mihomo/transport/tuic/congestion_v2/bandwidth_sampler.go

875 lines
31 KiB
Go
Raw Normal View History

2023-09-30 23:55:56 +08:00
package congestion
import (
"math"
"time"
"github.com/metacubex/quic-go/congestion"
)
const (
infRTT = time.Duration(math.MaxInt64)
defaultConnectionStateMapQueueSize = 256
defaultCandidatesBufferSize = 256
)
type roundTripCount uint64
// SendTimeState is a subset of ConnectionStateOnSentPacket which is returned
// to the caller when the packet is acked or lost.
type sendTimeState struct {
// Whether other states in this object is valid.
isValid bool
// Whether the sender is app limited at the time the packet was sent.
// App limited bandwidth sample might be artificially low because the sender
// did not have enough data to send in order to saturate the link.
isAppLimited bool
// Total number of sent bytes at the time the packet was sent.
// Includes the packet itself.
totalBytesSent congestion.ByteCount
// Total number of acked bytes at the time the packet was sent.
totalBytesAcked congestion.ByteCount
// Total number of lost bytes at the time the packet was sent.
totalBytesLost congestion.ByteCount
// Total number of inflight bytes at the time the packet was sent.
// Includes the packet itself.
// It should be equal to |total_bytes_sent| minus the sum of
// |total_bytes_acked|, |total_bytes_lost| and total neutered bytes.
bytesInFlight congestion.ByteCount
}
func newSendTimeState(
isAppLimited bool,
totalBytesSent congestion.ByteCount,
totalBytesAcked congestion.ByteCount,
totalBytesLost congestion.ByteCount,
bytesInFlight congestion.ByteCount,
) *sendTimeState {
return &sendTimeState{
isValid: true,
isAppLimited: isAppLimited,
totalBytesSent: totalBytesSent,
totalBytesAcked: totalBytesAcked,
totalBytesLost: totalBytesLost,
bytesInFlight: bytesInFlight,
}
}
type extraAckedEvent struct {
// The excess bytes acknowlwedged in the time delta for this event.
extraAcked congestion.ByteCount
// The bytes acknowledged and time delta from the event.
bytesAcked congestion.ByteCount
timeDelta time.Duration
// The round trip of the event.
round roundTripCount
}
func maxExtraAckedEventFunc(a, b extraAckedEvent) int {
if a.extraAcked > b.extraAcked {
return 1
} else if a.extraAcked < b.extraAcked {
return -1
}
return 0
}
// BandwidthSample
type bandwidthSample struct {
// The bandwidth at that particular sample. Zero if no valid bandwidth sample
// is available.
bandwidth Bandwidth
// The RTT measurement at this particular sample. Zero if no RTT sample is
// available. Does not correct for delayed ack time.
rtt time.Duration
// |send_rate| is computed from the current packet being acked('P') and an
// earlier packet that is acked before P was sent.
sendRate Bandwidth
// States captured when the packet was sent.
stateAtSend sendTimeState
}
func newBandwidthSample() *bandwidthSample {
return &bandwidthSample{
sendRate: infBandwidth,
}
}
// MaxAckHeightTracker is part of the BandwidthSampler. It is called after every
// ack event to keep track the degree of ack aggregation(a.k.a "ack height").
type maxAckHeightTracker struct {
// Tracks the maximum number of bytes acked faster than the estimated
// bandwidth.
maxAckHeightFilter *WindowedFilter[extraAckedEvent, roundTripCount]
// The time this aggregation started and the number of bytes acked during it.
aggregationEpochStartTime time.Time
aggregationEpochBytes congestion.ByteCount
// The last sent packet number before the current aggregation epoch started.
lastSentPacketNumberBeforeEpoch congestion.PacketNumber
// The number of ack aggregation epochs ever started, including the ongoing
// one. Stats only.
