mihomo/transport/tuic/congestion/bbr_sender.go
2023-09-30 13:40:07 +08:00

957 lines
32 KiB
Go

package congestion
// src from https://quiche.googlesource.com/quiche.git/+/66dea072431f94095dfc3dd2743cb94ef365f7ef/quic/core/congestion_control/bbr_sender.cc
import (
"fmt"
"math"
"net"
"time"
"github.com/metacubex/quic-go/congestion"
"github.com/zhangyunhao116/fastrand"
)
const (
// InitialMaxDatagramSize is the default maximum packet size used in QUIC for congestion window computations in bytes.
InitialMaxDatagramSize = 1252
InitialPacketSizeIPv4 = 1252
InitialPacketSizeIPv6 = 1232
InitialCongestionWindow = 32
DefaultBBRMaxCongestionWindow = 10000
)
func GetInitialPacketSize(addr net.Addr) congestion.ByteCount {
maxSize := congestion.ByteCount(1200)
// If this is not a UDP address, we don't know anything about the MTU.
// Use the minimum size of an Initial packet as the max packet size.
if udpAddr, ok := addr.(*net.UDPAddr); ok {
if udpAddr.IP.To4() != nil {
maxSize = InitialPacketSizeIPv4
} else {
maxSize = InitialPacketSizeIPv6
}
}
return congestion.ByteCount(maxSize)
}
var (
// Default initial rtt used before any samples are received.
InitialRtt = 100 * time.Millisecond
// The gain used for the STARTUP, equal to 4*ln(2).
DefaultHighGain = 2.77
// The gain used in STARTUP after loss has been detected.
// 1.5 is enough to allow for 25% exogenous loss and still observe a 25% growth
// in measured bandwidth.
StartupAfterLossGain = 1.5
// The cycle of gains used during the PROBE_BW stage.
PacingGain = []float64{1.25, 0.75, 1, 1, 1, 1, 1, 1}
// The length of the gain cycle.
GainCycleLength = len(PacingGain)
// The size of the bandwidth filter window, in round-trips.
BandwidthWindowSize = GainCycleLength + 2
// The time after which the current min_rtt value expires.
MinRttExpiry = 10 * time.Second
// The minimum time the connection can spend in PROBE_RTT mode.
ProbeRttTime = time.Millisecond * 200
// If the bandwidth does not increase by the factor of |kStartupGrowthTarget|
// within |kRoundTripsWithoutGrowthBeforeExitingStartup| rounds, the connection
// will exit the STARTUP mode.
StartupGrowthTarget = 1.25
RoundTripsWithoutGrowthBeforeExitingStartup = int64(3)
// Coefficient of target congestion window to use when basing PROBE_RTT on BDP.
ModerateProbeRttMultiplier = 0.75
// Coefficient to determine if a new RTT is sufficiently similar to min_rtt that
// we don't need to enter PROBE_RTT.
SimilarMinRttThreshold = 1.125
// Congestion window gain for QUIC BBR during PROBE_BW phase.
DefaultCongestionWindowGainConst = 2.0
)
type bbrMode int
const (
// Startup phase of the connection.
STARTUP = iota
// After achieving the highest possible bandwidth during the startup, lower
// the pacing rate in order to drain the queue.
DRAIN
// Cruising mode.
PROBE_BW
// Temporarily slow down sending in order to empty the buffer and measure
// the real minimum RTT.
PROBE_RTT
)
type bbrRecoveryState int
const (
// Do not limit.
NOT_IN_RECOVERY = iota
// Allow an extra outstanding byte for each byte acknowledged.
CONSERVATION
// Allow two extra outstanding bytes for each byte acknowledged (slow
// start).
GROWTH
)
type bbrSender struct {
mode bbrMode
clock Clock
rttStats congestion.RTTStatsProvider
bytesInFlight congestion.ByteCount
// return total bytes of unacked packets.
//GetBytesInFlight func() congestion.ByteCount
// Bandwidth sampler provides BBR with the bandwidth measurements at
// individual points.
sampler *BandwidthSampler
// The number of the round trips that have occurred during the connection.
roundTripCount int64
// The packet number of the most recently sent packet.
lastSendPacket congestion.PacketNumber
// Acknowledgement of any packet after |current_round_trip_end_| will cause
// the round trip counter to advance.
currentRoundTripEnd congestion.PacketNumber
// The filter that tracks the maximum bandwidth over the multiple recent
// round-trips.
maxBandwidth *WindowedFilter
// Tracks the maximum number of bytes acked faster than the sending rate.
maxAckHeight *WindowedFilter
// The time this aggregation started and the number of bytes acked during it.
