hello-algo/docs/chapter_computational_complexity/space_complexity.md

972 lines
22 KiB
Markdown
Raw Normal View History

# 空间复杂度
2022-11-22 17:47:26 +08:00
「空间复杂度 Space Complexity」用于衡量算法使用内存空间随着数据量变大时的增长趋势。这个概念与时间复杂度非常类似。
2022-11-22 17:47:26 +08:00
## 算法相关空间
2022-11-22 17:47:26 +08:00
算法运行过程中使用的内存空间主要包括以下几种:
2022-11-22 17:47:26 +08:00
- 「输入空间」用于存储算法的输入数据;
- 「暂存空间」用于存储算法运行过程中的变量、对象、函数上下文等数据;
2022-11-22 17:47:26 +08:00
- 「输出空间」用于存储算法的输出数据;
通常情况下,空间复杂度统计范围是「暂存空间」+「输出空间」。
2022-11-22 17:47:26 +08:00
暂存空间可以进一步划分为三个部分:
2022-11-22 17:47:26 +08:00
- 「暂存数据」用于保存算法运行过程中的各种常量、变量、对象等。
- 「栈帧空间」用于保存调用函数的上下文数据。系统在每次调用函数时都会在栈顶部创建一个栈帧,函数返回后,栈帧空间会被释放。
- 「指令空间」用于保存编译后的程序指令,在实际统计中通常忽略不计。
2022-11-22 17:47:26 +08:00
因此,在分析一段程序的空间复杂度时,我们一般统计 **暂存数据、输出数据、栈帧空间** 三部分。
2022-11-22 17:47:26 +08:00
![算法使用的相关空间](space_complexity.assets/space_types.png)
2022-11-22 17:47:26 +08:00
=== "Java"
```java title=""
/* 类 */
class Node {
int val;
Node next;
Node(int x) { val = x; }
}
2022-12-26 13:15:09 +08:00
/* 函数 */
2022-11-22 17:47:26 +08:00
int function() {
// do something...
return 0;
}
int algorithm(int n) { // 输入数据
final int a = 0; // 暂存数据(常量)
int b = 0; // 暂存数据(变量)
Node node = new Node(0); // 暂存数据(对象)
int c = function(); // 栈帧空间(调用函数)
return a + b + c; // 输出数据
}
```
=== "C++"
```cpp title=""
/* 结构体 */
struct Node {
int val;
Node *next;
Node(int x) : val(x), next(nullptr) {}
};
2022-12-26 13:15:09 +08:00
/* 函数 */
int func() {
// do something...
return 0;
}
2022-11-22 17:47:26 +08:00
int algorithm(int n) { // 输入数据
const int a = 0; // 暂存数据(常量)
int b = 0; // 暂存数据(变量)
Node* node = new Node(0); // 暂存数据(对象)
int c = func(); // 栈帧空间(调用函数)
return a + b + c; // 输出数据
}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title=""
class Node:
"""类"""
def __init__(self, x: int):
self.val: int = x # 节点值
self.next: Optional[Node] = None # 指向下一节点的指针(引用)
def function() -> int:
"""函数"""
# do something...
return 0
def algorithm(n) -> int: # 输入数据
2023-03-13 22:53:53 +08:00
A: int = 0 # 暂存数据(常量,一般用大写字母表示)
b: int = 0 # 暂存数据(变量)
node = Node(0) # 暂存数据(对象)
c: int = function() # 栈帧空间(调用函数)
2023-03-13 22:53:53 +08:00
return A + b + c # 输出数据
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title=""
/* 结构体 */
2023-01-08 20:29:13 +08:00
type node struct {
val int
2023-01-08 20:29:13 +08:00
next *node
}
2023-01-08 20:29:13 +08:00
/* 创建 node 结构体 */
func newNode(val int) *node {
return &node{val: val}
}
2022-12-26 13:15:09 +08:00
/* 函数 */
func function() int {
// do something...