numAckAggregationEpochs uint64
ackAggregationBandwidthThreshold float64
startNewAggregationEpochAfterFullRound bool
reduceExtraAckedOnBandwidthIncrease bool
}
func newMaxAckHeightTracker(windowLength roundTripCount) *maxAckHeightTracker {
return &maxAckHeightTracker{
maxAckHeightFilter: NewWindowedFilter(windowLength, maxExtraAckedEventFunc),
lastSentPacketNumberBeforeEpoch: invalidPacketNumber,
ackAggregationBandwidthThreshold: 1.0,
}
}
func (m *maxAckHeightTracker) Get() congestion.ByteCount {
return m.maxAckHeightFilter.GetBest().extraAcked
}
func (m *maxAckHeightTracker) Update(
bandwidthEstimate Bandwidth,
isNewMaxBandwidth bool,
roundTripCount roundTripCount,
lastSentPacketNumber congestion.PacketNumber,
lastAckedPacketNumber congestion.PacketNumber,
ackTime time.Time,
bytesAcked congestion.ByteCount,
) congestion.ByteCount {
forceNewEpoch := false
if m.reduceExtraAckedOnBandwidthIncrease && isNewMaxBandwidth {
// Save and clear existing entries.
best := m.maxAckHeightFilter.GetBest()
secondBest := m.maxAckHeightFilter.GetSecondBest()
thirdBest := m.maxAckHeightFilter.GetThirdBest()
m.maxAckHeightFilter.Clear()
// Reinsert the heights into the filter after recalculating.
expectedBytesAcked := bytesFromBandwidthAndTimeDelta(bandwidthEstimate, best.timeDelta)
if expectedBytesAcked < best.bytesAcked {
best.extraAcked = best.bytesAcked - expectedBytesAcked
m.maxAckHeightFilter.Update(best, best.round)
}
expectedBytesAcked = bytesFromBandwidthAndTimeDelta(bandwidthEstimate, secondBest.timeDelta)
if expectedBytesAcked < secondBest.bytesAcked {
secondBest.extraAcked = secondBest.bytesAcked - expectedBytesAcked
m.maxAckHeightFilter.Update(secondBest, secondBest.round)
}
expectedBytesAcked = bytesFromBandwidthAndTimeDelta(bandwidthEstimate, thirdBest.timeDelta)
if expectedBytesAcked < thirdBest.bytesAcked {
thirdBest.extraAcked = thirdBest.bytesAcked - expectedBytesAcked
m.maxAckHeightFilter.Update(thirdBest, thirdBest.round)
}
}
// If any packet sent after the start of the epoch has been acked, start a new
// epoch.
if m.startNewAggregationEpochAfterFullRound &&
m.lastSentPacketNumberBeforeEpoch != invalidPacketNumber &&
lastAckedPacketNumber != invalidPacketNumber &&
lastAckedPacketNumber > m.lastSentPacketNumberBeforeEpoch {
forceNewEpoch = true
}
if m.aggregationEpochStartTime.IsZero() || forceNewEpoch {
m.aggregationEpochBytes = bytesAcked
m.aggregationEpochStartTime = ackTime
m.lastSentPacketNumberBeforeEpoch = lastSentPacketNumber
m.numAckAggregationEpochs++
return 0
}
// Compute how many bytes are expected to be delivered, assuming max bandwidth
// is correct.
aggregationDelta := ackTime.Sub(m.aggregationEpochStartTime)
expectedBytesAcked := bytesFromBandwidthAndTimeDelta(bandwidthEstimate, aggregationDelta)
// Reset the current aggregation epoch as soon as the ack arrival rate is less
// than or equal to the max bandwidth.
if m.aggregationEpochBytes <= congestion.ByteCount(m.ackAggregationBandwidthThreshold*float64(expectedBytesAcked)) {
// Reset to start measuring a new aggregation epoch.
m.aggregationEpochBytes = bytesAcked
m.aggregationEpochStartTime = ackTime
m.lastSentPacketNumberBeforeEpoch = lastSentPacketNumber
m.numAckAggregationEpochs++
return 0
}
m.aggregationEpochBytes += bytesAcked
// Compute how many extra bytes were delivered vs max bandwidth.
