mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-26 03:46:29 +08:00
198 lines
5.8 KiB
Markdown
198 lines
5.8 KiB
Markdown
|
---
|
|||
|
comments: true
|
|||
|
---
|
|||
|
|
|||
|
# 栈
|
|||
|
|
|||
|
「栈 Stack」是一种遵循「先入后出 first in, last out」数据操作规则的线性数据结构。我们可以将栈类比为放在桌面上的一摞盘子,如果需要拿出底部的盘子,则需要先将上面的盘子依次取出。
|
|||
|
|
|||
|
我们将顶部盘子称为「栈顶」,底部盘子称为「栈底」,将把元素添加到栈顶的操作称为「入栈」,将删除栈顶元素的操作称为「出栈」。
|
|||
|
|
|||
|
![stack_operations](stack.assets/stack_operations.png)
|
|||
|
|
|||
|
<p style="text-align:center"> Fig. 栈的先入后出特性 </p>
|
|||
|
|
|||
|
## 栈常用操作
|
|||
|
|
|||
|
栈的常用操作见下表,方法名需根据编程语言设定来具体确定。
|
|||
|
|
|||
|
<p style="text-align:center"> Table. 栈的常用操作 </p>
|
|||
|
|
|||
|
<div class="center-table" markdown>
|
|||
|
|
|||
|
| 方法 | 描述 |
|
|||
|
| --------- | ---------------------- |
|
|||
|
| push() | 元素入栈(添加至栈顶) |
|
|||
|
| pop() | 栈顶元素出栈 |
|
|||
|
| peek() | 访问栈顶元素 |
|
|||
|
| size() | 获取栈的长度 |
|
|||
|
| isEmpty() | 判断栈是否为空 |
|
|||
|
|
|||
|
</div>
|
|||
|
|
|||
|
我们可以直接使用编程语言实现好的栈类。
|
|||
|
|
|||
|
=== "Java"
|
|||
|
|
|||
|
```java title="stack.java"
|
|||
|
/* 初始化栈 */
|
|||
|
Stack<Integer> stack = new Stack<>();
|
|||
|
|
|||
|
/* 元素入栈 */
|
|||
|
stack.push(1);
|
|||
|
stack.push(3);
|
|||
|
stack.push(2);
|
|||
|
stack.push(5);
|
|||
|
stack.push(4);
|
|||
|
System.out.println("栈 stack = " + stack);
|
|||
|
|
|||
|
/* 访问栈顶元素 */
|
|||
|
int peek = stack.peek();
|
|||
|
System.out.println("栈顶元素 peek = " + peek);
|
|||
|
|
|||
|
/* 元素出栈 */
|
|||
|
int pop = stack.pop();
|
|||
|
System.out.println("出栈元素 pop = " + pop + ",出栈后 stack = " + stack);
|
|||
|
|
|||
|
/* 获取栈的长度 */
|
|||
|
int size = stack.size();
|
|||
|
System.out.println("栈的长度 size = " + size);
|
|||
|
|
|||
|
/* 判断是否为空 */
|
|||
|
boolean isEmpty = stack.isEmpty();
|
|||
|
```
|
|||
|
|
|||
|
=== "C++"
|
|||
|
|
|||
|
```cpp title="stack.cpp"
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
=== "Python"
|
|||
|
|
|||
|
```python title="stack.py"
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
## 栈的实现
|
|||
|
|
|||
|
为了更加清晰地了解栈的运行机制,接下来我们来自己动手实现一个栈类。
|
|||
|
|
|||
|
栈规定元素是先入后出的,因此我们只能在栈顶添加或删除元素。然而,数组或链表都可以在任意位置添加删除元素,因此 **栈可被看作是一种受约束的数组或链表**。换言之,我们可以 “屏蔽” 数组或链表的部分无关操作,使之对外的表现逻辑符合栈的规定即可。
|
|||
|
|
|||
|
### 基于链表的实现
|
|||
|
|
|||
|
使用「链表」实现栈时,将链表的尾结点看作栈顶即可。
|
|||
|
|
|||
|
受益于链表的离散存储方式,栈的扩容更加灵活,删除元素的内存也会被系统自动回收;缺点是无法像数组一样高效地随机访问,并且由于链表结点需存储指针,导致单个元素占用空间更大。
|
|||
|
|
|||
|
=== "Java"
|
|||
|
|
|||
|
```java title="linkedlist_stack.java"
|
|||
|
/* 基于链表实现的栈 */
|
|||
|
