mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 17:56:29 +08:00
7b1094318b
* cargo fmt code * Add empty line to seperate unrelated comments * Fix review * Update bubble_sort.rs * Update merge_sort.rs --------- Co-authored-by: Yudong Jin <krahets@163.com>
298 lines
10 KiB
Rust
298 lines
10 KiB
Rust
/*
|
||
* File: avl_tree.rs
|
||
* Created Time: 2023-07-14
|
||
* Author: night-cruise (2586447362@qq.com)
|
||
*/
|
||
|
||
include!("../include/include.rs");
|
||
|
||
use std::cell::RefCell;
|
||
use std::cmp::Ordering;
|
||
use std::rc::Rc;
|
||
use tree_node::TreeNode;
|
||
|
||
type OptionTreeNodeRc = Option<Rc<RefCell<TreeNode>>>;
|
||
|
||
/* AVL 树 */
|
||
struct AVLTree {
|
||
root: OptionTreeNodeRc, // 根节点
|
||
}
|
||
|
||
impl AVLTree {
|
||
/* 构造方法 */
|
||
fn new() -> Self {
|
||
Self { root: None }
|
||
}
|
||
|
||
/* 获取节点高度 */
|
||
fn height(node: OptionTreeNodeRc) -> i32 {
|
||
// 空节点高度为 -1 ,叶节点高度为 0
|
||
match node {
|
||
Some(node) => node.borrow().height,
|
||
None => -1,
|
||
}
|
||
}
|
||
|
||
/* 更新节点高度 */
|
||
fn update_height(node: OptionTreeNodeRc) {
|
||
if let Some(node) = node {
|
||
let left = node.borrow().left.clone();
|
||
let right = node.borrow().right.clone();
|
||
// 节点高度等于最高子树高度 + 1
|
||
node.borrow_mut().height = std::cmp::max(Self::height(left), Self::height(right)) + 1;
|
||
}
|
||
}
|
||
|
||
/* 获取平衡因子 */
|
||
fn balance_factor(node: OptionTreeNodeRc) -> i32 {
|
||
match node {
|
||
// 空节点平衡因子为 0
|
||
None => 0,
|
||
// 节点平衡因子 = 左子树高度 - 右子树高度
|
||
Some(node) => {
|
||
Self::height(node.borrow().left.clone()) - Self::height(node.borrow().right.clone())
|
||
}
|
||
}
|
||
}
|
||
|
||
/* 右旋操作 */
|
||
fn right_rotate(node: OptionTreeNodeRc) -> OptionTreeNodeRc {
|
||
match node {
|
||
Some(node) => {
|
||
let child = node.borrow().left.clone().unwrap();
|
||
let grand_child = child.borrow().right.clone();
|
||
// 以 child 为原点,将 node 向右旋转
|
||
child.borrow_mut().right = Some(node.clone());
|
||
node.borrow_mut().left = grand_child;
|
||
// 更新节点高度
|
||
Self::update_height(Some(node));
|
||
Self::update_height(Some(child.clone()));
|
||
// 返回旋转后子树的根节点
|
||
Some(child)
|
||
}
|
||
None => None,
|
||
}
|
||
}
|
||
|
||
/* 左旋操作 */
|
||
fn left_rotate(node: OptionTreeNodeRc) -> OptionTreeNodeRc {
|
||
match node {
|
||
Some(node) => {
|
||
let child = node.borrow().right.clone().unwrap();
|
||
let grand_child = child.borrow().left.clone();
|
||
// 以 child 为原点,将 node 向左旋转
|
||
child.borrow_mut().left = Some(node.clone());
|
||
node.borrow_mut().right = grand_child;
|
||
// 更新节点高度
|
||
Self::update_height(Some(node));
|
||
Self::update_height(Some(child.clone()));
|
||
// 返回旋转后子树的根节点
|
||
Some(child)
|
||
}
|
||
None => None,
|
||
}
|
||
}
|
||
|
||
/* 执行旋转操作,使该子树重新恢复平衡 */
|
||