extraBytesAcked := m.aggregationEpochBytes - expectedBytesAcked
newEvent := extraAckedEvent{
extraAcked: expectedBytesAcked,
bytesAcked: m.aggregationEpochBytes,
timeDelta: aggregationDelta,
}
m.maxAckHeightFilter.Update(newEvent, roundTripCount)
return extraBytesAcked
}
func (m *maxAckHeightTracker) SetFilterWindowLength(length roundTripCount) {
m.maxAckHeightFilter.SetWindowLength(length)
}
func (m *maxAckHeightTracker) Reset(newHeight congestion.ByteCount, newTime roundTripCount) {
newEvent := extraAckedEvent{
extraAcked: newHeight,
round: newTime,
}
m.maxAckHeightFilter.Reset(newEvent, newTime)
}
func (m *maxAckHeightTracker) SetAckAggregationBandwidthThreshold(threshold float64) {
m.ackAggregationBandwidthThreshold = threshold
}
func (m *maxAckHeightTracker) SetStartNewAggregationEpochAfterFullRound(value bool) {
m.startNewAggregationEpochAfterFullRound = value
}
func (m *maxAckHeightTracker) SetReduceExtraAckedOnBandwidthIncrease(value bool) {
m.reduceExtraAckedOnBandwidthIncrease = value
}
func (m *maxAckHeightTracker) AckAggregationBandwidthThreshold() float64 {
return m.ackAggregationBandwidthThreshold
}
func (m *maxAckHeightTracker) NumAckAggregationEpochs() uint64 {
return m.numAckAggregationEpochs
}
// AckPoint represents a point on the ack line.
type ackPoint struct {
ackTime time.Time
totalBytesAcked congestion.ByteCount
}
// RecentAckPoints maintains the most recent 2 ack points at distinct times.
type recentAckPoints struct {
ackPoints [2]ackPoint
}
func (r *recentAckPoints) Update(ackTime time.Time, totalBytesAcked congestion.ByteCount) {
if ackTime.Before(r.ackPoints[1].ackTime) {
r.ackPoints[1].ackTime = ackTime
} else if ackTime.After(r.ackPoints[1].ackTime) {
r.ackPoints[0] = r.ackPoints[1]
r.ackPoints[1].ackTime = ackTime
}
r.ackPoints[1].totalBytesAcked = totalBytesAcked
}
func (r *recentAckPoints) Clear() {
r.ackPoints[0] = ackPoint{}
r.ackPoints[1] = ackPoint{}
}
func (r *recentAckPoints) MostRecentPoint() *ackPoint {
return &r.ackPoints[1]
}
func (r *recentAckPoints) LessRecentPoint() *ackPoint {
if r.ackPoints[0].totalBytesAcked != 0 {
return &r.ackPoints[0]
}
return &r.ackPoints[1]
}
// ConnectionStateOnSentPacket represents the information about a sent packet
// and the state of the connection at the moment the packet was sent,
// specifically the information about the most recently acknowledged packet at
// that moment.
type connectionStateOnSentPacket struct {
// Time at which the packet is sent.
sentTime time.Time
// Size of the packet.
size congestion.ByteCount
// The value of |totalBytesSentAtLastAckedPacket| at the time the
// packet was sent.
totalBytesSentAtLastAckedPacket congestion.ByteCount
// The value of |lastAckedPacketSentTime| at the time the packet was
// sent.
lastAckedPacketSentTime time.Time
// The value of |lastAckedPacketAckTime| at the time the packet was
// sent.
lastAckedPacketAckTime time.Time
// Send time states that are returned to the congestion controller when the
// packet is acked or lost.
sendTimeState sendTimeState
}
// Snapshot constructor. Records the current state of the bandwidth
// sampler.
// |bytes_in_flight| is the bytes in flight right after the packet is sent.
func newConnectionStateOnSentPacket(
sentTime time.Time,
size congestion.ByteCount,
bytesInFlight congestion.ByteCount,
sampler *bandwidthSampler,
) *connectionStateOnSentPacket {
return &connectionStateOnSentPacket{
sentTime: sentTime,
size: size,
totalBytesSentAtLastAckedPacket: sampler.totalBytesSentAtLastAckedPacket,
lastAckedPacketSentTime: sampler.lastAckedPacketSentTime,
lastAckedPacketAckTime: sampler.lastAckedPacketAckTime,
sendTimeState: *newSendTimeState(
sampler.isAppLimited,
sampler.totalBytesSent,
sampler.totalBytesAcked,
sampler.totalBytesLost,
bytesInFlight,
),
}
}
// BandwidthSampler keeps track of sent and acknowledged packets and outputs a
// bandwidth sample for every packet acknowledged. The samples are taken for
// individual packets, and are not filtered; the consumer has to filter the
// bandwidth samples itself. In certain cases, the sampler will locally severely
// underestimate the bandwidth, hence a maximum filter with a size of at least
// one RTT is recommended.
