hello-algo/codes/python/chapter_dynamic_programming/knapsack.py

102 lines
3.3 KiB
Python
Raw Permalink Normal View History

"""
File: knapsack.py
Created Time: 2023-07-03
Author: krahets (krahets@163.com)
"""
def knapsack_dfs(wgt: list[int], val: list[int], i: int, c: int) -> int:
"""0-1 背包:暴力搜索"""
# 若已选完所有物品或背包无剩余容量,则返回价值 0
if i == 0 or c == 0:
return 0
# 若超过背包容量,则只能选择不放入背包
if wgt[i - 1] > c:
return knapsack_dfs(wgt, val, i - 1, c)
# 计算不放入和放入物品 i 的最大价值
no = knapsack_dfs(wgt, val, i - 1, c)
yes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1]
# 返回两种方案中价值更大的那一个
return max(no, yes)
def knapsack_dfs_mem(
wgt: list[int], val: list[int], mem: list[list[int]], i: int, c: int
) -> int:
"""0-1 背包:记忆化搜索"""
# 若已选完所有物品或背包无剩余容量,则返回价值 0
if i == 0 or c == 0:
return 0
# 若已有记录,则直接返回
if mem[i][c] != -1:
return mem[i][c]
# 若超过背包容量,则只能选择不放入背包
if wgt[i - 1] > c:
return knapsack_dfs_mem(wgt, val, mem, i - 1, c)
# 计算不放入和放入物品 i 的最大价值
no = knapsack_dfs_mem(wgt, val, mem, i - 1, c)
yes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1]
# 记录并返回两种方案中价值更大的那一个
mem[i][c] = max(no, yes)
return mem[i][c]
def knapsack_dp(wgt: list[int], val: list[int], cap: int) -> int:
"""0-1 背包:动态规划"""
n = len(wgt)
# 初始化 dp 表
dp = [[0] * (cap + 1) for _ in range(n + 1)]
# 状态转移
for i in range(1, n + 1):
for c in range(1, cap + 1):
if wgt[i - 1] > c:
# 若超过背包容量,则不选物品 i
dp[i][c] = dp[i - 1][c]
else:
# 不选和选物品 i 这两种方案的较大值
2023-07-10 20:36:48 +08:00
dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1])
return dp[n][cap]
def knapsack_dp_comp(wgt: list[int], val: list[int], cap: int) -> int:
2023-08-27 00:50:18 +08:00
"""0-1 背包:空间优化后的动态规划"""
n = len(wgt)
# 初始化 dp 表
dp = [0] * (cap + 1)
# 状态转移
for i in range(1, n + 1):
# 倒序遍历
for c in range(cap, 0, -1):
if wgt[i - 1] > c:
# 若超过背包容量,则不选物品 i
dp[c] = dp[c]
else:
# 不选和选物品 i 这两种方案的较大值
2023-07-10 20:36:48 +08:00
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])
return dp[cap]
"""Driver Code"""
if __name__ == "__main__":
wgt = [10, 20, 30, 40, 50]
2023-07-10 20:36:48 +08:00
val = [50, 120, 150, 210, 240]
cap = 50
n = len(wgt)
# 暴力搜索
res = knapsack_dfs(wgt, val, n, cap)
2023-07-10 20:36:48 +08:00
print(f"不超过背包容量的最大物品价值为 {res}")
# 记忆化搜索
mem = [[-1] * (cap + 1) for _ in range(n + 1)]
res = knapsack_dfs_mem(wgt, val, mem, n, cap)
2023-07-10 20:36:48 +08:00
print(f"不超过背包容量的最大物品价值为 {res}")
# 动态规划
res = knapsack_dp(wgt, val, cap)
2023-07-10 20:36:48 +08:00
print(f"不超过背包容量的最大物品价值为 {res}")
2023-08-27 00:50:18 +08:00
# 空间优化后的动态规划
res = knapsack_dp_comp(wgt, val, cap)
2023-07-10 20:36:48 +08:00
print(f"不超过背包容量的最大物品价值为 {res}")