hello-algo/zh-hant/chapter_tree/binary_search_tree/index.html
2024-04-26 19:21:13 +08:00

5625 lines
No EOL
485 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="zh-Hant" class="no-js">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<meta name="description" content="動畫圖解、一鍵執行的資料結構與演算法教程">
<meta name="author" content="krahets">
<link rel="canonical" href="https://www.hello-algo.com/zh-hant/chapter_tree/binary_search_tree/">
<link rel="prev" href="../array_representation_of_tree/">
<link rel="next" href="../avl_tree/">
<link rel="icon" href="../../assets/images/favicon.png">
<meta name="generator" content="mkdocs-1.5.3, mkdocs-material-9.5.5">
<title>7.4   二元搜尋樹 - Hello 演算法</title>
<link rel="stylesheet" href="../../assets/stylesheets/main.50c56a3b.min.css">
<link rel="stylesheet" href="../../assets/stylesheets/palette.06af60db.min.css">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Noto+Sans+SC:300,300i,400,400i,700,700i%7CFira+Code:400,400i,700,700i&display=fallback">
<style>:root{--md-text-font:"Noto Sans SC";--md-code-font:"Fira Code"}</style>
<link rel="stylesheet" href="../../stylesheets/extra.css">
<script>__md_scope=new URL("../..",location),__md_hash=e=>[...e].reduce((e,_)=>(e<<5)-e+_.charCodeAt(0),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script>
<link href="../../assets/stylesheets/glightbox.min.css" rel="stylesheet"/><style>
html.glightbox-open { overflow: initial; height: 100%; }
.gslide-title { margin-top: 0px; user-select: text; }
.gslide-desc { color: #666; user-select: text; }
.gslide-image img { background: white; }
.gscrollbar-fixer { padding-right: 15px; }
.gdesc-inner { font-size: 0.75rem; }
body[data-md-color-scheme="slate"] .gdesc-inner { background: var(--md-default-bg-color);}
body[data-md-color-scheme="slate"] .gslide-title { color: var(--md-default-fg-color);}
body[data-md-color-scheme="slate"] .gslide-desc { color: var(--md-default-fg-color);}
</style> <script src="../../assets/javascripts/glightbox.min.js"></script></head>
<body dir="ltr" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="teal">
<input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
<input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
<label class="md-overlay" for="__drawer"></label>
<div data-md-component="skip">
<a href="#74" class="md-skip">
跳轉至
</a>
</div>
<div data-md-component="announce">
<aside class="md-banner">
<div class="md-banner__inner md-grid md-typeset">
<button class="md-banner__button md-icon" aria-label="不再顯示此訊息">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
</button>
<div class="banner-svg">
<svg xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 512 512"><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.-->
<path
d="M480 32c0-12.9-7.8-24.6-19.8-29.6s-25.7-2.2-34.9 6.9L381.7 53c-48 48-113.1 75-181 75H192 160 64c-35.3 0-64 28.7-64 64v96c0 35.3 28.7 64 64 64l0 128c0 17.7 14.3 32 32 32h64c17.7 0 32-14.3 32-32V352l8.7 0c67.9 0 133 27 181 75l43.6 43.6c9.2 9.2 22.9 11.9 34.9 6.9s19.8-16.6 19.8-29.6V300.4c18.6-8.8 32-32.5 32-60.4s-13.4-51.6-32-60.4V32zm-64 76.7V240 371.3C357.2 317.8 280.5 288 200.7 288H192V192h8.7c79.8 0 156.5-29.8 215.3-83.3z" />
</svg>
<span>紙質書(簡體中文版)已發行,詳情請見<a href="/chapter_paperbook/">這裡</a></span>
</div>
</div>
<script>var content,el=document.querySelector("[data-md-component=announce]");el&&(content=el.querySelector(".md-typeset"),__md_hash(content.innerHTML)===__md_get("__announce")&&(el.hidden=!0))</script>
</aside>
</div>
<header class="md-header md-header--shadow" data-md-component="header">
<nav class="md-header__inner md-grid" aria-label="頁首">
<a href="../.." title="Hello 演算法" class="md-header__button md-logo" aria-label="Hello 演算法" data-md-component="logo">
<img src="../../assets/images/logo.svg" alt="logo">
</a>
<label class="md-header__button md-icon" for="__drawer">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z"/></svg>
</label>
<div class="md-header__title" data-md-component="header-title">
<div class="md-header__ellipsis">
<div class="md-header__topic">
<span class="md-ellipsis">
Hello 演算法
</span>
</div>
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
7.4 &nbsp; 二元搜尋樹
</span>
</div>
</div>
</div>
<form class="md-header__option" data-md-component="palette">
<input class="md-option" data-md-color-media="" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="teal" aria-label="深色模式" type="radio" name="__palette" id="__palette_0">
<label class="md-header__button md-icon" title="深色模式" for="__palette_1" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M7.5 2c-1.79 1.15-3 3.18-3 5.5s1.21 4.35 3.03 5.5C4.46 13 2 10.54 2 7.5A5.5 5.5 0 0 1 7.5 2m11.57 1.5 1.43 1.43L4.93 20.5 3.5 19.07 19.07 3.5m-6.18 2.43L11.41 5 9.97 6l.42-1.7L9 3.24l1.75-.12.58-1.65L12 3.1l1.73.03-1.35 1.13.51 1.67m-3.3 3.61-1.16-.73-1.12.78.34-1.32-1.09-.83 1.36-.09.45-1.29.51 1.27 1.36.03-1.05.87.4 1.31M19 13.5a5.5 5.5 0 0 1-5.5 5.5c-1.22 0-2.35-.4-3.26-1.07l7.69-7.69c.67.91 1.07 2.04 1.07 3.26m-4.4 6.58 2.77-1.15-.24 3.35-2.53-2.2m4.33-2.7 1.15-2.77 2.2 2.54-3.35.23m1.15-4.96-1.14-2.78 3.34.24-2.2 2.54M9.63 18.93l2.77 1.15-2.53 2.19-.24-3.34Z"/></svg>
</label>
<input class="md-option" data-md-color-media="" data-md-color-scheme="slate" data-md-color-primary="black" data-md-color-accent="teal" aria-label="淺色模式" type="radio" name="__palette" id="__palette_1">
<label class="md-header__button md-icon" title="淺色模式" for="__palette_0" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M7.5 2c-1.79 1.15-3 3.18-3 5.5s1.21 4.35 3.03 5.5C4.46 13 2 10.54 2 7.5A5.5 5.5 0 0 1 7.5 2m11.57 1.5 1.43 1.43L4.93 20.5 3.5 19.07 19.07 3.5m-6.18 2.43L11.41 5 9.97 6l.42-1.7L9 3.24l1.75-.12.58-1.65L12 3.1l1.73.03-1.35 1.13.51 1.67m-3.3 3.61-1.16-.73-1.12.78.34-1.32-1.09-.83 1.36-.09.45-1.29.51 1.27 1.36.03-1.05.87.4 1.31M19 13.5a5.5 5.5 0 0 1-5.5 5.5c-1.22 0-2.35-.4-3.26-1.07l7.69-7.69c.67.91 1.07 2.04 1.07 3.26m-4.4 6.58 2.77-1.15-.24 3.35-2.53-2.2m4.33-2.7 1.15-2.77 2.2 2.54-3.35.23m1.15-4.96-1.14-2.78 3.34.24-2.2 2.54M9.63 18.93l2.77 1.15-2.53 2.19-.24-3.34Z"/></svg>
</label>
</form>
<script>var media,input,key,value,palette=__md_get("__palette");if(palette&&palette.color){"(prefers-color-scheme)"===palette.color.media&&(media=matchMedia("(prefers-color-scheme: light)"),input=document.querySelector(media.matches?"[data-md-color-media='(prefers-color-scheme: light)']":"[data-md-color-media='(prefers-color-scheme: dark)']"),palette.color.media=input.getAttribute("data-md-color-media"),palette.color.scheme=input.getAttribute("data-md-color-scheme"),palette.color.primary=input.getAttribute("data-md-color-primary"),palette.color.accent=input.getAttribute("data-md-color-accent"));for([key,value]of Object.entries(palette.color))document.body.setAttribute("data-md-color-"+key,value)}</script>
<div class="md-header__option">
<div class="md-select">
<button class="md-header__button md-icon" aria-label="選擇語言">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m12.87 15.07-2.54-2.51.03-.03A17.52 17.52 0 0 0 14.07 6H17V4h-7V2H8v2H1v2h11.17C11.5 7.92 10.44 9.75 9 11.35 8.07 10.32 7.3 9.19 6.69 8h-2c.73 1.63 1.73 3.17 2.98 4.56l-5.09 5.02L4 19l5-5 3.11 3.11.76-2.04M18.5 10h-2L12 22h2l1.12-3h4.75L21 22h2l-4.5-12m-2.62 7 1.62-4.33L19.12 17h-3.24Z"/></svg>
</button>
<div class="md-select__inner">
<ul class="md-select__list">
<li class="md-select__item">
<a href="/" hreflang="zh" class="md-select__link">
简体中文
</a>
</li>
<li class="md-select__item">
<a href="/zh-hant/" hreflang="zh-Hant" class="md-select__link">
繁體中文
</a>
</li>