//
// This class bases its samples on the slope of two curves: the number of bytes
// sent over time, and the number of bytes acknowledged as received over time.
// It produces a sample of both slopes for every packet that gets acknowledged,
// based on a slope between two points on each of the corresponding curves. Note
// that due to the packet loss, the number of bytes on each curve might get
// further and further away from each other, meaning that it is not feasible to
// compare byte values coming from different curves with each other.
//
// The obvious points for measuring slope sample are the ones corresponding to
// the packet that was just acknowledged. Let us denote them as S_1 (point at
// which the current packet was sent) and A_1 (point at which the current packet
// was acknowledged). However, taking a slope requires two points on each line,
// so estimating bandwidth requires picking a packet in the past with respect to
// which the slope is measured.
//
// For that purpose, BandwidthSampler always keeps track of the most recently
// acknowledged packet, and records it together with every outgoing packet.
// When a packet gets acknowledged (A_1), it has not only information about when
// it itself was sent (S_1), but also the information about the latest
// acknowledged packet right before it was sent (S_0 and A_0).
//
// Based on that data, send and ack rate are estimated as:
//
// send_rate = (bytes(S_1) - bytes(S_0)) / (time(S_1) - time(S_0))
// ack_rate = (bytes(A_1) - bytes(A_0)) / (time(A_1) - time(A_0))
//
// Here, the ack rate is intuitively the rate we want to treat as bandwidth.
// However, in certain cases (e.g. ack compression) the ack rate at a point may
// end up higher than the rate at which the data was originally sent, which is
// not indicative of the real bandwidth. Hence, we use the send rate as an upper
// bound, and the sample value is
//
// rate_sample = Min(send_rate, ack_rate)
//
// An important edge case handled by the sampler is tracking the app-limited
// samples. There are multiple meaning of "app-limited" used interchangeably,
// hence it is important to understand and to be able to distinguish between
// them.
//
// Meaning 1: connection state. The connection is said to be app-limited when
// there is no outstanding data to send. This means that certain bandwidth
// samples in the future would not be an accurate indication of the link
// capacity, and it is important to inform consumer about that. Whenever
// connection becomes app-limited, the sampler is notified via OnAppLimited()
// method.
//
// Meaning 2: a phase in the bandwidth sampler. As soon as the bandwidth
// sampler becomes notified about the connection being app-limited, it enters
// app-limited phase. In that phase, all *sent* packets are marked as
// app-limited. Note that the connection itself does not have to be
// app-limited during the app-limited phase, and in fact it will not be
// (otherwise how would it send packets?). The boolean flag below indicates
// whether the sampler is in that phase.
//
// Meaning 3: a flag on the sent packet and on the sample. If a sent packet is
// sent during the app-limited phase, the resulting sample related to the
// packet will be marked as app-limited.
//
// With the terminology issue out of the way, let us consider the question of
// what kind of situation it addresses.
//
// Consider a scenario where we first send packets 1 to 20 at a regular
// bandwidth, and then immediately run out of data. After a few seconds, we send
// packets 21 to 60, and only receive ack for 21 between sending packets 40 and
// 41. In this case, when we sample bandwidth for packets 21 to 40, the S_0/A_0
// we use to compute the slope is going to be packet 20, a few seconds apart
// from the current packet, hence the resulting estimate would be extremely low
// and not indicative of anything. Only at packet 41 the S_0/A_0 will become 21,
// meaning that the bandwidth sample would exclude the quiescence.
//
// Based on the analysis of that scenario, we implement the following rule: once
// OnAppLimited() is called, all sent packets will produce app-limited samples
// up until an ack for a packet that was sent after OnAppLimited() was called.
// Note that while the scenario above is not the only scenario when the
// connection is app-limited, the approach works in other cases too.
type congestionEventSample struct {
// The maximum bandwidth sample from all acked packets.
// QuicBandwidth::Zero() if no samples are available.
sampleMaxBandwidth Bandwidth
// Whether |sample_max_bandwidth| is from a app-limited sample.
sampleIsAppLimited bool
// The minimum rtt sample from all acked packets.