return 0
}
2022-12-03 01:31:29 +08:00
func algorithm(n int) int { // 输入数据
const a = 0 // 暂存数据(常量)
b := 0 // 暂存数据(变量)
newNode(0) // 暂存数据(对象)
c := function() // 栈帧空间(调用函数)
return a + b + c // 输出数据
}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title=""
/* 类 */
class Node {
val;
next;
constructor(val) {
this.val = val === undefined ? 0 : val; // 节点值
this.next = null; // 指向下一节点的引用
}
}
/* 函数 */
function constFunc() {
// do something
return 0;
}
2022-12-03 01:31:29 +08:00
function algorithm(n) { // 输入数据
const a = 0; // 暂存数据(常量)
2023-03-13 22:53:53 +08:00
let b = 0; // 暂存数据(变量)
const node = new Node(0); // 暂存数据(对象)
const c = constFunc(); // 栈帧空间(调用函数)
return a + b + c; // 输出数据
}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title=""
/* 类 */
class Node {
val: number;
next: Node | null;
constructor(val?: number) {
this.val = val === undefined ? 0 : val; // 节点值
this.next = null; // 指向下一节点的引用
}
}
/* 函数 */
function constFunc(): number {
// do something
return 0;
}
2022-12-03 01:31:29 +08:00
function algorithm(n: number): number { // 输入数据
const a = 0; // 暂存数据(常量)
2023-03-13 22:53:53 +08:00
let b = 0; // 暂存数据(变量)
const node = new Node(0); // 暂存数据(对象)
const c = constFunc(); // 栈帧空间(调用函数)
return a + b + c; // 输出数据
}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title=""
```
=== "C#"
```csharp title=""
2022-12-23 15:42:02 +08:00
/* 类 */
class Node
{
int val;
Node next;
Node(int x) { val = x; }
}
2022-12-03 01:31:29 +08:00
2022-12-26 13:15:09 +08:00
/* 函数 */
2022-12-23 15:42:02 +08:00
int function()
{
// do something...
return 0;
}
2022-12-24 17:05:58 +08:00
int algorithm(int n) // 输入数据
{
2023-03-13 22:53:53 +08:00
const int a = 0; // 暂存数据(常量)
2022-12-23 15:42:02 +08:00
int b = 0; // 暂存数据(变量)
Node node = new Node(0); // 暂存数据(对象)
int c = function(); // 栈帧空间(调用函数)
return a + b + c; // 输出数据
}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title=""
2023-01-08 20:53:24 +08:00
/* 类 */
class Node {
var val: Int
var next: Node?
init(x: Int) {
val = x
}
}
2023-01-08 20:53:24 +08:00
/* 函数 */
func function() -> Int {
// do something...
return 0
}
func algorithm(n: Int) -> Int { // 输入数据
2023-03-13 22:53:53 +08:00
let a = 0 // 暂存数据(常量)
var b = 0 // 暂存数据(变量)
let node = Node(x: 0) // 暂存数据(对象)
2023-03-13 22:53:53 +08:00
let c = function() // 栈帧空间(调用函数)
return a + b + c // 输出数据
}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title=""
```
## 推算方法
2022-11-22 17:47:26 +08:00
空间复杂度的推算方法与时间复杂度大致相同,只是将统计对象从“计算操作数量”转为“使用空间大小”。与时间复杂度不同的是,**我们通常只关注「最差空间复杂度」**,这是因为内存空间是一项硬性要求,我们必须确保在所有输入数据下都有足够的内存空间预留。
2022-11-22 17:47:26 +08:00
**最差空间复杂度中的“最差”有两层含义**,分别是输入数据的最差分布和算法运行过程中的最差时间点。
2022-11-22 17:47:26 +08:00
- **以最差输入数据为准**。当 $n < 10$ 空间复杂度为 $O(1)$ 但当 $n > 10$ 时,初始化的数组 `nums` 占用 $O(n)$ 空间;因此最差空间复杂度为 $O(n)$
- **以算法运行过程中的峰值内存为准**。例如,程序在执行最后一行之前,占用 $O(1)$ 空间;当初始化数组 `nums` 时,程序占用 $O(n)$ 空间;因此最差空间复杂度为 $O(n)$
2022-11-22 17:47:26 +08:00
=== "Java"
```java title=""
void algorithm(int n) {
int a = 0; // O(1)
int[] b = new int[10000]; // O(1)
if (n > 10)
int[] nums = new int[n]; // O(n)
}
```
=== "C++"
```cpp title=""
void algorithm(int n) {
int a = 0; // O(1)
vector<int> b(10000); // O(1)
if (n > 10)
vector<int> nums(n); // O(n)
}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title=""
def algorithm(n: int) -> None:
a: int = 0 # O(1)
b: List[int] = [0] * 10000 # O(1)