class LinkedListStack {
|
|||
|
LinkedList<Integer> list;
|
|||
|
public LinkedListStack() {
|
|||
|
// 初始化链表
|
|||
|
list = new LinkedList<>();
|
|||
|
}
|
|||
|
/* 获取栈的长度 */
|
|||
|
public int size() {
|
|||
|
return list.size();
|
|||
|
}
|
|||
|
/* 判断栈是否为空 */
|
|||
|
public boolean isEmpty() {
|
|||
|
return size() == 0;
|
|||
|
}
|
|||
|
/* 入栈 */
|
|||
|
public void push(int num) {
|
|||
|
list.addLast(num);
|
|||
|
}
|
|||
|
/* 出栈 */
|
|||
|
public int pop() {
|
|||
|
return list.removeLast();
|
|||
|
}
|
|||
|
/* 访问栈顶元素 */
|
|||
|
public int peek() {
|
|||
|
return list.getLast();
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "C++"
|
|||
|
|
|||
|
```cpp title="linkedlist_stack.cpp"
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
=== "Python"
|
|||
|
|
|||
|
```python title="linkedlist_stack.py"
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
### 基于数组的实现
|
|||
|
|
|||
|
使用「数组」实现栈时,将数组的尾部当作栈顶。准确地说,我们需要使用「列表」,因为入栈的元素可能是源源不断的,因此使用动态数组可以方便扩容。
|
|||
|
|
|||
|
基于数组实现的栈,优点是支持随机访问,缺点是会造成一定的空间浪费,因为列表的容量始终 $\geq$ 元素数量。
|
|||
|
|
|||
|
=== "Java"
|
|||
|
|
|||
|
```java title="array_stack.java"
|
|||
|
/* 基于数组实现的栈 */
|
|||
|
class ArrayStack {
|
|||
|
List<Integer> list;
|
|||
|
public ArrayStack() {
|
|||
|
// 初始化列表(动态数组)
|
|||
|
list = new ArrayList<>();
|
|||
|
}
|
|||
|
/* 获取栈的长度 */
|
|||
|
public int size() {
|
|||
|
return list.size();
|
|||
|
}
|
|||
|
/* 判断栈是否为空 */
|
|||
|
public boolean isEmpty() {
|
|||
|
return size() == 0;
|
|||
|
}
|
|||
|
/* 入栈 */
|
|||
|
public void push(int num) {
|
|||
|
list.add(num);
|
|||
|
}
|
|||
|
/* 出栈 */
|
|||
|
public int pop() {
|
|||
|
return list.remove(size() - 1);
|
|||
|
}
|
|||
|
/* 访问栈顶元素 */
|
|||
|
public int peek() {
|
|||
|
return list.get(size() - 1);
|
|||
|
}
|
|||
|
/* 访问索引 index 处元素 */
|
|||
|
public int get(int index) {
|
|||
|
return list.get(index);
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "C++"
|
|||
|
|
|||
|
```cpp title="array_stack.cpp"
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
=== "Python"
|
|||
|
|
|||
|
```python title="array_stack.py"
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
!!! tip
|
|||
|
|
|||
|
实际编程中,我们一般直接将 `ArrayList` 或 `LinkedList` 当作「栈」来使用。我们仅需通过脑补来屏蔽无关操作,而不用专门去包装它。
|
|||
|
|
|||
|
## 栈典型应用
|
|||
|
|
|||
|
- **浏览器中的后退与前进、软件中的撤销与反撤销。** 每当我们打开新的网页,浏览器就讲上一个网页执行入栈,这样我们就可以通过「后退」操作来回到上一页面,后退操作实际上是在执行出栈。如果要同时支持后退和前进,那么则需要两个栈来配合实现。
|
|||
|
|
|||
|
- **程序内存管理。** 每当调用函数时,系统就会站栈顶添加一个栈帧,用来记录函数的上下文信息。在递归函数中,向下递推会不断执行入栈,向上回溯阶段时出栈。
|