mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-26 00:06:28 +08:00
932d14644d
Polish the chapter preface, introduction and complexity anlysis
131 lines
2.3 KiB
Go
131 lines
2.3 KiB
Go
// File: time_complexity.go
|
|
// Created Time: 2022-12-13
|
|
// Author: msk397 (machangxinq@gmail.com)
|
|
|
|
package chapter_computational_complexity
|
|
|
|
/* 常数阶 */
|
|
func constant(n int) int {
|
|
count := 0
|
|
size := 100000
|
|
for i := 0; i < size; i++ {
|
|
count++
|
|
}
|
|
return count
|
|
}
|
|
|
|
/* 线性阶 */
|
|
func linear(n int) int {
|
|
count := 0
|
|
for i := 0; i < n; i++ {
|
|
count++
|
|
}
|
|
return count
|
|
}
|
|
|
|
/* 线性阶(遍历数组) */
|
|
func arrayTraversal(nums []int) int {
|
|
count := 0
|
|
// 循环次数与数组长度成正比
|
|
for range nums {
|
|
count++
|
|
}
|
|
return count
|
|
}
|
|
|
|
/* 平方阶 */
|
|
func quadratic(n int) int {
|
|
count := 0
|
|
// 循环次数与数组长度成平方关系
|
|
for i := 0; i < n; i++ {
|
|
for j := 0; j < n; j++ {
|
|
count++
|
|
}
|
|
}
|
|
return count
|
|
}
|
|
|
|
/* 平方阶(冒泡排序) */
|
|
func bubbleSort(nums []int) int {
|
|
count := 0 // 计数器
|
|
// 外循环:未排序区间为 [0, i]
|
|
for i := len(nums) - 1; i > 0; i-- {
|
|
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
|
|
for j := 0; j < i; j++ {
|
|
if nums[j] > nums[j+1] {
|
|
// 交换 nums[j] 与 nums[j + 1]
|
|
tmp := nums[j]
|
|
nums[j] = nums[j+1]
|
|
nums[j+1] = tmp
|
|
count += 3 // 元素交换包含 3 个单元操作
|
|
}
|
|
}
|
|
}
|
|
return count
|
|
}
|
|
|
|
/* 指数阶(循环实现)*/
|
|
func exponential(n int) int {
|
|
count, base := 0, 1
|
|
// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
|
for i := 0; i < n; i++ {
|
|
for j := 0; j < base; j++ {
|
|
count++
|
|
}
|
|
base *= 2
|
|
}
|
|
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
|
return count
|
|
}
|
|
|
|
/* 指数阶(递归实现)*/
|
|
func expRecur(n int) int {
|
|
if n == 1 {
|
|
return 1
|
|
}
|
|
return expRecur(n-1) + expRecur(n-1) + 1
|
|
}
|
|
|
|
/* 对数阶(循环实现)*/
|
|
func logarithmic(n float64) int {
|
|
count := 0
|
|
for n > 1 {
|
|
n = n / 2
|
|
count++
|
|
}
|
|
return count
|
|
}
|
|
|
|
/* 对数阶(递归实现)*/
|
|
func logRecur(n float64) int {
|
|
if n <= 1 {
|
|
return 0
|
|
}
|
|
return logRecur(n/2) + 1
|
|
}
|
|
|
|
/* 线性对数阶 */
|
|
func linearLogRecur(n float64) int {
|
|
if n <= 1 {
|
|
return 1
|
|
}
|
|
count := linearLogRecur(n/2) +
|
|
linearLogRecur(n/2)
|
|
for i := 0.0; i < n; i++ {
|
|
count++
|
|
}
|
|
return count
|
|
}
|
|
|
|
/* 阶乘阶(递归实现) */
|
|
func factorialRecur(n int) int {
|
|
if n == 0 {
|
|
return 1
|
|
}
|
|
count := 0
|
|
// 从 1 个分裂出 n 个
|
|
for i := 0; i < n; i++ {
|
|
count += factorialRecur(n - 1)
|
|
}
|
|
return count
|
|
}
|