if n > 10:
nums: List[int] = [0] * n # O(n)
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title=""
2022-12-15 22:38:18 +08:00
func algorithm(n int) {
a := 0 // O(1)
b := make([]int, 10000) // O(1)
var nums []int
if n > 10 {
nums := make([]int, n) // O(n)
}
fmt.Println(a, b, nums)
}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title=""
function algorithm(n) {
const a = 0; // O(1)
const b = new Array(10000); // O(1)
if (n > 10) {
const nums = new Array(n); // O(n)
}
}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title=""
function algorithm(n: number): void {
const a = 0; // O(1)
const b = new Array(10000); // O(1)
if (n > 10) {
const nums = new Array(n); // O(n)
}
}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title=""
```
=== "C#"
```csharp title=""
2022-12-23 15:42:02 +08:00
void algorithm(int n)
{
int a = 0; // O(1)
int[] b = new int[10000]; // O(1)
if (n > 10)
{
int[] nums = new int[n]; // O(n)
}
}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title=""
func algorithm(n: Int) {
let a = 0 // O(1)
let b = Array(repeating: 0, count: 10000) // O(1)
if n > 10 {
let nums = Array(repeating: 0, count: n) // O(n)
}
}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title=""
```
**在递归函数中,需要注意统计栈帧空间**。例如,函数 `loop()` 在循环中调用了 $n$ 次 `function()` ,每轮中的 `function()` 都返回并释放了栈帧空间,因此空间复杂度仍为 $O(1)$ 。而递归函数 `recur()` 在运行过程中会同时存在 $n$ 个未返回的 `recur()` ,从而占用 $O(n)$ 的栈帧空间。
2022-11-22 17:47:26 +08:00
=== "Java"
```java title=""
int function() {
// do something
return 0;
}
/* 循环 O(1) */
2022-11-22 17:47:26 +08:00
void loop(int n) {
for (int i = 0; i < n; i++) {
function();
}
}
/* 递归 O(n) */
2022-11-22 17:47:26 +08:00
void recur(int n) {
if (n == 1) return;
return recur(n - 1);
}
```
=== "C++"
```cpp title=""
int func() {
// do something
return 0;
}
/* 循环 O(1) */
void loop(int n) {
for (int i = 0; i < n; i++) {
func();
}
}
/* 递归 O(n) */
void recur(int n) {
if (n == 1) return;
return recur(n - 1);
}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title=""
def function() -> int:
# do something
return 0
def loop(n: int) -> None:
"""循环 O(1)"""
for _ in range(n):
function()
def recur(n: int) -> int:
"""递归 O(n)"""
if n == 1: return
return recur(n - 1)
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title=""
func function() int {
// do something
return 0
}
/* 循环 O(1) */
func loop(n int) {
for i := 0; i < n; i++ {
function()
}
}
/* 递归 O(n) */
func recur(n int) {
if n == 1 {
return
}
recur(n - 1)
}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title=""
function constFunc() {
// do something
return 0;
}
/* 循环 O(1) */
function loop(n) {
for (let i = 0; i < n; i++) {
constFunc();
}
}
/* 递归 O(n) */
function recur(n) {
if (n === 1) return;
return recur(n - 1);
}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title=""
function constFunc(): number {
// do something
return 0;
}
/* 循环 O(1) */
function loop(n: number): void {
for (let i = 0; i < n; i++) {
constFunc();
}
}
/* 递归 O(n) */
function recur(n: number): void {
if (n === 1) return;
return recur(n - 1);
}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title=""
2022-12-23 15:42:02 +08:00
2022-12-03 01:31:29 +08:00
```
=== "C#"
```csharp title=""
2022-12-23 15:42:02 +08:00
int function()
{
// do something
return 0;
}
/* 循环 O(1) */
void loop(int n)
{
