mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-25 13:56:28 +08:00
3ea91bda99
* Use int instead of float for the example code of log time complexity * Bug fixes * Bug fixes
195 lines
5.5 KiB
C#
195 lines
5.5 KiB
C#
/**
|
||
* File: time_complexity.cs
|
||
* Created Time: 2022-12-23
|
||
* Author: haptear (haptear@hotmail.com)
|
||
*/
|
||
|
||
namespace hello_algo.chapter_computational_complexity;
|
||
|
||
public class time_complexity {
|
||
void Algorithm(int n) {
|
||
int a = 1; // +0(技巧 1)
|
||
a += n; // +0(技巧 1)
|
||
// +n(技巧 2)
|
||
for (int i = 0; i < 5 * n + 1; i++) {
|
||
Console.WriteLine(0);
|
||
}
|
||
// +n*n(技巧 3)
|
||
for (int i = 0; i < 2 * n; i++) {
|
||
for (int j = 0; j < n + 1; j++) {
|
||
Console.WriteLine(0);
|
||
}
|
||
}
|
||
}
|
||
|
||
// 算法 A 时间复杂度:常数阶
|
||
void AlgorithmA(int n) {
|
||
Console.WriteLine(0);
|
||
}
|
||
|
||
// 算法 B 时间复杂度:线性阶
|
||
void AlgorithmB(int n) {
|
||
for (int i = 0; i < n; i++) {
|
||
Console.WriteLine(0);
|
||
}
|
||
}
|
||
|
||
// 算法 C 时间复杂度:常数阶
|
||
void AlgorithmC(int n) {
|
||
for (int i = 0; i < 1000000; i++) {
|
||
Console.WriteLine(0);
|
||
}
|
||
}
|
||
|
||
/* 常数阶 */
|
||
int Constant(int n) {
|
||
int count = 0;
|
||
int size = 100000;
|
||
for (int i = 0; i < size; i++)
|
||
count++;
|
||
return count;
|
||
}
|
||
|
||
/* 线性阶 */
|
||
int Linear(int n) {
|
||
int count = 0;
|
||
for (int i = 0; i < n; i++)
|
||
count++;
|
||
return count;
|
||
}
|
||
|
||
/* 线性阶(遍历数组) */
|
||
int ArrayTraversal(int[] nums) {
|
||
int count = 0;
|
||
// 循环次数与数组长度成正比
|
||
foreach (int num in nums) {
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
|
||
/* 平方阶 */
|
||
int Quadratic(int n) {
|
||
int count = 0;
|
||
// 循环次数与数据大小 n 成平方关系
|
||
for (int i = 0; i < n; i++) {
|
||
for (int j = 0; j < n; j++) {
|
||
count++;
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
|
||
/* 平方阶(冒泡排序) */
|
||
int BubbleSort(int[] nums) {
|
||
int count = 0; // 计数器
|
||
// 外循环:未排序区间为 [0, i]
|
||
for (int i = nums.Length - 1; i > 0; i--) {
|
||
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
|
||
for (int j = 0; j < i; j++) {
|
||
if (nums[j] > nums[j + 1]) {
|
||
// 交换 nums[j] 与 nums[j + 1]
|
||
(nums[j + 1], nums[j]) = (nums[j], nums[j + 1]);
|
||
count += 3; // 元素交换包含 3 个单元操作
|
||
}
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
|
||
/* 指数阶(循环实现) */
|
||
int Exponential(int n) {
|
||
int count = 0, bas = 1;
|
||
// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
||
for (int i = 0; i < n; i++) {
|
||
for (int j = 0; j < bas; j++) {
|
||
count++;
|
||
}
|
||
bas *= 2;
|
||
}
|
||
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
||
return count;
|
||
}
|
||
|
||
/* 指数阶(递归实现) */
|
||
int ExpRecur(int n) {
|
||
if (n == 1) return 1;
|
||
return ExpRecur(n - 1) + ExpRecur(n - 1) + 1;
|
||
}
|
||
|
||
/* 对数阶(循环实现) */
|
||
int Logarithmic(int n) {
|
||
int count = 0;
|
||
while (n > 1) {
|
||
n /= 2;
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
|
||
/* 对数阶(递归实现) */
|
||
int LogRecur(int n) {
|
||
if (n <= 1) return 0;
|
||
return LogRecur(n / 2) + 1;
|
||
}
|
||
|
||
/* 线性对数阶 */
|
||
int LinearLogRecur(int n) {
|
||
if (n <= 1) return 1;
|
||
int count = LinearLogRecur(n / 2) + LinearLogRecur(n / 2);
|
||
for (int i = 0; i < n; i++) {
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
|
||
/* 阶乘阶(递归实现) */
|
||
int FactorialRecur(int n) {
|
||
if (n == 0) return 1;
|
||
int count = 0;
|
||
// 从 1 个分裂出 n 个
|
||
for (int i = 0; i < n; i++) {
|
||
count += FactorialRecur(n - 1);
|
||
}
|
||
return count;
|
||
}
|
||
|
||
[Test]
|
||
public void Test() {
|
||
// 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
|
||
int n = 8;
|
||
Console.WriteLine("输入数据大小 n = " + n);
|
||
|
||
int count = Constant(n);
|
||
Console.WriteLine("常数阶的操作数量 = " + count);
|
||
|
||
count = Linear(n);
|
||
Console.WriteLine("线性阶的操作数量 = " + count);
|
||
count = ArrayTraversal(new int[n]);
|
||
Console.WriteLine("线性阶(遍历数组)的操作数量 = " + count);
|
||
|
||
count = Quadratic(n);
|
||
Console.WriteLine("平方阶的操作数量 = " + count);
|
||
int[] nums = new int[n];
|
||
for (int i = 0; i < n; i++)
|
||
nums[i] = n - i; // [n,n-1,...,2,1]
|
||
count = BubbleSort(nums);
|
||
Console.WriteLine("平方阶(冒泡排序)的操作数量 = " + count);
|
||
|
||
count = Exponential(n);
|
||
Console.WriteLine("指数阶(循环实现)的操作数量 = " + count);
|
||
count = ExpRecur(n);
|
||
Console.WriteLine("指数阶(递归实现)的操作数量 = " + count);
|
||
|
||
count = Logarithmic(n);
|
||
Console.WriteLine("对数阶(循环实现)的操作数量 = " + count);
|
||
count = LogRecur(n);
|
||
Console.WriteLine("对数阶(递归实现)的操作数量 = " + count);
|
||
|
||
count = LinearLogRecur(n);
|
||
Console.WriteLine("线性对数阶(递归实现)的操作数量 = " + count);
|
||
|
||
count = FactorialRecur(n);
|
||
Console.WriteLine("阶乘阶(递归实现)的操作数量 = " + count);
|
||
}
|
||
}
|