aggregationEpochStartTime time.Time
aggregationEpochBytes congestion.ByteCount
// Minimum RTT estimate. Automatically expires within 10 seconds (and
// triggers PROBE_RTT mode) if no new value is sampled during that period.
minRtt time.Duration
// The time at which the current value of |min_rtt_| was assigned.
minRttTimestamp time.Time
// The maximum allowed number of bytes in flight.
congestionWindow congestion.ByteCount
// The initial value of the |congestion_window_|.
initialCongestionWindow congestion.ByteCount
// The largest value the |congestion_window_| can achieve.
initialMaxCongestionWindow congestion.ByteCount
// The smallest value the |congestion_window_| can achieve.
//minCongestionWindow congestion.ByteCount
// The pacing gain applied during the STARTUP phase.
highGain float64
// The CWND gain applied during the STARTUP phase.
highCwndGain float64
// The pacing gain applied during the DRAIN phase.
drainGain float64
// The current pacing rate of the connection.
pacingRate Bandwidth
// The gain currently applied to the pacing rate.
pacingGain float64
// The gain currently applied to the congestion window.
congestionWindowGain float64
// The gain used for the congestion window during PROBE_BW. Latched from
// quic_bbr_cwnd_gain flag.
congestionWindowGainConst float64
// The number of RTTs to stay in STARTUP mode. Defaults to 3.
numStartupRtts int64
// If true, exit startup if 1RTT has passed with no bandwidth increase and
// the connection is in recovery.
exitStartupOnLoss bool
// Number of round-trips in PROBE_BW mode, used for determining the current
// pacing gain cycle.
cycleCurrentOffset int
// The time at which the last pacing gain cycle was started.
lastCycleStart time.Time
// Indicates whether the connection has reached the full bandwidth mode.
isAtFullBandwidth bool
// Number of rounds during which there was no significant bandwidth increase.
roundsWithoutBandwidthGain int64
// The bandwidth compared to which the increase is measured.
bandwidthAtLastRound Bandwidth
// Set to true upon exiting quiescence.
exitingQuiescence bool
// Time at which PROBE_RTT has to be exited. Setting it to zero indicates
// that the time is yet unknown as the number of packets in flight has not
// reached the required value.
exitProbeRttAt time.Time
// Indicates whether a round-trip has passed since PROBE_RTT became active.
probeRttRoundPassed bool
// Indicates whether the most recent bandwidth sample was marked as
// app-limited.
lastSampleIsAppLimited bool
// Indicates whether any non app-limited samples have been recorded.
hasNoAppLimitedSample bool
// Indicates app-limited calls should be ignored as long as there's
// enough data inflight to see more bandwidth when necessary.
flexibleAppLimited bool
// Current state of recovery.
recoveryState bbrRecoveryState
// Receiving acknowledgement of a packet after |end_recovery_at_| will cause
// BBR to exit the recovery mode. A value above zero indicates at least one
// loss has been detected, so it must not be set back to zero.
endRecoveryAt congestion.PacketNumber
// A window used to limit the number of bytes in flight during loss recovery.
recoveryWindow congestion.ByteCount
// If true, consider all samples in recovery app-limited.
isAppLimitedRecovery bool
// When true, pace at 1.5x and disable packet conservation in STARTUP.
slowerStartup bool
// When true, disables packet conservation in STARTUP.
rateBasedStartup bool
// When non-zero, decreases the rate in STARTUP by the total number of bytes
// lost in STARTUP divided by CWND.
startupRateReductionMultiplier int64
// Sum of bytes lost in STARTUP.
startupBytesLost congestion.ByteCount
// When true, add the most recent ack aggregation measurement during STARTUP.
enableAckAggregationDuringStartup bool
// When true, expire the windowed ack aggregation values in STARTUP when
// bandwidth increases more than 25%.
expireAckAggregationInStartup bool
// If true, will not exit low gain mode until bytes_in_flight drops below BDP
// or it's time for high gain mode.
drainToTarget bool
// If true, use a CWND of 0.75*BDP during probe_rtt instead of 4 packets.
probeRttBasedOnBdp bool
// If true, skip probe_rtt and update the timestamp of the existing min_rtt to
// now if min_rtt over the last cycle is within 12.5% of the current min_rtt.