for (int i = 0; i < n; i++)
{
function();
}
}
/* 递归 O(n) */
int recur(int n)
{
if (n == 1) return 1;
return recur(n - 1);
}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title=""
@discardableResult
func function() -> Int {
// do something
return 0
}
2023-01-08 20:53:24 +08:00
/* 循环 O(1) */
func loop(n: Int) {
for _ in 0 ..< n {
function()
}
}
2023-01-08 20:53:24 +08:00
/* 递归 O(n) */
func recur(n: Int) {
if n == 1 {
return
}
recur(n: n - 1)
}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title=""
```
## 常见类型
2022-11-22 17:47:26 +08:00
设输入数据大小为 $n$ ,常见的空间复杂度类型有(从低到高排列)
$$
\begin{aligned}
O(1) < O(\log n) < O(n) < O(n^2) < O(2^n) \newline
\text{常数阶} < \text{对数阶} < \text{线性阶} < \text{平方阶} < \text{指数阶}
\end{aligned}
$$
![空间复杂度的常见类型](space_complexity.assets/space_complexity_common_types.png)
2022-11-22 17:47:26 +08:00
!!! tip
部分示例代码需要一些前置知识,包括数组、链表、二叉树、递归算法等。如果遇到看不懂的地方无需担心,可以在学习完后面章节后再来复习,现阶段我们先专注于理解空间复杂度的含义和推算方法。
2022-11-22 17:47:26 +08:00
### 常数阶 $O(1)$
常数阶常见于数量与输入数据大小 $n$ 无关的常量、变量、对象。
需要注意的是,在循环中初始化变量或调用函数而占用的内存,在进入下一循环后就会被释放,即不会累积占用空间,空间复杂度仍为 $O(1)$ 。
=== "Java"
```java title="space_complexity.java"
[class]{space_complexity}-[func]{constant}
2022-11-22 17:47:26 +08:00
```
=== "C++"
```cpp title="space_complexity.cpp"
2023-02-08 04:17:26 +08:00
[class]{}-[func]{constant}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title="space_complexity.py"
[class]{}-[func]{constant}
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title="space_complexity.go"
[class]{}-[func]{spaceConstant}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="space_complexity.js"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{constant}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title="space_complexity.ts"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{constant}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title="space_complexity.c"
[class]{}-[func]{spaceConstant}
2022-12-03 01:31:29 +08:00
```
=== "C#"
```csharp title="space_complexity.cs"
[class]{space_complexity}-[func]{constant}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title="space_complexity.swift"
2023-02-08 20:30:05 +08:00
[class]{}-[func]{constant}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="space_complexity.zig"
[class]{}-[func]{constant}
2023-02-01 22:03:04 +08:00
```
2022-11-22 17:47:26 +08:00
### 线性阶 $O(n)$
线性阶常见于元素数量与 $n$ 成正比的数组、链表、栈、队列等。
=== "Java"
```java title="space_complexity.java"
[class]{space_complexity}-[func]{linear}
2022-11-22 17:47:26 +08:00
```
=== "C++"
```cpp title="space_complexity.cpp"
2023-02-08 04:17:26 +08:00
[class]{}-[func]{linear}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title="space_complexity.py"
[class]{}-[func]{linear}
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title="space_complexity.go"
[class]{}-[func]{spaceLinear}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="space_complexity.js"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{linear}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title="space_complexity.ts"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{linear}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title="space_complexity.c"
[class]{}-[func]{spaceLinear}
2022-12-03 01:31:29 +08:00
```
=== "C#"
```csharp title="space_complexity.cs"