// QuicTime::Delta::Infinite() if no samples are available.
sampleRtt time.Duration
// For each packet p in acked packets, this is the max value of INFLIGHT(p),
// where INFLIGHT(p) is the number of bytes acked while p is inflight.
sampleMaxInflight congestion.ByteCount
// The send state of the largest packet in acked_packets, unless it is
// empty. If acked_packets is empty, it's the send state of the largest
// packet in lost_packets.
lastPacketSendState sendTimeState
// The number of extra bytes acked from this ack event, compared to what is
// expected from the flow's bandwidth. Larger value means more ack
// aggregation.
extraAcked congestion.ByteCount
}
func newCongestionEventSample() *congestionEventSample {
return &congestionEventSample{
sampleRtt: infRTT,
}
}
type bandwidthSampler struct {
// The total number of congestion controlled bytes sent during the connection.
totalBytesSent congestion.ByteCount
// The total number of congestion controlled bytes which were acknowledged.
totalBytesAcked congestion.ByteCount
// The total number of congestion controlled bytes which were lost.
totalBytesLost congestion.ByteCount
// The total number of congestion controlled bytes which have been neutered.
totalBytesNeutered congestion.ByteCount
// The value of |total_bytes_sent_| at the time the last acknowledged packet
// was sent. Valid only when |last_acked_packet_sent_time_| is valid.
totalBytesSentAtLastAckedPacket congestion.ByteCount
// The time at which the last acknowledged packet was sent. Set to
// QuicTime::Zero() if no valid timestamp is available.
lastAckedPacketSentTime time.Time
// The time at which the most recent packet was acknowledged.
lastAckedPacketAckTime time.Time
// The most recently sent packet.
lastSentPacket congestion.PacketNumber
// The most recently acked packet.
lastAckedPacket congestion.PacketNumber
// Indicates whether the bandwidth sampler is currently in an app-limited
// phase.
isAppLimited bool
// The packet that will be acknowledged after this one will cause the sampler
// to exit the app-limited phase.
endOfAppLimitedPhase congestion.PacketNumber
// Record of the connection state at the point where each packet in flight was
// sent, indexed by the packet number.
connectionStateMap *packetNumberIndexedQueue[connectionStateOnSentPacket]
recentAckPoints recentAckPoints
a0Candidates RingBuffer[ackPoint]
// Maximum number of tracked packets.
maxTrackedPackets congestion.ByteCount
maxAckHeightTracker *maxAckHeightTracker
totalBytesAckedAfterLastAckEvent congestion.ByteCount
// True if connection option 'BSAO' is set.
overestimateAvoidance bool
// True if connection option 'BBRB' is set.
limitMaxAckHeightTrackerBySendRate bool
}
func newBandwidthSampler(maxAckHeightTrackerWindowLength roundTripCount) *bandwidthSampler {
b := &bandwidthSampler{
maxAckHeightTracker: newMaxAckHeightTracker(maxAckHeightTrackerWindowLength),
connectionStateMap: newPacketNumberIndexedQueue[connectionStateOnSentPacket](defaultConnectionStateMapQueueSize),
lastSentPacket: invalidPacketNumber,
lastAckedPacket: invalidPacketNumber,
endOfAppLimitedPhase: invalidPacketNumber,
}
b.a0Candidates.Init(defaultCandidatesBufferSize)
return b
}
func (b *bandwidthSampler) MaxAckHeight() congestion.ByteCount {
return b.maxAckHeightTracker.Get()
}
func (b *bandwidthSampler) NumAckAggregationEpochs() uint64 {
return b.maxAckHeightTracker.NumAckAggregationEpochs()
}
func (b *bandwidthSampler) SetMaxAckHeightTrackerWindowLength(length roundTripCount) {
b.maxAckHeightTracker.SetFilterWindowLength(length)
}
func (b *bandwidthSampler) ResetMaxAckHeightTracker(newHeight congestion.ByteCount, newTime roundTripCount) {
b.maxAckHeightTracker.Reset(newHeight, newTime)
}
func (b *bandwidthSampler) SetStartNewAggregationEpochAfterFullRound(value bool) {
b.maxAckHeightTracker.SetStartNewAggregationEpochAfterFullRound(value)
}
func (b *bandwidthSampler) SetLimitMaxAckHeightTrackerBySendRate(value bool) {
b.limitMaxAckHeightTrackerBySendRate = value
}
func (b *bandwidthSampler) SetReduceExtraAckedOnBandwidthIncrease(value bool) {
b.maxAckHeightTracker.SetReduceExtraAckedOnBandwidthIncrease(value)
}
func (b *bandwidthSampler) EnableOverestimateAvoidance() {
if b.overestimateAvoidance {
return
}
b.overestimateAvoidance = true
b.maxAckHeightTracker.SetAckAggregationBandwidthThreshold(2.0)
}
func (b *bandwidthSampler) IsOverestimateAvoidanceEnabled() bool {
return b.overestimateAvoidance
}
func (b *bandwidthSampler) OnPacketSent(
sentTime time.Time,
packetNumber congestion.PacketNumber,
bytes congestion.ByteCount,
bytesInFlight congestion.ByteCount,
isRetransmittable bool,
) {
b.lastSentPacket = packetNumber
if !isRetransmittable {
return
}
b.totalBytesSent += bytes
// If there are no packets in flight, the time at which the new transmission
// opens can be treated as the A_0 point for the purpose of bandwidth
// sampling. This underestimates bandwidth to some extent, and produces some
// artificially low samples for most packets in flight, but it provides with
// samples at important points where we would not have them otherwise, most
// importantly at the beginning of the connection.
