|
||||
if i == 0 || c == 0 {
|
||||
return 0
|
||||
}
|
||||
// 若已有记录,则直接返回
|
||||
if mem[i][c] != -1 {
|
||||
return mem[i][c]
|
||||
}
|
||||
// 若超过背包容量,则只能不放入背包
|
||||
if wgt[i - 1] > c {
|
||||
return knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c)
|
||||
}
|
||||
// 计算不放入和放入物品 i 的最大价值
|
||||
let no = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c)
|
||||
let yes = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c - wgt[i - 1]) + val[i - 1]
|
||||
// 记录并返回两种方案中价值更大的那一个
|
||||
mem[i][c] = max(no, yes)
|
||||
return mem[i][c]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
@ -507,7 +542,25 @@ $$
|
|||
=== "Swift"
|
||||
|
||||
```swift title="knapsack.swift"
|
||||
[class]{}-[func]{knapsackDP}
|
||||
/* 0-1 背包:动态规划 */
|
||||
func knapsackDP(wgt: [Int], val: [Int], cap: Int) -> Int {
|
||||
let n = wgt.count
|
||||
// 初始化 dp 表
|
||||
var dp = Array(repeating: Array(repeating: 0, count: cap + 1), count: n + 1)
|
||||
// 状态转移
|
||||
for i in stride(from: 1, through: n, by: 1) {
|
||||
for c in stride(from: 1, through: cap, by: 1) {
|
||||
if wgt[i - 1] > c {
|
||||
// 若超过背包容量,则不选物品 i
|
||||
dp[i][c] = dp[i - 1][c]
|
||||
} else {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1])
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][cap]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
@ -727,7 +780,23 @@ $$
|
|||
=== "Swift"
|
||||
|
||||
```swift title="knapsack.swift"
|
||||
[class]{}-[func]{knapsackDPComp}
|
||||
/* 0-1 背包:状态压缩后的动态规划 */
|
||||
func knapsackDPComp(wgt: [Int], val: [Int], cap: Int) -> Int {
|
||||
let n = wgt.count
|
||||
// 初始化 dp 表
|
||||
var dp = Array(repeating: 0, count: cap + 1)
|
||||
// 状态转移
|
||||
for i in stride(from: 1, through: n, by: 1) {
|
||||
// 倒序遍历
|
||||
for c in stride(from: cap, through: 1, by: -1) {
|
||||
if wgt[i - 1] <= c {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[cap]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
|
|
@ -154,7 +154,25 @@ $$
|
|||
=== "Swift"
|
||||
|
||||
```swift title="unbounded_knapsack.swift"
|
||||
[class]{}-[func]{unboundedKnapsackDP}
|
||||
/* 完全背包:动态规划 */
|
||||
func unboundedKnapsackDP(wgt: [Int], val: [Int], cap: Int) -> Int {
|
||||
let n = wgt.count
|
||||
// 初始化 dp 表
|
||||
var dp = Array(repeating: Array(repeating: 0, count: cap + 1), count: n + 1)
|
||||
// 状态转移
|
||||
for i in stride(from: 1, through: n, by: 1) {
|
||||
for c in stride(from: 1, through: cap, by: 1) {
|
||||
if wgt[i - 1] > c {
|
||||
// 若超过背包容量,则不选物品 i
|
||||
dp[i][c] = dp[i - 1][c]
|
||||
} else {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1])
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][cap]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
@ -329,7 +347,25 @@ $$
|
|||
=== "Swift"
|
||||
|
||||
```swift title="unbounded_knapsack.swift"
|
||||
[class]{}-[func]{unboundedKnapsackDPComp}
|
||||