<li class="md-select__item">
<a href="/en/" hreflang="en" class="md-select__link">
English
</a>
</li>
</ul>
</div>
</div>
</div>
<label class="md-header__button md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
</label>
<div class="md-search" data-md-component="search" role="dialog">
<label class="md-search__overlay" for="__search"></label>
<div class="md-search__inner" role="search">
<form class="md-search__form" name="search">
<input type="text" class="md-search__input" name="query" aria-label="搜尋" placeholder="搜尋" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required>
<label class="md-search__icon md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</label>
<nav class="md-search__options" aria-label="搜尋">
<a href="javascript:void(0)" class="md-search__icon md-icon" title="分享" aria-label="分享" data-clipboard data-clipboard-text="" data-md-component="search-share" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 16.08c-.76 0-1.44.3-1.96.77L8.91 12.7c.05-.23.09-.46.09-.7 0-.24-.04-.47-.09-.7l7.05-4.11c.54.5 1.25.81 2.04.81a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3c0 .24.04.47.09.7L8.04 9.81C7.5 9.31 6.79 9 6 9a3 3 0 0 0-3 3 3 3 0 0 0 3 3c.79 0 1.5-.31 2.04-.81l7.12 4.15c-.05.21-.08.43-.08.66 0 1.61 1.31 2.91 2.92 2.91 1.61 0 2.92-1.3 2.92-2.91A2.92 2.92 0 0 0 18 16.08Z"/></svg>
</a>
<button type="reset" class="md-search__icon md-icon" title="清空" aria-label="清空" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
</button>
</nav>
<div class="md-search__suggest" data-md-component="search-suggest"></div>
</form>
<div class="md-search__output">
<div class="md-search__scrollwrap" data-md-scrollfix>
<div class="md-search-result" data-md-component="search-result">
<div class="md-search-result__meta">
正在初始化搜尋引擎
</div>
<ol class="md-search-result__list" role="presentation"></ol>
</div>
</div>
</div>
</div>
</div>
<div class="md-header__source">
<a href="https://github.com/krahets/hello-algo" title="前往倉庫" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
</nav>
</header>
<div class="md-container" data-md-component="container">
<main class="md-main" data-md-component="main">
<div class="md-main__inner md-grid">
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--primary" aria-label="導航" data-md-level="0">
<label class="md-nav__title" for="__drawer">
<a href="../.." title="Hello 演算法" class="md-nav__button md-logo" aria-label="Hello 演算法" data-md-component="logo">
<img src="../../assets/images/logo.svg" alt="logo">
</a>
Hello 演算法
</label>
<div class="md-nav__source">
<a href="https://github.com/krahets/hello-algo" title="前往倉庫" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_1" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_hello_algo/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m13.13 22.19-1.63-3.83c1.57-.58 3.04-1.36 4.4-2.27l-2.77 6.1M5.64 12.5l-3.83-1.63 6.1-2.77C7 9.46 6.22 10.93 5.64 12.5M19.22 4c.28 0 .53 0 .74.05.17 1.39-.02 4.25-3.3 7.53-1.7 1.71-3.73 3.02-6.01 3.89l-2.15-2.1c.92-2.31 2.23-4.34 3.92-6.03C15.18 4.58 17.64 4 19.22 4m0-2c-1.98 0-4.98.69-8.22 3.93-2.19 2.19-3.5 4.6-4.35 6.71-.28.75-.09 1.57.46 2.13l2.13 2.12c.38.38.89.61 1.42.61.23 0 .47-.06.7-.15A19.1 19.1 0 0 0 18.07 13c5.66-5.66 3.54-10.61 3.54-10.61S20.7 2 19.22 2m-4.68 7.46c-.78-.78-.78-2.05 0-2.83s2.05-.78 2.83 0c.77.78.78 2.05 0 2.83-.78.78-2.05.78-2.83 0m-5.66 7.07-1.41-1.41 1.41 1.41M6.24 22l3.64-3.64c-.34-.09-.67-.24-.97-.45L4.83 22h1.41M2 22h1.41l4.77-4.76-1.42-1.41L2 20.59V22m0-2.83 4.09-4.08c-.21-.3-.36-.62-.45-.97L2 17.76v1.41Z"/></svg>
<span class="md-ellipsis">
</span>
</a>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_1_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_1">
<span class="md-nav__icon md-icon"></span>
</label>
<ul class="md-nav__list" data-md-scrollfix>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_2" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_preface/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M21 4H3a2 2 0 0 0-2 2v13a2 2 0 0 0 2 2h18a2 2 0 0 0 2-2V6a2 2 0 0 0-2-2M3 19V6h8v13H3m18 0h-8V6h8v13m-7-9.5h6V11h-6V9.5m0 2.5h6v1.5h-6V12m0 2.5h6V16h-6v-1.5Z"/></svg>
<span class="md-ellipsis">
第 0 章 &nbsp; 前言
</span>
</a>
<label class="md-nav__link " for="__nav_2" id="__nav_2_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_2_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_2">
<span class="md-nav__icon md-icon"></span>
第 0 章 &nbsp; 前言
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_preface/about_the_book/" class="md-nav__link">
<span class="md-ellipsis">
0.1 &nbsp; 關於本書
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/suggestions/" class="md-nav__link">
<span class="md-ellipsis">
0.2 &nbsp; 如何使用本書
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/summary/" class="md-nav__link">
<span class="md-ellipsis">
0.3 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_3" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_introduction/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2m0 16H5V5h14v14M6.2 7.7h5v1.5h-5V7.7m6.8 8.1h5v1.5h-5v-1.5m0-2.6h5v1.5h-5v-1.5M8 18h1.5v-2h2v-1.5h-2v-2H8v2H6V16h2v2m6.1-7.1 1.4-1.4 1.4 1.4 1.1-1-1.4-1.4L18 7.1 16.9 6l-1.4 1.4L14.1 6 13 7.1l1.4 1.4L13 9.9l1.1 1Z"/></svg>
<span class="md-ellipsis">
第 1 章 &nbsp; 初識演算法
</span>
</a>
<label class="md-nav__link " for="__nav_3" id="__nav_3_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 1 章 &nbsp; 初識演算法
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_introduction/algorithms_are_everywhere/" class="md-nav__link">
<span class="md-ellipsis">
1.1 &nbsp; 演算法無處不在
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/what_is_dsa/" class="md-nav__link">
<span class="md-ellipsis">
1.2 &nbsp; 演算法是什麼
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/summary/" class="md-nav__link">
<span class="md-ellipsis">
1.3 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_4" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_computational_complexity/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 複雜度分析
</span>
</a>
<label class="md-nav__link " for="__nav_4" id="__nav_4_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_4_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_4">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 複雜度分析
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/performance_evaluation/" class="md-nav__link">
<span class="md-ellipsis">
2.1 &nbsp; 演算法效率評估
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/iteration_and_recursion/" class="md-nav__link">
<span class="md-ellipsis">
2.2 &nbsp; 迭代與遞迴
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/time_complexity/" class="md-nav__link">
<span class="md-ellipsis">
2.3 &nbsp; 時間複雜度
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/space_complexity/" class="md-nav__link">
<span class="md-ellipsis">
2.4 &nbsp; 空間複雜度
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/summary/" class="md-nav__link">
<span class="md-ellipsis">
2.5 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_5" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_data_structure/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M11 13.5v8H3v-8h8m-2 2H5v4h4v-4M12 2l5.5 9h-11L12 2m0 3.86L10.08 9h3.84L12 5.86M17.5 13c2.5 0 4.5 2 4.5 4.5S20 22 17.5 22 13 20 13 17.5s2-4.5 4.5-4.5m0 2a2.5 2.5 0 0 0-2.5 2.5 2.5 2.5 0 0 0 2.5 2.5 2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-2.5-2.5Z"/></svg>
<span class="md-ellipsis">
第 3 章 &nbsp; 資料結構
</span>
</a>
<label class="md-nav__link " for="__nav_5" id="__nav_5_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_5_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_5">
