package sniffer import ( "crypto" "crypto/aes" "crypto/cipher" "encoding/binary" "errors" "io" "github.com/Dreamacro/clash/common/buf" "github.com/Dreamacro/clash/common/utils" C "github.com/Dreamacro/clash/constant" "github.com/metacubex/quic-go/quicvarint" "golang.org/x/crypto/hkdf" ) // Modified from https://github.com/v2fly/v2ray-core/blob/master/common/protocol/quic/sniff.go const ( versionDraft29 uint32 = 0xff00001d version1 uint32 = 0x1 ) var ( quicSaltOld = []byte{0xaf, 0xbf, 0xec, 0x28, 0x99, 0x93, 0xd2, 0x4c, 0x9e, 0x97, 0x86, 0xf1, 0x9c, 0x61, 0x11, 0xe0, 0x43, 0x90, 0xa8, 0x99} quicSalt = []byte{0x38, 0x76, 0x2c, 0xf7, 0xf5, 0x59, 0x34, 0xb3, 0x4d, 0x17, 0x9a, 0xe6, 0xa4, 0xc8, 0x0c, 0xad, 0xcc, 0xbb, 0x7f, 0x0a} errNotQuic = errors.New("not QUIC") errNotQuicInitial = errors.New("not QUIC initial packet") ) type QuicSniffer struct { *BaseSniffer } func NewQuicSniffer(snifferConfig SnifferConfig) (*QuicSniffer, error) { ports := snifferConfig.Ports if len(ports) == 0 { ports = utils.IntRanges[uint16]{utils.NewRange[uint16](443, 443)} } return &QuicSniffer{ BaseSniffer: NewBaseSniffer(ports, C.UDP), }, nil } func (quic QuicSniffer) Protocol() string { return "quic" } func (quic QuicSniffer) SupportNetwork() C.NetWork { return C.UDP } func (quic QuicSniffer) SniffData(b []byte) (string, error) { buffer := buf.As(b) typeByte, err := buffer.ReadByte() if err != nil { return "", errNotQuic } isLongHeader := typeByte&0x80 > 0 if !isLongHeader || typeByte&0x40 == 0 { return "", errNotQuicInitial } vb, err := buffer.ReadBytes(4) if err != nil { return "", errNotQuic } versionNumber := binary.BigEndian.Uint32(vb) if versionNumber != 0 && typeByte&0x40 == 0 { return "", errNotQuic } else if versionNumber != versionDraft29 && versionNumber != version1 { return "", errNotQuic } if (typeByte&0x30)>>4 != 0x0 { return "", errNotQuicInitial } var destConnID []byte if l, err := buffer.ReadByte(); err != nil { return "", errNotQuic } else if destConnID, err = buffer.ReadBytes(int(l)); err != nil { return "", errNotQuic } if l, err := buffer.ReadByte(); err != nil { return "", errNotQuic } else if _, err := buffer.ReadBytes(int(l)); err != nil { return "", errNotQuic } tokenLen, err := quicvarint.Read(buffer) if err != nil || tokenLen > uint64(len(b)) { return "", errNotQuic } if _, err = buffer.ReadBytes(int(tokenLen)); err != nil { return "", errNotQuic } packetLen, err := quicvarint.Read(buffer) if err != nil { return "", errNotQuic } hdrLen := len(b) - int(buffer.Len()) origPNBytes := make([]byte, 4) copy(origPNBytes, b[hdrLen:hdrLen+4]) var salt []byte if versionNumber == version1 { salt = quicSalt } else { salt = quicSaltOld } initialSecret := hkdf.Extract(crypto.SHA256.New, destConnID, salt) secret := hkdfExpandLabel(crypto.SHA256, initialSecret, []byte{}, "client in", crypto.SHA256.Size()) hpKey := hkdfExpandLabel(crypto.SHA256, secret, []byte{}, "quic hp", 16) block, err := aes.NewCipher(hpKey) if err != nil { return "", err } cache := buf.New() defer cache.Release() mask := cache.Extend(int(block.BlockSize())) block.Encrypt(mask, b[hdrLen+4:hdrLen+4+16]) b[0] ^= mask[0] & 0xf for i := range b[hdrLen : hdrLen+4] { b[hdrLen+i] ^= mask[i+1] } packetNumberLength := b[0]&0x3 + 1 var packetNumber uint32 { n, err := buffer.ReadByte() if err != nil { return "", err } packetNumber = uint32(n) } if packetNumber != 0 && packetNumber != 1 { return "", errNotQuicInitial } extHdrLen := hdrLen + int(packetNumberLength) copy(b[extHdrLen:hdrLen+4], origPNBytes[packetNumberLength:]) data := b[extHdrLen : int(packetLen)+hdrLen] key := hkdfExpandLabel(crypto.SHA256, secret, []byte{}, "quic key", 16) iv := hkdfExpandLabel(crypto.SHA256, secret, []byte{}, "quic iv", 12) aesCipher, err := aes.NewCipher(key) if err != nil { return "", err } aead, err := cipher.NewGCM(aesCipher) if