// Even if the min_rtt is 12.5% too low, the 25% gain cycling and 2x CWND gain
// should overcome an overly small min_rtt.
probeRttSkippedIfSimilarRtt bool
// If true, disable PROBE_RTT entirely as long as the connection was recently
// app limited.
probeRttDisabledIfAppLimited bool
appLimitedSinceLastProbeRtt bool
minRttSinceLastProbeRtt time.Duration
// Latched value of --quic_always_get_bw_sample_when_acked.
alwaysGetBwSampleWhenAcked bool
pacer *pacer
maxDatagramSize congestion.ByteCount
}
func NewBBRSender(
clock Clock,
initialMaxDatagramSize,
initialCongestionWindow,
initialMaxCongestionWindow congestion.ByteCount,
) *bbrSender {
b := &bbrSender{
mode: STARTUP,
clock: clock,
sampler: NewBandwidthSampler(),
maxBandwidth: NewWindowedFilter(int64(BandwidthWindowSize), MaxFilter),
maxAckHeight: NewWindowedFilter(int64(BandwidthWindowSize), MaxFilter),
congestionWindow: initialCongestionWindow,
initialCongestionWindow: initialCongestionWindow,
highGain: DefaultHighGain,
highCwndGain: DefaultHighGain,
drainGain: 1.0 / DefaultHighGain,
pacingGain: 1.0,
congestionWindowGain: 1.0,
congestionWindowGainConst: DefaultCongestionWindowGainConst,
numStartupRtts: RoundTripsWithoutGrowthBeforeExitingStartup,
recoveryState: NOT_IN_RECOVERY,
recoveryWindow: initialMaxCongestionWindow,
minRttSinceLastProbeRtt: InfiniteRTT,
maxDatagramSize: initialMaxDatagramSize,
}
b.pacer = newPacer(b.BandwidthEstimate)
return b
}
func (b *bbrSender) maxCongestionWindow() congestion.ByteCount {
return b.maxDatagramSize * DefaultBBRMaxCongestionWindow
}
func (b *bbrSender) minCongestionWindow() congestion.ByteCount {
return b.maxDatagramSize * b.initialCongestionWindow
}
func (b *bbrSender) SetRTTStatsProvider(provider congestion.RTTStatsProvider) {
b.rttStats = provider
}
func (b *bbrSender) GetBytesInFlight() congestion.ByteCount {
return b.bytesInFlight
}
// TimeUntilSend returns when the next packet should be sent.
func (b *bbrSender) TimeUntilSend(bytesInFlight congestion.ByteCount) time.Time {
b.bytesInFlight = bytesInFlight
return b.pacer.TimeUntilSend()
}
func (b *bbrSender) HasPacingBudget(now time.Time) bool {
return b.pacer.Budget(now) >= b.maxDatagramSize
}
func (b *bbrSender) SetMaxDatagramSize(s congestion.ByteCount) {
if s < b.maxDatagramSize {
panic(fmt.Sprintf("congestion BUG: decreased max datagram size from %d to %d", b.maxDatagramSize, s))
}
cwndIsMinCwnd := b.congestionWindow == b.minCongestionWindow()
b.maxDatagramSize = s
if cwndIsMinCwnd {
b.congestionWindow = b.minCongestionWindow()
}
b.pacer.SetMaxDatagramSize(s)
}
func (b *bbrSender) OnPacketSent(sentTime time.Time, bytesInFlight congestion.ByteCount, packetNumber congestion.PacketNumber, bytes congestion.ByteCount, isRetransmittable bool) {
b.pacer.SentPacket(sentTime, bytes)
b.lastSendPacket = packetNumber
b.bytesInFlight = bytesInFlight
if bytesInFlight == 0 && b.sampler.isAppLimited {
b.exitingQuiescence = true
}
if b.aggregationEpochStartTime.IsZero() {
b.aggregationEpochStartTime = sentTime
}
b.sampler.OnPacketSent(sentTime, packetNumber, bytes, bytesInFlight, isRetransmittable)
}
func (b *bbrSender) CanSend(bytesInFlight congestion.ByteCount) bool {
b.bytesInFlight = bytesInFlight
return bytesInFlight < b.GetCongestionWindow()
}
func (b *bbrSender) GetCongestionWindow() congestion.ByteCount {
if b.mode == PROBE_RTT {
return b.ProbeRttCongestionWindow()
}
if b.InRecovery() && !(b.rateBasedStartup && b.mode == STARTUP) {
return minByteCount(b.congestionWindow, b.recoveryWindow)
}
return b.congestionWindow
}
func (b *bbrSender) MaybeExitSlowStart() {
}
func (b *bbrSender) OnPacketAcked(number congestion.PacketNumber, ackedBytes congestion.ByteCount, priorInFlight congestion.ByteCount, eventTime time.Time) {
// Stub
}
func (b *bbrSender) OnCongestionEvent(number congestion.PacketNumber, lostBytes congestion.ByteCount, priorInFlight congestion.ByteCount) {
// Stub
}
func (b *bbrSender) OnCongestionEventEx(priorInFlight congestion.ByteCount, eventTime time.Time, ackedPackets []congestion.AckedPacketInfo, lostPackets []congestion.LostPacketInfo) {
totalBytesAckedBefore := b.sampler.totalBytesAcked
isRoundStart, minRttExpired := false, false
if lostPackets != nil {
b.DiscardLostPackets(lostPackets)
}
// Input the new data into the BBR model of the connection.