<span class="md-nav__icon md-icon"></span>
第 3 章 &nbsp; 資料結構
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_data_structure/classification_of_data_structure/" class="md-nav__link">
<span class="md-ellipsis">
3.1 &nbsp; 資料結構分類
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/basic_data_types/" class="md-nav__link">
<span class="md-ellipsis">
3.2 &nbsp; 基本資料型別
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/number_encoding/" class="md-nav__link">
<span class="md-ellipsis">
3.3 &nbsp; 數字編碼 *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/character_encoding/" class="md-nav__link">
<span class="md-ellipsis">
3.4 &nbsp; 字元編碼 *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/summary/" class="md-nav__link">
<span class="md-ellipsis">
3.5 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_6" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_array_and_linkedlist/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 5v14h17V5H3m4 2v2H5V7h2m-2 6v-2h2v2H5m0 2h2v2H5v-2m13 2H9v-2h9v2m0-4H9v-2h9v2m0-4H9V7h9v2Z"/></svg>
<span class="md-ellipsis">
第 4 章 &nbsp; 陣列與鏈結串列
</span>
</a>
<label class="md-nav__link " for="__nav_6" id="__nav_6_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_6_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_6">
<span class="md-nav__icon md-icon"></span>
第 4 章 &nbsp; 陣列與鏈結串列
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/array/" class="md-nav__link">
<span class="md-ellipsis">
4.1 &nbsp; 陣列
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/linked_list/" class="md-nav__link">
<span class="md-ellipsis">
4.2 &nbsp; 鏈結串列
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/list/" class="md-nav__link">
<span class="md-ellipsis">
4.3 &nbsp; 串列
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/ram_and_cache/" class="md-nav__link">
<span class="md-ellipsis">
4.4 &nbsp; 記憶體與快取 *
</span>
<span class="md-status md-status--new" title="最近新增">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/summary/" class="md-nav__link">
<span class="md-ellipsis">
4.5 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_7" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_stack_and_queue/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17.36 20.2v-5.38h1.79V22H3v-7.18h1.8v5.38h12.56M6.77 14.32l.37-1.76 8.79 1.85-.37 1.76-8.79-1.85m1.16-4.21.76-1.61 8.14 3.78-.76 1.62-8.14-3.79m2.26-3.99 1.15-1.38 6.9 5.76-1.15 1.37-6.9-5.75m4.45-4.25L20 9.08l-1.44 1.07-5.36-7.21 1.44-1.07M6.59 18.41v-1.8h8.98v1.8H6.59Z"/></svg>
<span class="md-ellipsis">
第 5 章 &nbsp; 堆疊與佇列
</span>
</a>
<label class="md-nav__link " for="__nav_7" id="__nav_7_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 5 章 &nbsp; 堆疊與佇列
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/stack/" class="md-nav__link">
<span class="md-ellipsis">
5.1 &nbsp; 堆疊
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/queue/" class="md-nav__link">
<span class="md-ellipsis">
5.2 &nbsp; 佇列
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/deque/" class="md-nav__link">
<span class="md-ellipsis">
5.3 &nbsp; 雙向佇列
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/summary/" class="md-nav__link">
<span class="md-ellipsis">
5.4 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_8" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_hashing/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 雜湊表
</span>
</a>
<label class="md-nav__link " for="__nav_8" id="__nav_8_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_8_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_8">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 雜湊表
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_map/" class="md-nav__link">
<span class="md-ellipsis">
6.1 &nbsp; 雜湊表
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_collision/" class="md-nav__link">
<span class="md-ellipsis">
6.2 &nbsp; 雜湊衝突
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
6.3 &nbsp; 雜湊演算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/summary/" class="md-nav__link">
<span class="md-ellipsis">
6.4 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--active md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_9" checked>
<div class="md-nav__link md-nav__container">
<a href="../" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.5 17c-.14 0-.26 0-.39.04L17.5 13.8c.45-.45.75-1.09.75-1.8a2.5 2.5 0 0 0-2.5-2.5c-.14 0-.25 0-.4.04L13.74 6.3c.47-.46.76-1.09.76-1.8a2.5 2.5 0 0 0-5 0c0 .7.29 1.34.76 1.79L8.65 9.54c-.15-.04-.26-.04-.4-.04a2.5 2.5 0 0 0-2.5 2.5c0 .71.29 1.34.75 1.79l-1.61 3.25C4.76 17 4.64 17 4.5 17a2.5 2.5 0 0 0 0 5A2.5 2.5 0 0 0 7 19.5c0-.7-.29-1.34-.76-1.79l1.62-3.25c.14.04.26.04.39.04s.25 0 .38-.04l1.63 3.25c-.47.45-.76 1.09-.76 1.79a2.5 2.5 0 0 0 5 0A2.5 2.5 0 0 0 12 17c-.13 0-.26 0-.39.04L10 13.8c.45-.45.75-1.09.75-1.8 0-.7-.29-1.33-.75-1.79l1.61-3.25c.13.04.26.04.39.04s.26 0 .39-.04L14 10.21a2.5 2.5 0 0 0 1.75 4.29c.13 0 .25 0 .38-.04l1.63 3.25c-.47.45-.76 1.09-.76 1.79a2.5 2.5 0 0 0 5 0 2.5 2.5 0 0 0-2.5-2.5m-15 3.5c-.55 0-1-.45-1-1s.45-1 1-1 1 .45 1 1-.45 1-1 1m8.5-1c0 .55-.45 1-1 1s-1-.45-1-1 .45-1 1-1 1 .45 1 1M7.25 12c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1M11 4.5c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1m3.75 7.5c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1m4.75 8.5c-.55 0-1-.45-1-1s.45-1 1-1 1 .45 1 1-.45 1-1 1Z"/></svg>
<span class="md-ellipsis">
第 7 章 &nbsp;
</span>
</a>
<label class="md-nav__link " for="__nav_9" id="__nav_9_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_9_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_9">
<span class="md-nav__icon md-icon"></span>
第 7 章 &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../binary_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.1 &nbsp; 二元樹
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../binary_tree_traversal/" class="md-nav__link">
<span class="md-ellipsis">
7.2 &nbsp; 二元樹走訪
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../array_representation_of_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.3 &nbsp; 二元樹陣列表示
</span>
</a>
</li>
<li class="md-nav__item md-nav__item--active">
<input class="md-nav__toggle md-toggle" type="checkbox" id="__toc">
<label class="md-nav__link md-nav__link--active" for="__toc">
<span class="md-ellipsis">
7.4 &nbsp; 二元搜尋樹
</span>
<span class="md-nav__icon md-icon"></span>
</label>
<a href="./" class="md-nav__link md-nav__link--active">
<span class="md-ellipsis">
7.4 &nbsp; 二元搜尋樹
</span>
</a>
<nav class="md-nav md-nav--secondary" aria-label="目錄">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
目錄
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#741" class="md-nav__link">
<span class="md-ellipsis">
7.4.1 &nbsp; 二元搜尋樹的操作
</span>
</a>
<nav class="md-nav" aria-label="7.4.1   二元搜尋樹的操作">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#1" class="md-nav__link">
<span class="md-ellipsis">
1. &nbsp; 查詢節點
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#2" class="md-nav__link">
<span class="md-ellipsis">
2. &nbsp; 插入節點
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#3" class="md-nav__link">
<span class="md-ellipsis">
3. &nbsp; 刪除節點
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#4" class="md-nav__link">
<span class="md-ellipsis">
4. &nbsp; 中序走訪有序
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#742" class="md-nav__link">
<span class="md-ellipsis">
7.4.2 &nbsp; 二元搜尋樹的效率
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#743" class="md-nav__link">