[class]{space_complexity}-[func]{linear}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title="space_complexity.swift"
2023-02-08 20:30:05 +08:00
[class]{}-[func]{linear}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="space_complexity.zig"
[class]{}-[func]{linear}
2023-02-01 22:03:04 +08:00
```
2022-11-22 17:47:26 +08:00
以下递归函数会同时存在 $n$ 个未返回的 `algorithm()` 函数,使用 $O(n)$ 大小的栈帧空间。
=== "Java"
```java title="space_complexity.java"
[class]{space_complexity}-[func]{linearRecur}
2022-11-22 17:47:26 +08:00
```
=== "C++"
```cpp title="space_complexity.cpp"
2023-02-08 04:17:26 +08:00
[class]{}-[func]{linearRecur}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title="space_complexity.py"
[class]{}-[func]{linear_recur}
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title="space_complexity.go"
[class]{}-[func]{spaceLinearRecur}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="space_complexity.js"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{linearRecur}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title="space_complexity.ts"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{linearRecur}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title="space_complexity.c"
[class]{}-[func]{spaceLinearRecur}
2022-12-03 01:31:29 +08:00
```
=== "C#"
```csharp title="space_complexity.cs"
[class]{space_complexity}-[func]{linearRecur}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title="space_complexity.swift"
2023-02-08 20:30:05 +08:00
[class]{}-[func]{linearRecur}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="space_complexity.zig"
[class]{}-[func]{linearRecur}
2023-02-01 22:03:04 +08:00
```
![递归函数产生的线性阶空间复杂度](space_complexity.assets/space_complexity_recursive_linear.png)
2022-11-22 17:47:26 +08:00
### 平方阶 $O(n^2)$
平方阶常见于矩阵和图,元素数量与 $n$ 成平方关系。
2022-11-22 17:47:26 +08:00
=== "Java"
```java title="space_complexity.java"
[class]{space_complexity}-[func]{quadratic}
2022-11-22 17:47:26 +08:00
```
=== "C++"
```cpp title="space_complexity.cpp"
2023-02-08 04:17:26 +08:00
[class]{}-[func]{quadratic}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title="space_complexity.py"
[class]{}-[func]{quadratic}
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title="space_complexity.go"
[class]{}-[func]{spaceQuadratic}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="space_complexity.js"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{quadratic}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title="space_complexity.ts"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{quadratic}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title="space_complexity.c"
[class]{}-[func]{spaceQuadratic}
2022-12-03 01:31:29 +08:00
```
=== "C#"
```csharp title="space_complexity.cs"
[class]{space_complexity}-[func]{quadratic}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title="space_complexity.swift"
2023-02-08 20:30:05 +08:00
[class]{}-[func]{quadratic}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="space_complexity.zig"
[class]{}-[func]{quadratic}
2023-02-01 22:03:04 +08:00
```
在以下递归函数中,同时存在 $n$ 个未返回的 `algorithm()` ,并且每个函数中都初始化了一个数组,长度分别为 $n, n-1, n-2, ..., 2, 1$ ,平均长度为 $\frac{n}{2}$ ,因此总体占用 $O(n^2)$ 空间。
2022-11-22 17:47:26 +08:00
=== "Java"
```java title="space_complexity.java"
[class]{space_complexity}-[func]{quadraticRecur}