var excessAcked congestion.ByteCount
if len(ackedPackets) > 0 {
lastAckedPacket := ackedPackets[len(ackedPackets)-1].PacketNumber
isRoundStart = b.UpdateRoundTripCounter(lastAckedPacket)
minRttExpired = b.UpdateBandwidthAndMinRtt(eventTime, ackedPackets)
b.UpdateRecoveryState(len(lostPackets) > 0, isRoundStart)
bytesAcked := b.sampler.totalBytesAcked - totalBytesAckedBefore
excessAcked = b.UpdateAckAggregationBytes(eventTime, bytesAcked)
}
// Handle logic specific to PROBE_BW mode.
if b.mode == PROBE_BW {
b.UpdateGainCyclePhase(eventTime, priorInFlight, len(lostPackets) > 0)
}
// Handle logic specific to STARTUP and DRAIN modes.
if isRoundStart && !b.isAtFullBandwidth {
b.CheckIfFullBandwidthReached()
}
b.MaybeExitStartupOrDrain(eventTime)
// Handle logic specific to PROBE_RTT.
b.MaybeEnterOrExitProbeRtt(eventTime, isRoundStart, minRttExpired)
// Calculate number of packets acked and lost.
bytesAcked := b.sampler.totalBytesAcked - totalBytesAckedBefore
bytesLost := congestion.ByteCount(0)
for _, packet := range lostPackets {
bytesLost += packet.BytesLost
}
// After the model is updated, recalculate the pacing rate and congestion
// window.
b.CalculatePacingRate()
b.CalculateCongestionWindow(bytesAcked, excessAcked)
b.CalculateRecoveryWindow(bytesAcked, bytesLost)
}
//func (b *bbrSender) SetNumEmulatedConnections(n int) {
//
//}
func (b *bbrSender) OnRetransmissionTimeout(packetsRetransmitted bool) {
}
//func (b *bbrSender) OnConnectionMigration() {
//
//}
//// Experiments
//func (b *bbrSender) SetSlowStartLargeReduction(enabled bool) {
//
//}
//func (b *bbrSender) BandwidthEstimate() Bandwidth {
// return Bandwidth(b.maxBandwidth.GetBest())
//}
// BandwidthEstimate returns the current bandwidth estimate
func (b *bbrSender) BandwidthEstimate() Bandwidth {
if b.rttStats == nil {
return infBandwidth
}
srtt := b.rttStats.SmoothedRTT()
if srtt == 0 {
// If we haven't measured an rtt, the bandwidth estimate is unknown.
return infBandwidth
}
return BandwidthFromDelta(b.GetCongestionWindow(), srtt)
}
//func (b *bbrSender) HybridSlowStart() *HybridSlowStart {
// return nil
//}
//func (b *bbrSender) SlowstartThreshold() congestion.ByteCount {
// return 0
//}
//func (b *bbrSender) RenoBeta() float32 {
// return 0.0
//}
func (b *bbrSender) InRecovery() bool {
return b.recoveryState != NOT_IN_RECOVERY
}
func (b *bbrSender) InSlowStart() bool {
return b.mode == STARTUP
}
//func (b *bbrSender) ShouldSendProbingPacket() bool {
// if b.pacingGain <= 1 {
// return false
// }
// // TODO(b/77975811): If the pipe is highly under-utilized, consider not
// // sending a probing transmission, because the extra bandwidth is not needed.
// // If flexible_app_limited is enabled, check if the pipe is sufficiently full.
// if b.flexibleAppLimited {
// return !b.IsPipeSufficientlyFull()
// } else {
// return true
// }
//}
//func (b *bbrSender) IsPipeSufficientlyFull() bool {
// // See if we need more bytes in flight to see more bandwidth.
// if b.mode == STARTUP {
// // STARTUP exits if it doesn't observe a 25% bandwidth increase, so the CWND
// // must be more than 25% above the target.
// return b.GetBytesInFlight() >= b.GetTargetCongestionWindow(1.5)
// }
// if b.pacingGain > 1 {
// // Super-unity PROBE_BW doesn't exit until 1.25 * BDP is achieved.