<span class="md-ellipsis">
7.4.3 &nbsp; 二元搜尋樹常見應用
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="../avl_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.5 &nbsp; AVL *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../summary/" class="md-nav__link">
<span class="md-ellipsis">
7.6 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_10" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_heap/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 1a2.5 2.5 0 0 0-2.5 2.5A2.5 2.5 0 0 0 11 5.79V7H7a2 2 0 0 0-2 2v.71A2.5 2.5 0 0 0 3.5 12 2.5 2.5 0 0 0 5 14.29V15H4a2 2 0 0 0-2 2v1.21A2.5 2.5 0 0 0 .5 20.5 2.5 2.5 0 0 0 3 23a2.5 2.5 0 0 0 2.5-2.5A2.5 2.5 0 0 0 4 18.21V17h4v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 9 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17a2 2 0 0 0-2-2H7v-.71A2.5 2.5 0 0 0 8.5 12 2.5 2.5 0 0 0 7 9.71V9h10v.71A2.5 2.5 0 0 0 15.5 12a2.5 2.5 0 0 0 1.5 2.29V15h-1a2 2 0 0 0-2 2v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 15 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17h4v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 21 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17a2 2 0 0 0-2-2h-1v-.71A2.5 2.5 0 0 0 20.5 12 2.5 2.5 0 0 0 19 9.71V9a2 2 0 0 0-2-2h-4V5.79a2.5 2.5 0 0 0 1.5-2.29A2.5 2.5 0 0 0 12 1m0 1.5a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1M6 11a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m12 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1M3 19.5a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1Z"/></svg>
<span class="md-ellipsis">
第 8 章 &nbsp; 堆積
</span>
</a>
<label class="md-nav__link " for="__nav_10" id="__nav_10_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_10_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_10">
<span class="md-nav__icon md-icon"></span>
第 8 章 &nbsp; 堆積
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_heap/heap/" class="md-nav__link">
<span class="md-ellipsis">
8.1 &nbsp; 堆積
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/build_heap/" class="md-nav__link">
<span class="md-ellipsis">
8.2 &nbsp; 建堆積操作
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/top_k/" class="md-nav__link">
<span class="md-ellipsis">
8.3 &nbsp; Top-k 問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/summary/" class="md-nav__link">
<span class="md-ellipsis">
8.4 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_11" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_graph/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m12 5.37-.44-.06L6 14.9c.24.21.4.48.47.78h11.06c.07-.3.23-.57.47-.78l-5.56-9.59-.44.06M6.6 16.53l4.28 2.53c.29-.27.69-.43 1.12-.43.43 0 .83.16 1.12.43l4.28-2.53H6.6M12 22a1.68 1.68 0 0 1-1.68-1.68l.09-.56-4.3-2.55c-.31.36-.76.58-1.27.58a1.68 1.68 0 0 1-1.68-1.68c0-.79.53-1.45 1.26-1.64V9.36c-.83-.11-1.47-.82-1.47-1.68A1.68 1.68 0 0 1 4.63 6c.55 0 1.03.26 1.34.66l4.41-2.53-.06-.45c0-.93.75-1.68 1.68-1.68.93 0 1.68.75 1.68 1.68l-.06.45 4.41 2.53c.31-.4.79-.66 1.34-.66a1.68 1.68 0 0 1 1.68 1.68c0 .86-.64 1.57-1.47 1.68v5.11c.73.19 1.26.85 1.26 1.64a1.68 1.68 0 0 1-1.68 1.68c-.51 0-.96-.22-1.27-.58l-4.3 2.55.09.56A1.68 1.68 0 0 1 12 22M10.8 4.86 6.3 7.44l.02.24c0 .71-.44 1.32-1.06 1.57l.03 5.25 5.51-9.64m2.4 0 5.51 9.64.03-5.25c-.62-.25-1.06-.86-1.06-1.57l.02-.24-4.5-2.58Z"/></svg>
<span class="md-ellipsis">
第 9 章 &nbsp;
</span>
</a>
<label class="md-nav__link " for="__nav_11" id="__nav_11_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_11_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_11">
<span class="md-nav__icon md-icon"></span>
第 9 章 &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_graph/graph/" class="md-nav__link">
<span class="md-ellipsis">
9.1 &nbsp;
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_operations/" class="md-nav__link">
<span class="md-ellipsis">
9.2 &nbsp; 圖基礎操作
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_traversal/" class="md-nav__link">
<span class="md-ellipsis">
9.3 &nbsp; 圖的走訪
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/summary/" class="md-nav__link">
<span class="md-ellipsis">
9.4 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_12" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_searching/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m19.31 18.9 3.08 3.1L21 23.39l-3.12-3.07c-.69.43-1.51.68-2.38.68-2.5 0-4.5-2-4.5-4.5s2-4.5 4.5-4.5 4.5 2 4.5 4.5c0 .88-.25 1.71-.69 2.4m-3.81.1a2.5 2.5 0 0 0 0-5 2.5 2.5 0 0 0 0 5M21 4v2H3V4h18M3 16v-2h6v2H3m0-5V9h18v2h-2.03c-1.01-.63-2.2-1-3.47-1s-2.46.37-3.47 1H3Z"/></svg>
<span class="md-ellipsis">
第 10 章 &nbsp; 搜尋
</span>
</a>
<label class="md-nav__link " for="__nav_12" id="__nav_12_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_12_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_12">
<span class="md-nav__icon md-icon"></span>
第 10 章 &nbsp; 搜尋
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search/" class="md-nav__link">
<span class="md-ellipsis">
10.1 &nbsp; 二分搜尋
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search_insertion/" class="md-nav__link">
<span class="md-ellipsis">
10.2 &nbsp; 二分搜尋插入點
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search_edge/" class="md-nav__link">
<span class="md-ellipsis">
10.3 &nbsp; 二分搜尋邊界
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/replace_linear_by_hashing/" class="md-nav__link">
<span class="md-ellipsis">
10.4 &nbsp; 雜湊最佳化策略
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/searching_algorithm_revisited/" class="md-nav__link">
<span class="md-ellipsis">
10.5 &nbsp; 重識搜尋演算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/summary/" class="md-nav__link">
<span class="md-ellipsis">
10.6 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_13" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_sorting/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 17h3l-4 4-4-4h3V3h2M2 17h10v2H2M6 5v2H2V5m0 6h7v2H2v-2Z"/></svg>
<span class="md-ellipsis">
第 11 章 &nbsp; 排序
</span>
</a>
<label class="md-nav__link " for="__nav_13" id="__nav_13_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_13_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_13">
<span class="md-nav__icon md-icon"></span>
第 11 章 &nbsp; 排序
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_sorting/sorting_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
11.1 &nbsp; 排序演算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/selection_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.2 &nbsp; 選擇排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bubble_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.3 &nbsp; 泡沫排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/insertion_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.4 &nbsp; 插入排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/quick_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.5 &nbsp; 快速排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/merge_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.6 &nbsp; 合併排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/heap_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.7 &nbsp; 堆積排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bucket_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.8 &nbsp; 桶排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/counting_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.9 &nbsp; 計數排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/radix_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.10 &nbsp; 基數排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/summary/" class="md-nav__link">