if bytesInFlight == 0 {
b.lastAckedPacketAckTime = sentTime
if b.overestimateAvoidance {
b.recentAckPoints.Clear()
b.recentAckPoints.Update(sentTime, b.totalBytesAcked)
b.a0Candidates.Clear()
b.a0Candidates.PushBack(*b.recentAckPoints.MostRecentPoint())
}
b.totalBytesSentAtLastAckedPacket = b.totalBytesSent
// In this situation ack compression is not a concern, set send rate to
// effectively infinite.
b.lastAckedPacketSentTime = sentTime
}
b.connectionStateMap.Emplace(packetNumber, newConnectionStateOnSentPacket(
sentTime,
bytes,
bytesInFlight+bytes,
b,
))
}
func (b *bandwidthSampler) OnCongestionEvent(
ackTime time.Time,
ackedPackets []congestion.AckedPacketInfo,
lostPackets []congestion.LostPacketInfo,
maxBandwidth Bandwidth,
estBandwidthUpperBound Bandwidth,
roundTripCount roundTripCount,
) congestionEventSample {
eventSample := newCongestionEventSample()
var lastLostPacketSendState sendTimeState
for _, p := range lostPackets {
sendState := b.OnPacketLost(p.PacketNumber, p.BytesLost)
if sendState.isValid {
lastLostPacketSendState = sendState
}
}
if len(ackedPackets) == 0 {
// Only populate send state for a loss-only event.
eventSample.lastPacketSendState = lastLostPacketSendState
return *eventSample
}
var lastAckedPacketSendState sendTimeState
var maxSendRate Bandwidth
for _, p := range ackedPackets {
sample := b.onPacketAcknowledged(ackTime, p.PacketNumber)
if !sample.stateAtSend.isValid {
continue
}
lastAckedPacketSendState = sample.stateAtSend
if sample.rtt != 0 {
eventSample.sampleRtt = Min(eventSample.sampleRtt, sample.rtt)
}
if sample.bandwidth > eventSample.sampleMaxBandwidth {
eventSample.sampleMaxBandwidth = sample.bandwidth
eventSample.sampleIsAppLimited = sample.stateAtSend.isAppLimited
}
if sample.sendRate != infBandwidth {
maxSendRate = Max(maxSendRate, sample.sendRate)
}
inflightSample := b.totalBytesAcked - lastAckedPacketSendState.totalBytesAcked
if inflightSample > eventSample.sampleMaxInflight {
eventSample.sampleMaxInflight = inflightSample
}
}
if !lastLostPacketSendState.isValid {
eventSample.lastPacketSendState = lastAckedPacketSendState
} else if !lastAckedPacketSendState.isValid {
eventSample.lastPacketSendState = lastLostPacketSendState
} else {
// If two packets are inflight and an alarm is armed to lose a packet and it
// wakes up late, then the first of two in flight packets could have been
// acknowledged before the wakeup, which re-evaluates loss detection, and
// could declare the later of the two lost.