// return b.GetBytesInFlight() >= b.GetTargetCongestionWindow(b.pacingGain)
// }
// // If bytes_in_flight are above the target congestion window, it should be
// // possible to observe the same or more bandwidth if it's available.
// return b.GetBytesInFlight() >= b.GetTargetCongestionWindow(1.1)
//}
//func (b *bbrSender) SetFromConfig() {
// // TODO: not impl.
//}
func (b *bbrSender) UpdateRoundTripCounter(lastAckedPacket congestion.PacketNumber) bool {
if b.currentRoundTripEnd == 0 || lastAckedPacket > b.currentRoundTripEnd {
b.currentRoundTripEnd = lastAckedPacket
b.roundTripCount++
// if b.rttStats != nil && b.InSlowStart() {
// TODO: ++stats_->slowstart_num_rtts;
// }
return true
}
return false
}
func (b *bbrSender) UpdateBandwidthAndMinRtt(now time.Time, ackedPackets []congestion.AckedPacketInfo) bool {
sampleMinRtt := InfiniteRTT
for _, packet := range ackedPackets {
if !b.alwaysGetBwSampleWhenAcked && packet.BytesAcked == 0 {
// Skip acked packets with 0 in flight bytes when updating bandwidth.
return false
}
bandwidthSample := b.sampler.OnPacketAcked(now, packet.PacketNumber)
if b.alwaysGetBwSampleWhenAcked && !bandwidthSample.stateAtSend.isValid {
// From the sampler's perspective, the packet has never been sent, or the
// packet has been acked or marked as lost previously.
return false
}
b.lastSampleIsAppLimited = bandwidthSample.stateAtSend.isAppLimited
// has_non_app_limited_sample_ |=
// !bandwidth_sample.state_at_send.is_app_limited;
if !bandwidthSample.stateAtSend.isAppLimited {
b.hasNoAppLimitedSample = true
}
if bandwidthSample.rtt > 0 {
sampleMinRtt = minRtt(sampleMinRtt, bandwidthSample.rtt)
}
if !bandwidthSample.stateAtSend.isAppLimited || bandwidthSample.bandwidth > b.BandwidthEstimate() {
b.maxBandwidth.Update(int64(bandwidthSample.bandwidth), b.roundTripCount)
}
}
// If none of the RTT samples are valid, return immediately.
if sampleMinRtt == InfiniteRTT {
return false
}
b.minRttSinceLastProbeRtt = minRtt(b.minRttSinceLastProbeRtt, sampleMinRtt)
// Do not expire min_rtt if none was ever available.
minRttExpired := b.minRtt > 0 && (now.After(b.minRttTimestamp.Add(MinRttExpiry)))
if minRttExpired || sampleMinRtt < b.minRtt || b.minRtt == 0 {
if minRttExpired && b.ShouldExtendMinRttExpiry() {
minRttExpired = false
} else {
b.minRtt = sampleMinRtt
}
b.minRttTimestamp = now
// Reset since_last_probe_rtt fields.
b.minRttSinceLastProbeRtt = InfiniteRTT
b.appLimitedSinceLastProbeRtt = false
}
return minRttExpired
}
func (b *bbrSender) ShouldExtendMinRttExpiry() bool {
if b.probeRttDisabledIfAppLimited && b.appLimitedSinceLastProbeRtt {
// Extend the current min_rtt if we've been app limited recently.
return true
}
minRttIncreasedSinceLastProbe := b.minRttSinceLastProbeRtt > time.Duration(float64(b.minRtt)*SimilarMinRttThreshold)
if b.probeRttSkippedIfSimilarRtt && b.appLimitedSinceLastProbeRtt && !minRttIncreasedSinceLastProbe {
// Extend the current min_rtt if we've been app limited recently and an rtt
// has been measured in that time that's less than 12.5% more than the
// current min_rtt.
return true
}
return false
}
func (b *bbrSender) DiscardLostPackets(lostPackets []congestion.LostPacketInfo) {
for _, packet := range lostPackets {
b.sampler.OnCongestionEvent(packet.PacketNumber)
if b.mode == STARTUP {
// if b.rttStats != nil {
// TODO: slow start.