<span class="md-ellipsis">
11.11 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_14" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_divide_and_conquer/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17 7v2h5V7h-5M2 9v6h5V9H2m10 0v2H9v2h3v2l3-3-3-3m5 2v2h5v-2h-5m0 4v2h5v-2h-5Z"/></svg>
<span class="md-ellipsis">
第 12 章 &nbsp; 分治
</span>
</a>
<label class="md-nav__link " for="__nav_14" id="__nav_14_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_14_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_14">
<span class="md-nav__icon md-icon"></span>
第 12 章 &nbsp; 分治
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/divide_and_conquer/" class="md-nav__link">
<span class="md-ellipsis">
12.1 &nbsp; 分治演算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/binary_search_recur/" class="md-nav__link">
<span class="md-ellipsis">
12.2 &nbsp; 分治搜尋策略
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/build_binary_tree_problem/" class="md-nav__link">
<span class="md-ellipsis">
12.3 &nbsp; 構建樹問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/hanota_problem/" class="md-nav__link">
<span class="md-ellipsis">
12.4 &nbsp; 河內塔問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/summary/" class="md-nav__link">
<span class="md-ellipsis">
12.5 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_15" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_backtracking/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 15a3 3 0 0 1 3 3 3 3 0 0 1-3 3 2.99 2.99 0 0 1-2.83-2H14v-2h1.17c.41-1.17 1.52-2 2.83-2m0 2a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1m0-9a1.43 1.43 0 0 0 1.43-1.43 1.43 1.43 0 1 0-2.86 0A1.43 1.43 0 0 0 18 8m0-5.43a4 4 0 0 1 4 4C22 9.56 18 14 18 14s-4-4.44-4-7.43a4 4 0 0 1 4-4M8.83 17H10v2H8.83A2.99 2.99 0 0 1 6 21a3 3 0 0 1-3-3c0-1.31.83-2.42 2-2.83V14h2v1.17c.85.3 1.53.98 1.83 1.83M6 17a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1M6 3a3 3 0 0 1 3 3c0 1.31-.83 2.42-2 2.83V10H5V8.83A2.99 2.99 0 0 1 3 6a3 3 0 0 1 3-3m0 2a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1m5 14v-2h2v2h-2m-4-6H5v-2h2v2Z"/></svg>
<span class="md-ellipsis">
第 13 章 &nbsp; 回溯
</span>
</a>
<label class="md-nav__link " for="__nav_15" id="__nav_15_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_15_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_15">
<span class="md-nav__icon md-icon"></span>
第 13 章 &nbsp; 回溯
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_backtracking/backtracking_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
13.1 &nbsp; 回溯演算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/permutations_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.2 &nbsp; 全排列問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/subset_sum_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.3 &nbsp; 子集和問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/n_queens_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.4 &nbsp; N 皇后問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/summary/" class="md-nav__link">
<span class="md-ellipsis">
13.5 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_16" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_dynamic_programming/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M22 15h-2v3c0 1.11-.89 2-2 2h-3v2l-3-3 3-3v2h3v-3h-2l3-3 3 3m0-11v4c0 1.1-.9 2-2 2H10v10c0 1.1-.9 2-2 2H4c-1.1 0-2-.9-2-2V4c0-1.1.9-2 2-2h16c1.1 0 2 .9 2 2M4 8h4V4H4v4m0 2v4h4v-4H4m4 10v-4H4v4h4m6-12V4h-4v4h4m6-4h-4v4h4V4Z"/></svg>
<span class="md-ellipsis">
第 14 章 &nbsp; 動態規劃
</span>
</a>
<label class="md-nav__link " for="__nav_16" id="__nav_16_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_16_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_16">
<span class="md-nav__icon md-icon"></span>
第 14 章 &nbsp; 動態規劃
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/intro_to_dynamic_programming/" class="md-nav__link">
<span class="md-ellipsis">
14.1 &nbsp; 初探動態規劃
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/dp_problem_features/" class="md-nav__link">
<span class="md-ellipsis">
14.2 &nbsp; DP 問題特性
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/dp_solution_pipeline/" class="md-nav__link">
<span class="md-ellipsis">
14.3 &nbsp; DP 解題思路
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.4 &nbsp; 0-1 背包問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/unbounded_knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.5 &nbsp; 完全背包問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/edit_distance_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.6 &nbsp; 編輯距離問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/summary/" class="md-nav__link">
<span class="md-ellipsis">
14.7 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_17" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_greedy/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 3c3.88 0 7 3.14 7 7 0 2.8-1.63 5.19-4 6.31V21H9v-3H8c-1.11 0-2-.89-2-2v-3H4.5c-.42 0-.66-.5-.42-.81L6 9.66A7.003 7.003 0 0 1 13 3m0-2C8.41 1 4.61 4.42 4.06 8.9L2.5 11h-.03l-.02.03c-.55.76-.62 1.76-.19 2.59.36.69 1 1.17 1.74 1.32V16c0 1.85 1.28 3.42 3 3.87V23h11v-5.5c2.5-1.67 4-4.44 4-7.5 0-4.97-4.04-9-9-9m4 7.83c0 1.54-1.36 2.77-3.42 4.64L13 14l-.58-.53C10.36 11.6 9 10.37 9 8.83c0-1.2.96-2.19 2.16-2.2h.04c.69 0 1.35.31 1.8.83.45-.52 1.11-.83 1.8-.83 1.2-.01 2.2.96 2.2 2.16v.04Z"/></svg>
<span class="md-ellipsis">
第 15 章 &nbsp; 貪婪
</span>
</a>
<label class="md-nav__link " for="__nav_17" id="__nav_17_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_17_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_17">
<span class="md-nav__icon md-icon"></span>
第 15 章 &nbsp; 貪婪
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_greedy/greedy_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
15.1 &nbsp; 貪婪演算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/fractional_knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.2 &nbsp; 分數背包問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/max_capacity_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.3 &nbsp; 最大容量問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/max_product_cutting_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.4 &nbsp; 最大切分乘積問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/summary/" class="md-nav__link">
<span class="md-ellipsis">
15.5 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_18" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_appendix/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M11 18h2v-2h-2v2m1-16A10 10 0 0 0 2 12a10 10 0 0 0 10 10 10 10 0 0 0 10-10A10 10 0 0 0 12 2m0 18c-4.41 0-8-3.59-8-8s3.59-8 8-8 8 3.59 8 8-3.59 8-8 8m0-14a4 4 0 0 0-4 4h2a2 2 0 0 1 2-2 2 2 0 0 1 2 2c0 2-3 1.75-3 5h2c0-2.25 3-2.5 3-5a4 4 0 0 0-4-4Z"/></svg>
<span class="md-ellipsis">
第 16 章 &nbsp; 附錄
</span>
</a>
<label class="md-nav__link " for="__nav_18" id="__nav_18_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_18_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_18">
<span class="md-nav__icon md-icon"></span>
第 16 章 &nbsp; 附錄
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_appendix/installation/" class="md-nav__link">
<span class="md-ellipsis">
16.1 &nbsp; 程式設計環境安裝
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_appendix/contribution/" class="md-nav__link">
<span class="md-ellipsis">
16.2 &nbsp; 一起參與創作
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_appendix/terminology/" class="md-nav__link">
<span class="md-ellipsis">
16.3 &nbsp; 術語表