/* 完全背包:状态压缩后的动态规划 */
|
||||
func unboundedKnapsackDPComp(wgt: [Int], val: [Int], cap: Int) -> Int {
|
||||
let n = wgt.count
|
||||
// 初始化 dp 表
|
||||
var dp = Array(repeating: 0, count: cap + 1)
|
||||
// 状态转移
|
||||
for i in stride(from: 1, through: n, by: 1) {
|
||||
for c in stride(from: 1, through: cap, by: 1) {
|
||||
if wgt[i - 1] > c {
|
||||
// 若超过背包容量,则不选物品 i
|
||||
dp[c] = dp[c]
|
||||
} else {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[cap]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
@ -368,7 +404,7 @@ $$
|
|||
|
||||
!!! question
|
||||
|
||||
给定 $n$ 种硬币,第 $i$ 个硬币的面值为 $coins[i - 1]$ ,为目标金额 $amt$ ,**每种硬币可以重复选取**,问能够凑出目标金额的最少硬币个数。如果无法凑出目标金额则返回 $-1$ 。
|
||||
给定 $n$ 种硬币,第 $i$ 个硬币的面值为 $coins[i - 1]$ ,目标金额为 $amt$ ,**每种硬币可以重复选取**,问能够凑出目标金额的最少硬币个数。如果无法凑出目标金额则返回 $-1$ 。
|
||||
|
||||
如下图所示,凑出 $11$ 元最少需要 $3$ 枚硬币,方案为 $1 + 2 + 5 = 11$ 。
|
||||
|
||||
|
@ -547,7 +583,30 @@ $$
|
|||
=== "Swift"
|
||||
|
||||
```swift title="coin_change.swift"
|
||||
[class]{}-[func]{coinChangeDP}
|
||||
/* 零钱兑换:动态规划 */
|
||||
func coinChangeDP(coins: [Int], amt: Int) -> Int {
|
||||
let n = coins.count
|
||||
let MAX = amt + 1
|
||||
// 初始化 dp 表
|
||||
var dp = Array(repeating: Array(repeating: 0, count: amt + 1), count: n + 1)
|
||||
// 状态转移:首行首列
|
||||
for a in stride(from: 1, through: amt, by: 1) {
|
||||
dp[0][a] = MAX
|
||||
}
|
||||
// 状态转移:其余行列
|
||||
for i in stride(from: 1, through: n, by: 1) {
|
||||
for a in stride(from: 1, through: amt, by: 1) {
|
||||
if coins[i - 1] > a {
|
||||
// 若超过背包容量,则不选硬币 i
|
||||
dp[i][a] = dp[i - 1][a]
|
||||
} else {
|
||||
// 不选和选硬币 i 这两种方案的较小值
|
||||
dp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1)
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][amt] != MAX ? dp[n][amt] : -1
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
@ -768,7 +827,27 @@ $$
|
|||
=== "Swift"
|
||||
|
||||
```swift title="coin_change.swift"
|
||||
[class]{}-[func]{coinChangeDPComp}
|
||||
/* 零钱兑换:状态压缩后的动态规划 */
|
||||
func coinChangeDPComp(coins: [Int], amt: Int) -> Int {
|
||||
let n = coins.count
|
||||
let MAX = amt + 1
|
||||
// 初始化 dp 表
|
||||
var dp = Array(repeating: MAX, count: amt + 1)
|
||||
dp[0] = 0
|
||||
// 状态转移
|
||||
for i in stride(from: 1, through: n, by: 1) {
|
||||
for a in stride(from: 1, through: amt, by: 1) {
|
||||
if coins[i - 1] > a {
|
||||
// 若超过背包容量,则不选硬币 i
|
||||
dp[a] = dp[a]
|
||||
} else {
|
||||
// 不选和选硬币 i 这两种方案的较小值
|
||||
dp[a] = min(dp[a], dp[a - coins[i - 1]] + 1)
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[amt] != MAX ? dp[amt] : -1
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
@ -962,7 +1041,29 @@ $$
|
|||
=== "Swift"
|
||||
|
||||
```swift title="coin_change_ii.swift"
|
||||
[class]{}-[func]{coinChangeIIDP}
|
||||
/* 零钱兑换 II:动态规划 */
|
||||
func coinChangeIIDP(coins: [Int], amt: Int) -> Int {
|
||||
let n = coins.count
|
||||
// 初始化 dp 表