// }
if b.startupRateReductionMultiplier != 0 {
b.startupBytesLost += packet.BytesLost
}
}
}
}
func (b *bbrSender) UpdateRecoveryState(hasLosses, isRoundStart bool) {
// Exit recovery when there are no losses for a round.
if !hasLosses {
b.endRecoveryAt = b.lastSendPacket
}
switch b.recoveryState {
case NOT_IN_RECOVERY:
// Enter conservation on the first loss.
if hasLosses {
b.recoveryState = CONSERVATION
// This will cause the |recovery_window_| to be set to the correct
// value in CalculateRecoveryWindow().
b.recoveryWindow = 0
// Since the conservation phase is meant to be lasting for a whole
// round, extend the current round as if it were started right now.
b.currentRoundTripEnd = b.lastSendPacket
if false && b.lastSampleIsAppLimited {
b.isAppLimitedRecovery = true
}
}
case CONSERVATION:
if isRoundStart {
b.recoveryState = GROWTH
}
fallthrough
case GROWTH:
// Exit recovery if appropriate.
if !hasLosses && b.lastSendPacket > b.endRecoveryAt {
b.recoveryState = NOT_IN_RECOVERY
b.isAppLimitedRecovery = false
}
}
if b.recoveryState != NOT_IN_RECOVERY && b.isAppLimitedRecovery {
b.sampler.OnAppLimited()
}
}
func (b *bbrSender) UpdateAckAggregationBytes(ackTime time.Time, ackedBytes congestion.ByteCount) congestion.ByteCount {
// Compute how many bytes are expected to be delivered, assuming max bandwidth
// is correct.
expectedAckedBytes := congestion.ByteCount(b.maxBandwidth.GetBest()) *
congestion.ByteCount((ackTime.Sub(b.aggregationEpochStartTime)))
// Reset the current aggregation epoch as soon as the ack arrival rate is less
// than or equal to the max bandwidth.
if b.aggregationEpochBytes <= expectedAckedBytes {
// Reset to start measuring a new aggregation epoch.
b.aggregationEpochBytes = ackedBytes
b.aggregationEpochStartTime = ackTime
return 0
}
// Compute how many extra bytes were delivered vs max bandwidth.
// Include the bytes most recently acknowledged to account for stretch acks.
b.aggregationEpochBytes += ackedBytes
b.maxAckHeight.Update(int64(b.aggregationEpochBytes-expectedAckedBytes), b.roundTripCount)
return b.aggregationEpochBytes - expectedAckedBytes
}
func (b *bbrSender) UpdateGainCyclePhase(now time.Time, priorInFlight congestion.ByteCount, hasLosses bool) {
bytesInFlight := b.GetBytesInFlight()
// In most cases, the cycle is advanced after an RTT passes.
shouldAdvanceGainCycling := now.Sub(b.lastCycleStart) > b.GetMinRtt()
// If the pacing gain is above 1.0, the connection is trying to probe the
// bandwidth by increasing the number of bytes in flight to at least
// pacing_gain * BDP. Make sure that it actually reaches the target, as long
// as there are no losses suggesting that the buffers are not able to hold
// that much.
if b.pacingGain > 1.0 && !hasLosses && priorInFlight < b.GetTargetCongestionWindow(b.pacingGain) {
shouldAdvanceGainCycling = false
}
// If pacing gain is below 1.0, the connection is trying to drain the extra
// queue which could have been incurred by probing prior to it. If the number
// of bytes in flight falls down to the estimated BDP value earlier, conclude
// that the queue has been successfully drained and exit this cycle early.
if b.pacingGain < 1.0 && bytesInFlight <= b.GetTargetCongestionWindow(1.0) {
shouldAdvanceGainCycling = true
}
if shouldAdvanceGainCycling {
b.cycleCurrentOffset = (b.cycleCurrentOffset + 1) % GainCycleLength
b.lastCycleStart = now
// Stay in low gain mode until the target BDP is hit.
// Low gain mode will be exited immediately when the target BDP is achieved.
if b.drainToTarget && b.pacingGain < 1.0 && PacingGain[b.cycleCurrentOffset] == 1.0 &&
bytesInFlight > b.GetTargetCongestionWindow(1.0) {
return
}
b.pacingGain = PacingGain[b.cycleCurrentOffset]
}
}
func (b *bbrSender) GetTargetCongestionWindow(gain float64) congestion.ByteCount {
bdp := congestion.ByteCount(b.GetMinRtt()) * congestion.ByteCount(b.BandwidthEstimate())
congestionWindow := congestion.ByteCount(gain * float64(bdp))
// BDP estimate will be zero if no bandwidth samples are available yet.
if congestionWindow == 0 {
congestionWindow = congestion.ByteCount(gain * float64(b.initialCongestionWindow))
}
return maxByteCount(congestionWindow, b.minCongestionWindow())
}
func (b *bbrSender) CheckIfFullBandwidthReached() {
if b.lastSampleIsAppLimited {
return
}
target := Bandwidth(float64(b.bandwidthAtLastRound) * StartupGrowthTarget)
if b.BandwidthEstimate() >= target {
b.bandwidthAtLastRound = b.BandwidthEstimate()
b.roundsWithoutBandwidthGain = 0
if b.expireAckAggregationInStartup {
// Expire old excess delivery measurements now that bandwidth increased.