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_19" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_reference/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9 3v15h3V3H9m3 2 4 13 3-1-4-13-3 1M5 5v13h3V5H5M3 19v2h18v-2H3Z"/></svg>
<span class="md-ellipsis">
參考文獻
</span>
</a>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_19_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_19">
<span class="md-nav__icon md-icon"></span>
參考文獻
</label>
<ul class="md-nav__list" data-md-scrollfix>
</ul>
</nav>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--secondary" aria-label="目錄">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
目錄
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#741" class="md-nav__link">
<span class="md-ellipsis">
7.4.1 &nbsp; 二元搜尋樹的操作
</span>
</a>
<nav class="md-nav" aria-label="7.4.1   二元搜尋樹的操作">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#1" class="md-nav__link">
<span class="md-ellipsis">
1. &nbsp; 查詢節點
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#2" class="md-nav__link">
<span class="md-ellipsis">
2. &nbsp; 插入節點
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#3" class="md-nav__link">
<span class="md-ellipsis">
3. &nbsp; 刪除節點
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#4" class="md-nav__link">
<span class="md-ellipsis">
4. &nbsp; 中序走訪有序
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#742" class="md-nav__link">
<span class="md-ellipsis">
7.4.2 &nbsp; 二元搜尋樹的效率
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#743" class="md-nav__link">
<span class="md-ellipsis">
7.4.3 &nbsp; 二元搜尋樹常見應用
</span>
</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-content" data-md-component="content">
<article class="md-content__inner md-typeset">
<!-- Tags -->
<!-- Actions -->
<!-- Actions -->
<!-- Edit button -->
<a
href="https://github.com/krahets/hello-algo/tree/main/zh-hant/docs/chapter_tree/binary_search_tree.md"
title="編輯此頁"
class="md-content__button md-icon"
>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M441 58.9 453.1 71c9.4 9.4 9.4 24.6 0 33.9L424 134.1 377.9 88 407 58.9c9.4-9.4 24.6-9.4 33.9 0zM209.8 256.2 344 121.9l46.1 46.1-134.3 134.2c-2.9 2.9-6.5 5-10.4 6.1L186.9 325l16.7-58.5c1.1-3.9 3.2-7.5 6.1-10.4zM373.1 25 175.8 222.2c-8.7 8.7-15 19.4-18.3 31.1l-28.6 100c-2.4 8.4-.1 17.4 6.1 23.6s15.2 8.5 23.6 6.1l100-28.6c11.8-3.4 22.5-9.7 31.1-18.3L487 138.9c28.1-28.1 28.1-73.7 0-101.8L474.9 25c-28.1-28.1-73.7-28.1-101.8 0zM88 64c-48.6 0-88 39.4-88 88v272c0 48.6 39.4 88 88 88h272c48.6 0 88-39.4 88-88V312c0-13.3-10.7-24-24-24s-24 10.7-24 24v112c0 22.1-17.9 40-40 40H88c-22.1 0-40-17.9-40-40V152c0-22.1 17.9-40 40-40h112c13.3 0 24-10.7 24-24s-10.7-24-24-24H88z"/></svg>
</a>
<!-- View button -->
<!-- Page content -->
<h1 id="74">7.4 &nbsp; 二元搜尋樹<a class="headerlink" href="#74" title="Permanent link">&para;</a></h1>
<p>如圖 7-16 所示,<u>二元搜尋樹binary search tree</u>滿足以下條件。</p>
<ol>
<li>對於根節點,左子樹中所有節點的值 <span class="arithmatex">\(&lt;\)</span> 根節點的值 <span class="arithmatex">\(&lt;\)</span> 右子樹中所有節點的值。</li>
<li>任意節點的左、右子樹也是二元搜尋樹,即同樣滿足條件 <code>1.</code></li>
</ol>
<p><a class="glightbox" href="../binary_search_tree.assets/binary_search_tree.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="二元搜尋樹" class="animation-figure" src="../binary_search_tree.assets/binary_search_tree.png" /></a></p>
<p align="center"> 圖 7-16 &nbsp; 二元搜尋樹 </p>
<h2 id="741">7.4.1 &nbsp; 二元搜尋樹的操作<a class="headerlink" href="#741" title="Permanent link">&para;</a></h2>
<p>我們將二元搜尋樹封裝為一個類別 <code>BinarySearchTree</code> ,並宣告一個成員變數 <code>root</code> ,指向樹的根節點。</p>
<h3 id="1">1. &nbsp; 查詢節點<a class="headerlink" href="#1" title="Permanent link">&para;</a></h3>
<p>給定目標節點值 <code>num</code> ,可以根據二元搜尋樹的性質來查詢。如圖 7-17 所示,我們宣告一個節點 <code>cur</code> ,從二元樹的根節點 <code>root</code> 出發,迴圈比較節點值 <code>cur.val</code><code>num</code> 之間的大小關係。</p>
<ul>
<li><code>cur.val &lt; num</code> ,說明目標節點在 <code>cur</code> 的右子樹中,因此執行 <code>cur = cur.right</code></li>
<li><code>cur.val &gt; num</code> ,說明目標節點在 <code>cur</code> 的左子樹中,因此執行 <code>cur = cur.left</code></li>
<li><code>cur.val = num</code> ,說明找到目標節點,跳出迴圈並返回該節點。</li>
</ul>
<div class="tabbed-set tabbed-alternate" data-tabs="1:4"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">&lt;1&gt;</label><label for="__tabbed_1_2">&lt;2&gt;</label><label for="__tabbed_1_3">&lt;3&gt;</label><label for="__tabbed_1_4">&lt;4&gt;</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<p><a class="glightbox" href="../binary_search_tree.assets/bst_search_step1.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="二元搜尋樹查詢節點示例" class="animation-figure" src="../binary_search_tree.assets/bst_search_step1.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../binary_search_tree.assets/bst_search_step2.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="bst_search_step2" class="animation-figure" src="../binary_search_tree.assets/bst_search_step2.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../binary_search_tree.assets/bst_search_step3.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="bst_search_step3" class="animation-figure" src="../binary_search_tree.assets/bst_search_step3.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../binary_search_tree.assets/bst_search_step4.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="bst_search_step4" class="animation-figure" src="../binary_search_tree.assets/bst_search_step4.png" /></a></p>
</div>
</div>
</div>
<p align="center"> 圖 7-17 &nbsp; 二元搜尋樹查詢節點示例 </p>
<p>二元搜尋樹的查詢操作與二分搜尋演算法的工作原理一致,都是每輪排除一半情況。迴圈次數最多為二元樹的高度,當二元樹平衡時,使用 <span class="arithmatex">\(O(\log n)\)</span> 時間。示例程式碼如下:</p>
<div class="tabbed-set tabbed-alternate" data-tabs="2:14"><input checked="checked" id="__tabbed_2_1" name="__tabbed_2" type="radio" /><input id="__tabbed_2_2" name="__tabbed_2" type="radio" /><input id="__tabbed_2_3" name="__tabbed_2" type="radio" /><input id="__tabbed_2_4" name="__tabbed_2" type="radio" /><input id="__tabbed_2_5" name="__tabbed_2" type="radio" /><input id="__tabbed_2_6" name="__tabbed_2" type="radio" /><input id="__tabbed_2_7" name="__tabbed_2" type="radio" /><input id="__tabbed_2_8" name="__tabbed_2" type="radio" /><input id="__tabbed_2_9" name="__tabbed_2" type="radio" /><input id="__tabbed_2_10" name="__tabbed_2" type="radio" /><input id="__tabbed_2_11" name="__tabbed_2" type="radio" /><input id="__tabbed_2_12" name="__tabbed_2" type="radio" /><input id="__tabbed_2_13" name="__tabbed_2" type="radio" /><input id="__tabbed_2_14" name="__tabbed_2" type="radio" /><div class="tabbed-labels"><label for="__tabbed_2_1">Python</label><label for="__tabbed_2_2">C++</label><label for="__tabbed_2_3">Java</label><label for="__tabbed_2_4">C#</label><label for="__tabbed_2_5">Go</label><label for="__tabbed_2_6">Swift</label><label for="__tabbed_2_7">JS</label><label for="__tabbed_2_8">TS</label><label for="__tabbed_2_9">Dart</label><label for="__tabbed_2_10">Rust</label><label for="__tabbed_2_11">C</label><label for="__tabbed_2_12">Kotlin</label><label for="__tabbed_2_13">Ruby</label><label for="__tabbed_2_14">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.py</span><pre><span></span><code><a id="__codelineno-0-1" name="__codelineno-0-1" href="#__codelineno-0-1"></a><span class="k">def</span> <span class="nf">search</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">num</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">TreeNode</span> <span class="o">|</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-0-2" name="__codelineno-0-2" href="#__codelineno-0-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;查詢節點&quot;&quot;&quot;</span>