err != nil { return "", err } nonce := cache.Extend(8) // 64-bit sequence number binary.BigEndian.PutUint64(nonce[len(nonce)-8:], uint64(packetNumber)) // copy from crypto/tls.aeadAESGCMTLS13 for i, b := range nonce { iv[4+i] ^= b } decrypted, err := aead.Open(b[extHdrLen:extHdrLen], iv, data, b[:extHdrLen]) // We only decrypt once, so we do not need to XOR it back. //for i, b := range nonce { // iv[4+i] ^= b //} if err != nil { return "", err } buffer = buf.As(decrypted) cryptoLen := uint(0) cryptoData := make([]byte, buffer.Len()) for i := 0; !buffer.IsEmpty(); i++ { frameType := byte(0x0) // Default to PADDING frame for frameType == 0x0 && !buffer.IsEmpty() { frameType, _ = buffer.ReadByte() } switch frameType { case 0x00: // PADDING frame case 0x01: // PING frame case 0x02, 0x03: // ACK frame if _, err = quicvarint.Read(buffer); err != nil { // Field: Largest Acknowledged return "", io.ErrUnexpectedEOF } if _, err = quicvarint.Read(buffer); err != nil { // Field: ACK Delay return "", io.ErrUnexpectedEOF } ackRangeCount, err := quicvarint.Read(buffer) // Field: ACK Range Count if err != nil { return "", io.ErrUnexpectedEOF } if _, err = quicvarint.Read(buffer); err != nil { // Field: First ACK Range return "", io.ErrUnexpectedEOF } for i := 0; i < int(ackRangeCount); i++ { // Field: ACK Range if _, err = quicvarint.Read(buffer); err != nil { // Field: ACK Range -> Gap return "", io.ErrUnexpectedEOF } if _, err = quicvarint.Read(buffer); err != nil { // Field: ACK Range -> ACK Range Length return "", io.ErrUnexpectedEOF } } if frameType == 0x03 { if _, err = quicvarint.Read(buffer); err != nil { // Field: ECN Counts -> ECT0 Count return "", io.ErrUnexpectedEOF } if _, err = quicvarint.Read(buffer); err != nil { // Field: ECN Counts -> ECT1 Count return "", io.ErrUnexpectedEOF } if _, err = quicvarint.Read(buffer); err != nil { //nolint:misspell // Field: ECN Counts -> ECT-CE Count return "", io.ErrUnexpectedEOF } } case 0x06: // CRYPTO frame, we will use this frame offset, err := quicvarint.Read(buffer) // Field: Offset if err != nil { return "", io.ErrUnexpectedEOF } length, err := quicvarint.Read(buffer) // Field: Length if err != nil || length > uint64(buffer.Len()) { return "", io.ErrUnexpectedEOF } if cryptoLen < uint(offset+length) { cryptoLen = uint(offset + length) } if _, err := buffer.Read(cryptoData[offset : offset+length]); err != nil { // Field: Crypto Data return "", io.ErrUnexpectedEOF } case 0x1c: // CONNECTION_CLOSE frame, only 0x1c is permitted in initial packet if _, err = quicvarint.Read(buffer); err != nil { // Field: Error Code return "", io.ErrUnexpectedEOF } if _, err = quicvarint.Read(buffer); err != nil { // Field: Frame Type return "", io.ErrUnexpectedEOF } length, err := quicvarint.Read(buffer) // Field: Reason Phrase Length if err != nil { return "", io.ErrUnexpectedEOF } if _, err := buffer.ReadBytes(int(length)); err != nil { // Field: Reason Phrase return "", io.ErrUnexpectedEOF } default: // Only above frame types are permitted in initial packet. // See https://www.rfc-editor.org/rfc/rfc9000.html#section-17.2.2-8 return "", errNotQuicInitial } } domain, err := ReadClientHello(cryptoData[:cryptoLen]) if err != nil { return "", err } return *domain, nil } func hkdfExpandLabel(hash crypto.Hash, secret, context []byte, label string, length int) []byte { b := make([]byte, 3, 3+6+len(label)+1+len(context)) binary.BigEndian.PutUint16(b, uint16(length)) b[2] = uint8(6 + len(label)) b = append(b, []byte("tls13 ")...) b = append(b, []byte(label)...) b = b[:3+6+len(label)+1] b[3+6+len(label)] = uint8(len(context)) b = append(b, context...) out := make([]byte, length) n, err := hkdf.Expand(hash.New, secret, b).Read(out) if err != nil || n != length { panic("quic: HKDF-Expand-Label invocation failed unexpectedly") } return out }