fn rotate(node: OptionTreeNodeRc) -> OptionTreeNodeRc {
|
||
// 获取节点 node 的平衡因子
|
||
let balance_factor = Self::balance_factor(node.clone());
|
||
// 左偏树
|
||
if balance_factor > 1 {
|
||
let node = node.unwrap();
|
||
if Self::balance_factor(node.borrow().left.clone()) >= 0 {
|
||
// 右旋
|
||
Self::right_rotate(Some(node))
|
||
} else {
|
||
// 先左旋后右旋
|
||
let left = node.borrow().left.clone();
|
||
node.borrow_mut().left = Self::left_rotate(left);
|
||
Self::right_rotate(Some(node))
|
||
}
|
||
}
|
||
// 右偏树
|
||
else if balance_factor < -1 {
|
||
let node = node.unwrap();
|
||
if Self::balance_factor(node.borrow().right.clone()) <= 0 {
|
||
// 左旋
|
||
Self::left_rotate(Some(node))
|
||
} else {
|
||
// 先右旋后左旋
|
||
let right = node.borrow().right.clone();
|
||
node.borrow_mut().right = Self::right_rotate(right);
|
||
Self::left_rotate(Some(node))
|
||
}
|
||
} else {
|
||
// 平衡树,无须旋转,直接返回
|
||
node
|
||
}
|
||
}
|
||
|
||
/* 插入节点 */
|
||
fn insert(&mut self, val: i32) {
|
||
self.root = Self::insert_helper(self.root.clone(), val);
|
||
}
|
||
|
||
/* 递归插入节点(辅助方法) */
|
||
fn insert_helper(node: OptionTreeNodeRc, val: i32) -> OptionTreeNodeRc {
|
||
match node {
|
||
Some(mut node) => {
|
||
/* 1. 查找插入位置并插入节点 */
|
||
match {
|
||
let node_val = node.borrow().val;
|
||
node_val
|
||
}
|
||
.cmp(&val)
|
||
{
|
||
Ordering::Greater => {
|
||
let left = node.borrow().left.clone();
|
||
node.borrow_mut().left = Self::insert_helper(left, val);
|
||
}
|
||
Ordering::Less => {
|
||
let right = node.borrow().right.clone();
|
||
node.borrow_mut().right = Self::insert_helper(right, val);
|
||
}
|
||
Ordering::Equal => {
|
||
return Some(node); // 重复节点不插入,直接返回
|
||
}
|
||
}
|
||
Self::update_height(Some(node.clone())); // 更新节点高度
|
||
|
||
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
|
||
node = Self::rotate(Some(node)).unwrap();
|
||
// 返回子树的根节点
|
||
Some(node)
|
||
}
|
||
None => Some(TreeNode::new(val)),
|
||
}
|
||
}
|
||
|
||
/* 删除节点 */
|
||
fn remove(&self, val: i32) {
|
||
Self::remove_helper(self.root.clone(), val);
|
||
}
|
||
|
||
/* 递归删除节点(辅助方法) */
|
||
fn remove_helper(node: OptionTreeNodeRc, val: i32) -> OptionTreeNodeRc {
|
||
match node {
|
||
Some(mut node) => {
|
||
/* 1. 查找节点并删除 */
|
||
if val < node.borrow().val {
|
||
let left = node.borrow().left.clone();
|
||
node.borrow_mut().left = Self::remove_helper(left, val);
|
||
} else if val > node.borrow().val {
|
||
let right = node.borrow().right.clone();
|
||
node.borrow_mut().right = Self::remove_helper(right, val);
|
||
} else if node.borrow().left.is_none() || node.borrow().right.is_none() {
|
||
let child = if node.borrow().left.is_some() {
|
||
node.borrow().left.clone()
|
||
} else {
|
||
node.borrow().right.clone()
|
||
};
|
||
match child {
|
||