if lostPackets[len(lostPackets)-1].PacketNumber > ackedPackets[len(ackedPackets)-1].PacketNumber {
eventSample.lastPacketSendState = lastLostPacketSendState
} else {
eventSample.lastPacketSendState = lastAckedPacketSendState
}
}
isNewMaxBandwidth := eventSample.sampleMaxBandwidth > maxBandwidth
maxBandwidth = Max(maxBandwidth, eventSample.sampleMaxBandwidth)
if b.limitMaxAckHeightTrackerBySendRate {
maxBandwidth = Max(maxBandwidth, maxSendRate)
}
eventSample.extraAcked = b.onAckEventEnd(Min(estBandwidthUpperBound, maxBandwidth), isNewMaxBandwidth, roundTripCount)
return *eventSample
}
func (b *bandwidthSampler) OnPacketLost(packetNumber congestion.PacketNumber, bytesLost congestion.ByteCount) (s sendTimeState) {
b.totalBytesLost += bytesLost
if sentPacketPointer := b.connectionStateMap.GetEntry(packetNumber); sentPacketPointer != nil {
sentPacketToSendTimeState(sentPacketPointer, &s)
}
return s
}
func (b *bandwidthSampler) OnPacketNeutered(packetNumber congestion.PacketNumber) {
b.connectionStateMap.Remove(packetNumber, func(sentPacket connectionStateOnSentPacket) {
b.totalBytesNeutered += sentPacket.size
})
}
func (b *bandwidthSampler) OnAppLimited() {
b.isAppLimited = true
b.endOfAppLimitedPhase = b.lastSentPacket
}
func (b *bandwidthSampler) RemoveObsoletePackets(leastUnacked congestion.PacketNumber) {
// A packet can become obsolete when it is removed from QuicUnackedPacketMap's
// view of inflight before it is acked or marked as lost. For example, when
// QuicSentPacketManager::RetransmitCryptoPackets retransmits a crypto packet,
// the packet is removed from QuicUnackedPacketMap's inflight, but is not
// marked as acked or lost in the BandwidthSampler.
b.connectionStateMap.RemoveUpTo(leastUnacked)
}
func (b *bandwidthSampler) TotalBytesSent() congestion.ByteCount {
return b.totalBytesSent
}
func (b *bandwidthSampler) TotalBytesLost() congestion.ByteCount {
return b.totalBytesLost
}
func (b *bandwidthSampler) TotalBytesAcked() congestion.ByteCount {
return b.totalBytesAcked
}
func (b *bandwidthSampler) TotalBytesNeutered() congestion.ByteCount {
return b.totalBytesNeutered
}
func (b *bandwidthSampler) IsAppLimited() bool {
return b.isAppLimited
}
func (b *bandwidthSampler) EndOfAppLimitedPhase() congestion.PacketNumber {
return b.endOfAppLimitedPhase
}
func (b *bandwidthSampler) max_ack_height() congestion.ByteCount {
return b.maxAckHeightTracker.Get()
}
func (b *bandwidthSampler) chooseA0Point(totalBytesAcked congestion.ByteCount, a0 *ackPoint) bool {
if b.a0Candidates.Empty() {
return false
}
if b.a0Candidates.Len() == 1 {
*a0 = *b.a0Candidates.Front()
return true
}
for i := 1; i < b.a0Candidates.Len(); i++ {
if b.a0Candidates.Offset(i).totalBytesAcked > totalBytesAcked {
*a0 = *b.a0Candidates.Offset(i - 1)
if i > 1 {
for j := 0; j < i-1; j++ {
b.a0Candidates.PopFront()
}
}
return true
}
}
*a0 = *b.a0Candidates.Back()
for k := 0; k < b.a0Candidates.Len()-1; k++ {
b.a0Candidates.PopFront()
}
return true
}
func (b *bandwidthSampler) onPacketAcknowledged(ackTime time.Time, packetNumber congestion.PacketNumber) bandwidthSample {
sample := newBandwidthSample()
b.lastAckedPacket = packetNumber
sentPacketPointer := b.connectionStateMap.GetEntry(packetNumber)
if sentPacketPointer == nil {
return *sample
}
// OnPacketAcknowledgedInner
b.totalBytesAcked += sentPacketPointer.size
b.totalBytesSentAtLastAckedPacket = sentPacketPointer.sendTimeState.totalBytesSent
b.lastAckedPacketSentTime = sentPacketPointer.sentTime
b.lastAckedPacketAckTime = ackTime
if b.overestimateAvoidance {
b.recentAckPoints.Update(ackTime, b.totalBytesAcked)
}
if b.isAppLimited {
// Exit app-limited phase in two cases:
// (1) end_of_app_limited_phase_ is not initialized, i.e., so far all
// packets are sent while there are buffered packets or pending data.