<a id="__codelineno-0-3" name="__codelineno-0-3" href="#__codelineno-0-3"></a> <span class="n">cur</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_root</span>
<a id="__codelineno-0-4" name="__codelineno-0-4" href="#__codelineno-0-4"></a> <span class="c1"># 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-0-5" name="__codelineno-0-5" href="#__codelineno-0-5"></a> <span class="k">while</span> <span class="n">cur</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-0-6" name="__codelineno-0-6" href="#__codelineno-0-6"></a> <span class="c1"># 目標節點在 cur 的右子樹中</span>
<a id="__codelineno-0-7" name="__codelineno-0-7" href="#__codelineno-0-7"></a> <span class="k">if</span> <span class="n">cur</span><span class="o">.</span><span class="n">val</span> <span class="o">&lt;</span> <span class="n">num</span><span class="p">:</span>
<a id="__codelineno-0-8" name="__codelineno-0-8" href="#__codelineno-0-8"></a> <span class="n">cur</span> <span class="o">=</span> <span class="n">cur</span><span class="o">.</span><span class="n">right</span>
<a id="__codelineno-0-9" name="__codelineno-0-9" href="#__codelineno-0-9"></a> <span class="c1"># 目標節點在 cur 的左子樹中</span>
<a id="__codelineno-0-10" name="__codelineno-0-10" href="#__codelineno-0-10"></a> <span class="k">elif</span> <span class="n">cur</span><span class="o">.</span><span class="n">val</span> <span class="o">&gt;</span> <span class="n">num</span><span class="p">:</span>
<a id="__codelineno-0-11" name="__codelineno-0-11" href="#__codelineno-0-11"></a> <span class="n">cur</span> <span class="o">=</span> <span class="n">cur</span><span class="o">.</span><span class="n">left</span>
<a id="__codelineno-0-12" name="__codelineno-0-12" href="#__codelineno-0-12"></a> <span class="c1"># 找到目標節點,跳出迴圈</span>
<a id="__codelineno-0-13" name="__codelineno-0-13" href="#__codelineno-0-13"></a> <span class="k">else</span><span class="p">:</span>
<a id="__codelineno-0-14" name="__codelineno-0-14" href="#__codelineno-0-14"></a> <span class="k">break</span>
<a id="__codelineno-0-15" name="__codelineno-0-15" href="#__codelineno-0-15"></a> <span class="k">return</span> <span class="n">cur</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.cpp</span><pre><span></span><code><a id="__codelineno-1-1" name="__codelineno-1-1" href="#__codelineno-1-1"></a><span class="cm">/* 查詢節點 */</span>
<a id="__codelineno-1-2" name="__codelineno-1-2" href="#__codelineno-1-2"></a><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="nf">search</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-3" name="__codelineno-1-3" href="#__codelineno-1-3"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">root</span><span class="p">;</span>
<a id="__codelineno-1-4" name="__codelineno-1-4" href="#__codelineno-1-4"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-1-5" name="__codelineno-1-5" href="#__codelineno-1-5"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="k">nullptr</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-6" name="__codelineno-1-6" href="#__codelineno-1-6"></a><span class="w"> </span><span class="c1">// 目標節點在 cur 的右子樹中</span>
<a id="__codelineno-1-7" name="__codelineno-1-7" href="#__codelineno-1-7"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-1-8" name="__codelineno-1-8" href="#__codelineno-1-8"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-1-9" name="__codelineno-1-9" href="#__codelineno-1-9"></a><span class="w"> </span><span class="c1">// 目標節點在 cur 的左子樹中</span>
<a id="__codelineno-1-10" name="__codelineno-1-10" href="#__codelineno-1-10"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-1-11" name="__codelineno-1-11" href="#__codelineno-1-11"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-1-12" name="__codelineno-1-12" href="#__codelineno-1-12"></a><span class="w"> </span><span class="c1">// 找到目標節點,跳出迴圈</span>
<a id="__codelineno-1-13" name="__codelineno-1-13" href="#__codelineno-1-13"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-1-14" name="__codelineno-1-14" href="#__codelineno-1-14"></a><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-1-15" name="__codelineno-1-15" href="#__codelineno-1-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-16" name="__codelineno-1-16" href="#__codelineno-1-16"></a><span class="w"> </span><span class="c1">// 返回目標節點</span>
<a id="__codelineno-1-17" name="__codelineno-1-17" href="#__codelineno-1-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-1-18" name="__codelineno-1-18" href="#__codelineno-1-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.java</span><pre><span></span><code><a id="__codelineno-2-1" name="__codelineno-2-1" href="#__codelineno-2-1"></a><span class="cm">/* 查詢節點 */</span>
<a id="__codelineno-2-2" name="__codelineno-2-2" href="#__codelineno-2-2"></a><span class="n">TreeNode</span><span class="w"> </span><span class="nf">search</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-3" name="__codelineno-2-3" href="#__codelineno-2-3"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">root</span><span class="p">;</span>
<a id="__codelineno-2-4" name="__codelineno-2-4" href="#__codelineno-2-4"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-2-5" name="__codelineno-2-5" href="#__codelineno-2-5"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-6" name="__codelineno-2-6" href="#__codelineno-2-6"></a><span class="w"> </span><span class="c1">// 目標節點在 cur 的右子樹中</span>
<a id="__codelineno-2-7" name="__codelineno-2-7" href="#__codelineno-2-7"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="na">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-2-8" name="__codelineno-2-8" href="#__codelineno-2-8"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">right</span><span class="p">;</span>
<a id="__codelineno-2-9" name="__codelineno-2-9" href="#__codelineno-2-9"></a><span class="w"> </span><span class="c1">// 目標節點在 cur 的左子樹中</span>
<a id="__codelineno-2-10" name="__codelineno-2-10" href="#__codelineno-2-10"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="na">val</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-2-11" name="__codelineno-2-11" href="#__codelineno-2-11"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">left</span><span class="p">;</span>
<a id="__codelineno-2-12" name="__codelineno-2-12" href="#__codelineno-2-12"></a><span class="w"> </span><span class="c1">// 找到目標節點,跳出迴圈</span>
<a id="__codelineno-2-13" name="__codelineno-2-13" href="#__codelineno-2-13"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-2-14" name="__codelineno-2-14" href="#__codelineno-2-14"></a><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-2-15" name="__codelineno-2-15" href="#__codelineno-2-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-2-16" name="__codelineno-2-16" href="#__codelineno-2-16"></a><span class="w"> </span><span class="c1">// 返回目標節點</span>
<a id="__codelineno-2-17" name="__codelineno-2-17" href="#__codelineno-2-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-2-18" name="__codelineno-2-18" href="#__codelineno-2-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.cs</span><pre><span></span><code><a id="__codelineno-3-1" name="__codelineno-3-1" href="#__codelineno-3-1"></a><span class="cm">/* 查詢節點 */</span>