2022-11-22 17:47:26 +08:00
```
=== "C++"
```cpp title="space_complexity.cpp"
2023-02-08 04:17:26 +08:00
[class]{}-[func]{quadraticRecur}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title="space_complexity.py"
[class]{}-[func]{quadratic_recur}
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title="space_complexity.go"
[class]{}-[func]{spaceQuadraticRecur}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="space_complexity.js"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{quadraticRecur}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title="space_complexity.ts"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{quadraticRecur}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title="space_complexity.c"
[class]{}-[func]{spaceQuadraticRecur}
2022-12-03 01:31:29 +08:00
```
=== "C#"
```csharp title="space_complexity.cs"
[class]{space_complexity}-[func]{quadraticRecur}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title="space_complexity.swift"
2023-02-08 20:30:05 +08:00
[class]{}-[func]{quadraticRecur}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="space_complexity.zig"
[class]{}-[func]{quadraticRecur}
2023-02-01 22:03:04 +08:00
```
![递归函数产生的平方阶空间复杂度](space_complexity.assets/space_complexity_recursive_quadratic.png)
2022-11-22 17:47:26 +08:00
### 指数阶 $O(2^n)$
指数阶常见于二叉树。高度为 $n$ 的「满二叉树」的节点数量为 $2^n - 1$ ,占用 $O(2^n)$ 空间。
2022-11-22 17:47:26 +08:00
=== "Java"
```java title="space_complexity.java"
[class]{space_complexity}-[func]{buildTree}
2022-11-22 17:47:26 +08:00
```
=== "C++"
```cpp title="space_complexity.cpp"
2023-02-08 04:17:26 +08:00
[class]{}-[func]{buildTree}
2022-11-22 17:47:26 +08:00
```
=== "Python"
```python title="space_complexity.py"
[class]{}-[func]{build_tree}
2022-11-22 17:47:26 +08:00
```
2022-12-03 01:31:29 +08:00
=== "Go"
```go title="space_complexity.go"
[class]{}-[func]{buildTree}
2022-12-03 01:31:29 +08:00
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="space_complexity.js"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{buildTree}
2022-12-03 01:31:29 +08:00
```
=== "TypeScript"
```typescript title="space_complexity.ts"
2023-02-08 19:45:06 +08:00
[class]{}-[func]{buildTree}
2022-12-03 01:31:29 +08:00
```
=== "C"
```c title="space_complexity.c"
[class]{}-[func]{buildTree}
2022-12-03 01:31:29 +08:00
```
=== "C#"
```csharp title="space_complexity.cs"
[class]{space_complexity}-[func]{buildTree}
2022-12-03 01:31:29 +08:00
```
=== "Swift"
```swift title="space_complexity.swift"
2023-02-08 20:30:05 +08:00
[class]{}-[func]{buildTree}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="space_complexity.zig"
[class]{}-[func]{buildTree}
2023-02-01 22:03:04 +08:00
```
![满二叉树产生的指数阶空间复杂度](space_complexity.assets/space_complexity_exponential.png)
2022-11-22 17:47:26 +08:00
### 对数阶 $O(\log n)$
对数阶常见于分治算法和数据类型转换等。
2022-11-22 17:47:26 +08:00
例如“归并排序”算法,输入长度为 $n$ 的数组,每轮递归将数组从中点划分为两半,形成高度为 $\log n$ 的递归树,使用 $O(\log n)$ 栈帧空间。
2022-11-22 17:47:26 +08:00
再例如“数字转化为字符串”,输入任意正整数 $n$ ,它的位数为 $\log_{10} n$ ,即对应字符串长度为 $\log_{10} n$ ,因此空间复杂度为 $O(\log_{10} n) = O(\log n)$ 。
## 权衡时间与空间
理想情况下,我们希望算法的时间复杂度和空间复杂度都能达到最优。然而在实际情况中,同时优化时间复杂度和空间复杂度通常是非常困难的。
**降低时间复杂度通常需要以提升空间复杂度为代价,反之亦然**。我们将牺牲内存空间来提升算法运行速度的思路称为“以空间换时间”;反之,则称为“以时间换空间”。
选择哪种思路取决于我们更看重哪个方面。在大多数情况下,时间比空间更宝贵,因此以空间换时间通常是更常用的策略。当然,在数据量很大的情况下,控制空间复杂度也是非常重要的。