// 子节点数量 = 0 ,直接删除 node 并返回
|
||
None => {
|
||
return None;
|
||
}
|
||
// 子节点数量 = 1 ,直接删除 node
|
||
Some(child) => node = child,
|
||
}
|
||
} else {
|
||
// 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点
|
||
let mut temp = node.borrow().right.clone().unwrap();
|
||
loop {
|
||
let temp_left = temp.borrow().left.clone();
|
||
if temp_left.is_none() {
|
||
break;
|
||
}
|
||
temp = temp_left.unwrap();
|
||
}
|
||
let right = node.borrow().right.clone();
|
||
node.borrow_mut().right = Self::remove_helper(right, temp.borrow().val);
|
||
node.borrow_mut().val = temp.borrow().val;
|
||
}
|
||
Self::update_height(Some(node.clone())); // 更新节点高度
|
||
|
||
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
|
||
node = Self::rotate(Some(node)).unwrap();
|
||
// 返回子树的根节点
|
||
Some(node)
|
||
}
|
||
None => None,
|
||
}
|
||
}
|
||
|
||
/* 查找节点 */
|
||
fn search(&self, val: i32) -> OptionTreeNodeRc {
|
||
let mut cur = self.root.clone();
|
||
// 循环查找,越过叶节点后跳出
|
||
while let Some(current) = cur.clone() {
|
||
match current.borrow().val.cmp(&val) {
|
||
// 目标节点在 cur 的右子树中
|
||
Ordering::Less => {
|
||
cur = current.borrow().right.clone();
|
||
}
|
||
// 目标节点在 cur 的左子树中
|
||
Ordering::Greater => {
|
||
cur = current.borrow().left.clone();
|
||
}
|
||
// 找到目标节点,跳出循环
|
||
Ordering::Equal => {
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
// 返回目标节点
|
||
cur
|
||
}
|
||
}
|
||
|
||
/* Driver Code */
|
||
fn main() {
|
||
fn test_insert(tree: &mut AVLTree, val: i32) {
|
||
tree.insert(val);
|
||
println!("\n插入节点 {} 后,AVL 树为", val);
|
||
print_util::print_tree(&tree.root.clone().unwrap());
|
||
}
|
||
|
||
fn test_remove(tree: &mut AVLTree, val: i32) {
|
||
tree.remove(val);
|
||
println!("\n删除节点 {} 后,AVL 树为", val);
|
||
print_util::print_tree(&tree.root.clone().unwrap());
|
||
}
|
||
|
||
/* 初始化空 AVL 树 */
|
||
let mut avl_tree = AVLTree::new();
|
||
|
||
/* 插入节点 */
|
||
// 请关注插入节点后,AVL 树是如何保持平衡的
|
||
test_insert(&mut avl_tree, 1);
|
||
test_insert(&mut avl_tree, 2);
|
||
test_insert(&mut avl_tree, 3);
|
||
test_insert(&mut avl_tree, 4);
|
||
test_insert(&mut avl_tree, 5);
|
||
test_insert(&mut avl_tree, 8);
|
||
test_insert(&mut avl_tree, 7);
|
||
test_insert(&mut avl_tree, 9);
|
||
test_insert(&mut avl_tree, 10);
|
||
test_insert(&mut avl_tree, 6);
|
||
|
||
/* 插入重复节点 */
|
||
test_insert(&mut avl_tree, 7);
|
||
|
||
/* 删除节点 */
|
||
// 请关注删除节点后,AVL 树是如何保持平衡的
|
||
test_remove(&mut avl_tree, 8); // 删除度为 0 的节点
|
||
test_remove(&mut avl_tree, 5); // 删除度为 1 的节点
|
||
test_remove(&mut avl_tree, 4); // 删除度为 2 的节点
|
||
|
||
/* 查询节点 */
|
||
let node = avl_tree.search(7);
|
||
if let Some(node) = node {
|
||
println!(
|
||
"\n查找到的节点对象为 {:?},节点值 = {}",
|
||
&*node.borrow(),
|
||
node.borrow().val
|
||
);
|
||
}
|
||
}
|