Add kotlin code for the chapter of divide and conquer (#1098)

* feat(kotlin):new kotlin support files

* fix(kotlin):

    reviewed the formatting, comments and so on.

* fix(kotlin): fix the indentation and format

* feat(kotlin): Add kotlin code for the backtraking chapter.

* fix(kotlin): fix incorrect output of preorder_traversal_iii_template.kt file

* fix(kotlin): simplify kotlin codes

* fix(kotlin): modify n_queens.kt for consistency.

* feat(kotlin): add kotlin code for computational complexity.

* fix(kotlin): remove iteration folder.

* fix(kotlin): remove n_queens.kt file out of folder.

* fix(kotlin): remove some folders.

* style(kotlin): modified two chapters.

* feat(kotlin): add kotlin code for divide and conquer.

* Update build_tree.kt

* Update hanota.kt

* Delete codes/kotlin/chapter_backtracking directory

* Delete codes/kotlin/chapter_computational_complexity directory

* Delete codes/kotlin/chapter_divide_and_conquer directory

* feat(kotlin): add kotlin code for divide and conquer.

* Update hanota.kt
This commit is contained in:
curtishd 2024-02-28 01:25:38 +08:00 committed by GitHub
parent 306dc019ef
commit 7cdfa03e68
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 154 additions and 0 deletions

View file

@ -0,0 +1,49 @@
/**
* File: binary_search_recur.kt
* Created Time: 2024-01-25
* Author: curtishd (1023632660@qq.com)
*/
package chapter_divide_and_conquer.binary_search_recur
/* 二分查找:问题 f(i, j) */
fun dfs(
nums: IntArray,
target: Int,
i: Int,
j: Int
): Int {
// 若区间为空,代表无目标元素,则返回 -1
if (i > j) {
return -1
}
// 计算中点索引 m
val m = (i + j) / 2
return if (nums[m] < target) {
// 递归子问题 f(m+1, j)
dfs(nums, target, m + 1, j)
} else if (nums[m] > target) {
// 递归子问题 f(i, m-1)
dfs(nums, target, i, m - 1)
} else {
// 找到目标元素,返回其索引
m
}
}
/* 二分查找 */
fun binarySearch(nums: IntArray, target: Int): Int {
val n = nums.size
// 求解问题 f(0, n-1)
return dfs(nums, target, 0, n - 1)
}
/* Driver Code */
fun main() {
val target = 6
val nums = intArrayOf(1, 3, 6, 8, 12, 15, 23, 26, 31, 35)
// 二分查找(双闭区间)
val index = binarySearch(nums, target)
println("目标元素 6 的索引 = $index")
}

View file

@ -0,0 +1,49 @@
/**
* File: build_tree.kt
* Created Time: 2024-01-25
* Author: curtishd (1023632660@qq.com)
*/
package chapter_divide_and_conquer.build_tree
import utils.TreeNode
import utils.printTree
/* 构建二叉树:分治 */
fun dfs(preorder: IntArray, inorderMap: Map<Int?, Int?>, i: Int, l: Int, r: Int): TreeNode? {
// 子树区间为空时终止
if (r - l < 0) return null
// 初始化根节点
val root = TreeNode(preorder[i])
// 查询 m ,从而划分左右子树
val m = inorderMap[preorder[i]]!!
// 子问题:构建左子树
root.left = dfs(preorder, inorderMap, i + 1, l, m - 1)
// 子问题:构建右子树
root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r)
// 返回根节点
return root
}
/* 构建二叉树 */
fun buildTree(preorder: IntArray, inorder: IntArray): TreeNode? {
// 初始化哈希表,存储 inorder 元素到索引的映射
val inorderMap: MutableMap<Int?, Int?> = HashMap()
for (i in inorder.indices) {
inorderMap[inorder[i]] = i
}
val root = dfs(preorder, inorderMap, 0, 0, inorder.size - 1)
return root
}
/* Driver Code */
fun main() {
val preorder = intArrayOf(3, 9, 2, 1, 7)
val inorder = intArrayOf(9, 3, 1, 2, 7)
println("前序遍历 = " + preorder.contentToString())
println("中序遍历 = " + inorder.contentToString())
val root = buildTree(preorder, inorder)
println("构建的二叉树为:")
printTree(root)
}

View file

@ -0,0 +1,56 @@
/**
* File: hanota.kt
* Created Time: 2024-1-25
* Author: curtishd (1023632660@qq.com)
*/
package chapter_divide_and_conquer.hanota
/* 移动一个圆盘 */
fun move(src: MutableList<Int>, tar: MutableList<Int>) {
// 从 src 顶部拿出一个圆盘
val pan: Int = src.removeAt(src.size - 1)
// 将圆盘放入 tar 顶部
tar.add(pan)
}
/* 求解汉诺塔问题 f(i) */
fun dfs(i: Int, src: MutableList<Int>, buf: MutableList<Int>, tar: MutableList<Int>) {
// 若 src 只剩下一个圆盘,则直接将其移到 tar
if (i == 1) {
move(src, tar)
return
}
// 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
dfs(i - 1, src, tar, buf)
// 子问题 f(1) :将 src 剩余一个圆盘移到 tar
move(src, tar)
// 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
dfs(i - 1, buf, src, tar)
}
/* 求解汉诺塔问题 */
fun solveHanota(A: MutableList<Int>, B: MutableList<Int>, C: MutableList<Int>) {
val n = A.size
// 将 A 顶部 n 个圆盘借助 B 移到 C
dfs(n, A, B, C)
}
/* Driver Code */
fun main() {
// 列表尾部是柱子顶部
val A: MutableList<Int> = ArrayList(mutableListOf(5, 4, 3, 2, 1))
val B: MutableList<Int> = ArrayList()
val C: MutableList<Int> = ArrayList()
println("初始状态下:")
println("A = $A")
println("B = $B")
println("C = $C")
solveHanota(A, B, C)
println("圆盘移动完成后:")
println("A = $A")
println("B = $B")
println("C = $C")
}