b.maxAckHeight.Reset(0, b.roundTripCount)
}
return
}
b.roundsWithoutBandwidthGain++
if b.roundsWithoutBandwidthGain >= b.numStartupRtts || (b.exitStartupOnLoss && b.InRecovery()) {
b.isAtFullBandwidth = true
}
}
func (b *bbrSender) MaybeExitStartupOrDrain(now time.Time) {
if b.mode == STARTUP && b.isAtFullBandwidth {
b.OnExitStartup(now)
b.mode = DRAIN
b.pacingGain = b.drainGain
b.congestionWindowGain = b.highCwndGain
}
if b.mode == DRAIN && b.GetBytesInFlight() <= b.GetTargetCongestionWindow(1) {
b.EnterProbeBandwidthMode(now)
}
}
func (b *bbrSender) EnterProbeBandwidthMode(now time.Time) {
b.mode = PROBE_BW
b.congestionWindowGain = b.congestionWindowGainConst
// Pick a random offset for the gain cycle out of {0, 2..7} range. 1 is
// excluded because in that case increased gain and decreased gain would not
// follow each other.
b.cycleCurrentOffset = fastrand.Int() % (GainCycleLength - 1)
if b.cycleCurrentOffset >= 1 {
b.cycleCurrentOffset += 1
}
b.lastCycleStart = now
b.pacingGain = PacingGain[b.cycleCurrentOffset]
}
func (b *bbrSender) MaybeEnterOrExitProbeRtt(now time.Time, isRoundStart, minRttExpired bool) {
if minRttExpired && !b.exitingQuiescence && b.mode != PROBE_RTT {
if b.InSlowStart() {
b.OnExitStartup(now)
}
b.mode = PROBE_RTT
b.pacingGain = 1.0
// Do not decide on the time to exit PROBE_RTT until the |bytes_in_flight|
// is at the target small value.
b.exitProbeRttAt = time.Time{}
}
if b.mode == PROBE_RTT {
b.sampler.OnAppLimited()
if b.exitProbeRttAt.IsZero() {
// If the window has reached the appropriate size, schedule exiting
// PROBE_RTT. The CWND during PROBE_RTT is kMinimumCongestionWindow, but
// we allow an extra packet since QUIC checks CWND before sending a
// packet.
if b.GetBytesInFlight() < b.ProbeRttCongestionWindow()+b.maxDatagramSize {
b.exitProbeRttAt = now.Add(ProbeRttTime)
b.probeRttRoundPassed = false
}
} else {
if isRoundStart {
b.probeRttRoundPassed = true
}
if !now.Before(b.exitProbeRttAt) && b.probeRttRoundPassed {
b.minRttTimestamp = now
if !b.isAtFullBandwidth {
b.EnterStartupMode(now)
} else {
b.EnterProbeBandwidthMode(now)
}
}
}
}
b.exitingQuiescence = false
}
func (b *bbrSender) ProbeRttCongestionWindow() congestion.ByteCount {
if b.probeRttBasedOnBdp {
return b.GetTargetCongestionWindow(ModerateProbeRttMultiplier)
} else {
return b.minCongestionWindow()
}
}
func (b *bbrSender) EnterStartupMode(now time.Time) {
// if b.rttStats != nil {
// TODO: slow start.
// }
b.mode = STARTUP
b.pacingGain = b.highGain
b.congestionWindowGain = b.highCwndGain
}
func (b *bbrSender) OnExitStartup(now time.Time) {
if b.rttStats == nil {
return
}
// TODO: slow start.
}
func (b *bbrSender) CalculatePacingRate() {
if b.BandwidthEstimate() == 0 {
return
}
targetRate := Bandwidth(b.pacingGain * float64(b.BandwidthEstimate()))
if b.isAtFullBandwidth {
b.pacingRate = targetRate
return
}
// Pace at the rate of initial_window / RTT as soon as RTT measurements are
// available.
if b.pacingRate == 0 && b.rttStats.MinRTT() > 0 {
b.pacingRate = BandwidthFromDelta(b.initialCongestionWindow, b.rttStats.MinRTT())
return
}
// Slow the pacing rate in STARTUP once loss has ever been detected.