// (2) The current acked packet is after the sent packet marked as the end
// of the app limit phase.
if b.endOfAppLimitedPhase == invalidPacketNumber ||
packetNumber > b.endOfAppLimitedPhase {
b.isAppLimited = false
}
}
// There might have been no packets acknowledged at the moment when the
// current packet was sent. In that case, there is no bandwidth sample to
// make.
if sentPacketPointer.lastAckedPacketSentTime.IsZero() {
return *sample
}
// Infinite rate indicates that the sampler is supposed to discard the
// current send rate sample and use only the ack rate.
sendRate := infBandwidth
if sentPacketPointer.sentTime.After(sentPacketPointer.lastAckedPacketSentTime) {
sendRate = BandwidthFromDelta(
sentPacketPointer.sendTimeState.totalBytesSent-sentPacketPointer.totalBytesSentAtLastAckedPacket,
sentPacketPointer.sentTime.Sub(sentPacketPointer.lastAckedPacketSentTime))
}
var a0 ackPoint
if b.overestimateAvoidance && b.chooseA0Point(sentPacketPointer.sendTimeState.totalBytesAcked, &a0) {
} else {
a0.ackTime = sentPacketPointer.lastAckedPacketAckTime
a0.totalBytesAcked = sentPacketPointer.sendTimeState.totalBytesAcked
}
// During the slope calculation, ensure that ack time of the current packet is
// always larger than the time of the previous packet, otherwise division by
// zero or integer underflow can occur.
if ackTime.Sub(a0.ackTime) <= 0 {
return *sample
}
ackRate := BandwidthFromDelta(b.totalBytesAcked-a0.totalBytesAcked, ackTime.Sub(a0.ackTime))
sample.bandwidth = Min(sendRate, ackRate)
// Note: this sample does not account for delayed acknowledgement time. This
// means that the RTT measurements here can be artificially high, especially
// on low bandwidth connections.
sample.rtt = ackTime.Sub(sentPacketPointer.sentTime)
sample.sendRate = sendRate
sentPacketToSendTimeState(sentPacketPointer, &sample.stateAtSend)
return *sample
}
func (b *bandwidthSampler) onAckEventEnd(
bandwidthEstimate Bandwidth,
isNewMaxBandwidth bool,
roundTripCount roundTripCount,
) congestion.ByteCount {
newlyAckedBytes := b.totalBytesAcked - b.totalBytesAckedAfterLastAckEvent
if newlyAckedBytes == 0 {
return 0
}
b.totalBytesAckedAfterLastAckEvent = b.totalBytesAcked
extraAcked := b.maxAckHeightTracker.Update(
bandwidthEstimate,
isNewMaxBandwidth,
roundTripCount,
b.lastSentPacket,
b.lastAckedPacket,
b.lastAckedPacketAckTime,
newlyAckedBytes)
// If |extra_acked| is zero, i.e. this ack event marks the start of a new ack
// aggregation epoch, save LessRecentPoint, which is the last ack point of the
// previous epoch, as a A0 candidate.
if b.overestimateAvoidance && extraAcked == 0 {
b.a0Candidates.PushBack(*b.recentAckPoints.LessRecentPoint())
}
return extraAcked
}
func sentPacketToSendTimeState(sentPacket *connectionStateOnSentPacket, sendTimeState *sendTimeState) {
*sendTimeState = sentPacket.sendTimeState
sendTimeState.isValid = true
}
// BytesFromBandwidthAndTimeDelta calculates the bytes
// from a bandwidth(bits per second) and a time delta
func bytesFromBandwidthAndTimeDelta(bandwidth Bandwidth, delta time.Duration) congestion.ByteCount {
return (congestion.ByteCount(bandwidth) * congestion.ByteCount(delta)) /
(congestion.ByteCount(time.Second) * 8)
}
func timeDeltaFromBytesAndBandwidth(bytes congestion.ByteCount, bandwidth Bandwidth) time.Duration {
return time.Duration(bytes*8) * time.Second / time.Duration(bandwidth)
}