|
||||
var dp = Array(repeating: Array(repeating: 0, count: amt + 1), count: n + 1)
|
||||
// 初始化首列
|
||||
for i in stride(from: 0, through: n, by: 1) {
|
||||
dp[i][0] = 1
|
||||
}
|
||||
// 状态转移
|
||||
for i in stride(from: 1, through: n, by: 1) {
|
||||
for a in stride(from: 1, through: amt, by: 1) {
|
||||
if coins[i - 1] > a {
|
||||
// 若超过背包容量,则不选硬币 i
|
||||
dp[i][a] = dp[i - 1][a]
|
||||
} else {
|
||||
// 不选和选硬币 i 这两种方案之和
|
||||
dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]]
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][amt]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
@ -1125,7 +1226,26 @@ $$
|
|||
=== "Swift"
|
||||
|
||||
```swift title="coin_change_ii.swift"
|
||||
[class]{}-[func]{coinChangeIIDPComp}
|
||||
/* 零钱兑换 II:状态压缩后的动态规划 */
|
||||
func coinChangeIIDPComp(coins: [Int], amt: Int) -> Int {
|
||||
let n = coins.count
|
||||
// 初始化 dp 表
|
||||
var dp = Array(repeating: 0, count: amt + 1)
|
||||
dp[0] = 1
|
||||
// 状态转移
|
||||
for i in stride(from: 1, through: n, by: 1) {
|
||||
for a in stride(from: 1, through: amt, by: 1) {
|
||||
if coins[i - 1] > a {
|
||||
// 若超过背包容量,则不选硬币 i
|
||||
dp[a] = dp[a]
|
||||
} else {
|
||||
// 不选和选硬币 i 这两种方案之和
|
||||
dp[a] = dp[a] + dp[a - coins[i - 1]]
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[amt]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
|
|
@ -39,9 +39,11 @@ BFS 通常借助「队列」来实现。队列具有“先入先出”的性质
|
|||
// 顶点遍历序列
|
||||
List<Vertex> res = new ArrayList<>();
|
||||
// 哈希表,用于记录已被访问过的顶点
|
||||
Set<Vertex> visited = new HashSet<>() {{ add(startVet); }};
|
||||
Set<Vertex> visited = new HashSet<>();
|
||||
visited.add(startVet);
|
||||
// 队列用于实现 BFS
|
||||
Queue<Vertex> que = new LinkedList<>() {{ offer(startVet); }};
|
||||
Queue<Vertex> que = new LinkedList<>();
|
||||
que.offer(startVet);
|
||||
// 以顶点 vet 为起点,循环直至访问完所有顶点
|
||||
while (!que.isEmpty()) {
|
||||
Vertex vet = que.poll(); // 队首顶点出队
|
||||
|
@ -448,6 +450,7 @@ BFS 通常借助「队列」来实现。队列具有“先入先出”的性质
|
|||
|
||||
def graph_dfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:
|
||||
"""深度优先遍历 DFS"""
|
||||
# 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
|
||||
# 顶点遍历序列
|
||||
res = []
|
||||
# 哈希表,用于记录已被访问过的顶点
|
||||
|
|
|
@ -217,7 +217,7 @@ $$
|
|||
$$
|
||||
\begin{aligned}
|
||||
T(h) & = 2 \frac{1 - 2^h}{1 - 2} - h \newline
|
||||
& = 2^{h+1} - h \newline
|
||||
& = 2^{h+1} - h - 2 \newline
|
||||
& = O(2^h)
|
||||
\end{aligned}
|
||||
$$
|
||||
|
|
|
@ -28,7 +28,8 @@ comments: true
|
|||
/* 层序遍历 */
|
||||
List<Integer> levelOrder(TreeNode root) {
|
||||
// 初始化队列,加入根节点
|
||||
Queue<TreeNode> queue = new LinkedList<>() {{ add(root); }};
|
||||
Queue<TreeNode> queue = new LinkedList<>();
|
||||
queue.add(root);
|
||||
// 初始化一个列表,用于保存遍历序列
|
||||
List<Integer> list = new ArrayList<>();
|
||||
while (!queue.isEmpty()) {
|
||||
|
|
Loading…
Reference in a new issue