hasEverDetectedLoss := b.endRecoveryAt > 0
if b.slowerStartup && hasEverDetectedLoss && b.hasNoAppLimitedSample {
b.pacingRate = Bandwidth(StartupAfterLossGain * float64(b.BandwidthEstimate()))
return
}
// Slow the pacing rate in STARTUP by the bytes_lost / CWND.
if b.startupRateReductionMultiplier != 0 && hasEverDetectedLoss && b.hasNoAppLimitedSample {
b.pacingRate = Bandwidth((1.0 - (float64(b.startupBytesLost) * float64(b.startupRateReductionMultiplier) / float64(b.congestionWindow))) * float64(targetRate))
// Ensure the pacing rate doesn't drop below the startup growth target times
// the bandwidth estimate.
b.pacingRate = maxBandwidth(b.pacingRate, Bandwidth(StartupGrowthTarget*float64(b.BandwidthEstimate())))
return
}
// Do not decrease the pacing rate during startup.
b.pacingRate = maxBandwidth(b.pacingRate, targetRate)
}
func (b *bbrSender) CalculateCongestionWindow(ackedBytes, excessAcked congestion.ByteCount) {
if b.mode == PROBE_RTT {
return
}
targetWindow := b.GetTargetCongestionWindow(b.congestionWindowGain)
if b.isAtFullBandwidth {
// Add the max recently measured ack aggregation to CWND.
targetWindow += congestion.ByteCount(b.maxAckHeight.GetBest())
} else if b.enableAckAggregationDuringStartup {
// Add the most recent excess acked. Because CWND never decreases in
// STARTUP, this will automatically create a very localized max filter.
targetWindow += excessAcked
}
// Instead of immediately setting the target CWND as the new one, BBR grows
// the CWND towards |target_window| by only increasing it |bytes_acked| at a
// time.
addBytesAcked := true || !b.InRecovery()
if b.isAtFullBandwidth {
b.congestionWindow = minByteCount(targetWindow, b.congestionWindow+ackedBytes)
} else if addBytesAcked && (b.congestionWindow < targetWindow || b.sampler.totalBytesAcked < b.initialCongestionWindow) {
// If the connection is not yet out of startup phase, do not decrease the
// window.
b.congestionWindow += ackedBytes
}
// Enforce the limits on the congestion window.
b.congestionWindow = maxByteCount(b.congestionWindow, b.minCongestionWindow())
b.congestionWindow = minByteCount(b.congestionWindow, b.maxCongestionWindow())
}
func (b *bbrSender) CalculateRecoveryWindow(ackedBytes, lostBytes congestion.ByteCount) {
if b.rateBasedStartup && b.mode == STARTUP {
return
}
if b.recoveryState == NOT_IN_RECOVERY {
return
}
// Set up the initial recovery window.
if b.recoveryWindow == 0 {
b.recoveryWindow = maxByteCount(b.GetBytesInFlight()+ackedBytes, b.minCongestionWindow())
return
}
// Remove losses from the recovery window, while accounting for a potential
// integer underflow.
if b.recoveryWindow >= lostBytes {
b.recoveryWindow -= lostBytes
} else {
b.recoveryWindow = congestion.ByteCount(b.maxDatagramSize)
}
// In CONSERVATION mode, just subtracting losses is sufficient. In GROWTH,
// release additional |bytes_acked| to achieve a slow-start-like behavior.
if b.recoveryState == GROWTH {
b.recoveryWindow += ackedBytes
}
// Sanity checks. Ensure that we always allow to send at least an MSS or
// |bytes_acked| in response, whichever is larger.
b.recoveryWindow = maxByteCount(b.recoveryWindow, b.GetBytesInFlight()+ackedBytes)
b.recoveryWindow = maxByteCount(b.recoveryWindow, b.minCongestionWindow())
}
var _ congestion.CongestionControl = (*bbrSender)(nil)
func (b *bbrSender) GetMinRtt() time.Duration {
if b.minRtt > 0 {
return b.minRtt
} else {
return InitialRtt
}
}
func minRtt(a, b time.Duration) time.Duration {
if a < b {
return a
} else {
return b
}
}
func minBandwidth(a, b Bandwidth) Bandwidth {
if a < b {
return a
} else {
return b
}
}
func maxBandwidth(a, b Bandwidth) Bandwidth {
if a > b {
return a
} else {
return b
}
}
func maxByteCount(a, b congestion.ByteCount) congestion.ByteCount {
if a > b {
return a
} else {
return b
}
}
func minByteCount(a, b congestion.ByteCount) congestion.ByteCount {
if a < b {
return a
} else {
return b
}
}
var (
InfiniteRTT = time.Duration(math.MaxInt64)
)