<a id="__codelineno-3-2" name="__codelineno-3-2" href="#__codelineno-3-2"></a><span class="n">TreeNode</span><span class="o">?</span><span class="w"> </span><span class="n">Search</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-3" name="__codelineno-3-3" href="#__codelineno-3-3"></a><span class="w"> </span><span class="n">TreeNode</span><span class="o">?</span><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">root</span><span class="p">;</span>
<a id="__codelineno-3-4" name="__codelineno-3-4" href="#__codelineno-3-4"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-3-5" name="__codelineno-3-5" href="#__codelineno-3-5"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="k">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-6" name="__codelineno-3-6" href="#__codelineno-3-6"></a><span class="w"> </span><span class="c1">// 目標節點在 cur 的右子樹中</span>
<a id="__codelineno-3-7" name="__codelineno-3-7" href="#__codelineno-3-7"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span>
<a id="__codelineno-3-8" name="__codelineno-3-8" href="#__codelineno-3-8"></a><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-3-9" name="__codelineno-3-9" href="#__codelineno-3-9"></a><span class="w"> </span><span class="c1">// 目標節點在 cur 的左子樹中</span>
<a id="__codelineno-3-10" name="__codelineno-3-10" href="#__codelineno-3-10"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="nf">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-3-11" name="__codelineno-3-11" href="#__codelineno-3-11"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-3-12" name="__codelineno-3-12" href="#__codelineno-3-12"></a><span class="w"> </span><span class="c1">// 找到目標節點,跳出迴圈</span>
<a id="__codelineno-3-13" name="__codelineno-3-13" href="#__codelineno-3-13"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-3-14" name="__codelineno-3-14" href="#__codelineno-3-14"></a><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-3-15" name="__codelineno-3-15" href="#__codelineno-3-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-16" name="__codelineno-3-16" href="#__codelineno-3-16"></a><span class="w"> </span><span class="c1">// 返回目標節點</span>
<a id="__codelineno-3-17" name="__codelineno-3-17" href="#__codelineno-3-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-3-18" name="__codelineno-3-18" href="#__codelineno-3-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.go</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="cm">/* 查詢節點 */</span>
<a id="__codelineno-4-2" name="__codelineno-4-2" href="#__codelineno-4-2"></a><span class="kd">func</span><span class="w"> </span><span class="p">(</span><span class="nx">bst</span><span class="w"> </span><span class="o">*</span><span class="nx">binarySearchTree</span><span class="p">)</span><span class="w"> </span><span class="nx">search</span><span class="p">(</span><span class="nx">num</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="o">*</span><span class="nx">TreeNode</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-3" name="__codelineno-4-3" href="#__codelineno-4-3"></a><span class="w"> </span><span class="nx">node</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">bst</span><span class="p">.</span><span class="nx">root</span>
<a id="__codelineno-4-4" name="__codelineno-4-4" href="#__codelineno-4-4"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-4-5" name="__codelineno-4-5" href="#__codelineno-4-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">node</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">nil</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-6" name="__codelineno-4-6" href="#__codelineno-4-6"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">node</span><span class="p">.</span><span class="nx">Val</span><span class="p">.(</span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">num</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-7" name="__codelineno-4-7" href="#__codelineno-4-7"></a><span class="w"> </span><span class="c1">// 目標節點在 cur 的右子樹中</span>
<a id="__codelineno-4-8" name="__codelineno-4-8" href="#__codelineno-4-8"></a><span class="w"> </span><span class="nx">node</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">node</span><span class="p">.</span><span class="nx">Right</span>
<a id="__codelineno-4-9" name="__codelineno-4-9" href="#__codelineno-4-9"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">node</span><span class="p">.</span><span class="nx">Val</span><span class="p">.(</span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">&gt;</span><span class="w"> </span><span class="nx">num</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-10" name="__codelineno-4-10" href="#__codelineno-4-10"></a><span class="w"> </span><span class="c1">// 目標節點在 cur 的左子樹中</span>
<a id="__codelineno-4-11" name="__codelineno-4-11" href="#__codelineno-4-11"></a><span class="w"> </span><span class="nx">node</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">node</span><span class="p">.</span><span class="nx">Left</span>
<a id="__codelineno-4-12" name="__codelineno-4-12" href="#__codelineno-4-12"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-13" name="__codelineno-4-13" href="#__codelineno-4-13"></a><span class="w"> </span><span class="c1">// 找到目標節點,跳出迴圈</span>
<a id="__codelineno-4-14" name="__codelineno-4-14" href="#__codelineno-4-14"></a><span class="w"> </span><span class="k">break</span>
<a id="__codelineno-4-15" name="__codelineno-4-15" href="#__codelineno-4-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-16" name="__codelineno-4-16" href="#__codelineno-4-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-17" name="__codelineno-4-17" href="#__codelineno-4-17"></a><span class="w"> </span><span class="c1">// 返回目標節點</span>
<a id="__codelineno-4-18" name="__codelineno-4-18" href="#__codelineno-4-18"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">node</span>
<a id="__codelineno-4-19" name="__codelineno-4-19" href="#__codelineno-4-19"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.swift</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="cm">/* 查詢節點 */</span>
<a id="__codelineno-5-2" name="__codelineno-5-2" href="#__codelineno-5-2"></a><span class="kd">func</span> <span class="nf">search</span><span class="p">(</span><span class="n">num</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="n">TreeNode</span><span class="p">?</span> <span class="p">{</span>
<a id="__codelineno-5-3" name="__codelineno-5-3" href="#__codelineno-5-3"></a> <span class="kd">var</span> <span class="nv">cur</span> <span class="p">=</span> <span class="n">root</span>
<a id="__codelineno-5-4" name="__codelineno-5-4" href="#__codelineno-5-4"></a> <span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-5-5" name="__codelineno-5-5" href="#__codelineno-5-5"></a> <span class="k">while</span> <span class="n">cur</span> <span class="o">!=</span> <span class="kc">nil</span> <span class="p">{</span>
<a id="__codelineno-5-6" name="__codelineno-5-6" href="#__codelineno-5-6"></a> <span class="c1">// 目標節點在 cur 的右子樹中</span>
<a id="__codelineno-5-7" name="__codelineno-5-7" href="#__codelineno-5-7"></a> <span class="k">if</span> <span class="n">cur</span><span class="p">!.</span><span class="n">val</span> <span class="o">&lt;</span> <span class="n">num</span> <span class="p">{</span>
<a id="__codelineno-5-8" name="__codelineno-5-8" href="#__codelineno-5-8"></a> <span class="n">cur</span> <span class="p">=</span> <span class="n">cur</span><span class="p">?.</span><span class="kr">right</span>
<a id="__codelineno-5-9" name="__codelineno-5-9" href="#__codelineno-5-9"></a> <span class="p">}</span>
<a id="__codelineno-5-10" name="__codelineno-5-10" href="#__codelineno-5-10"></a> <span class="c1">// 目標節點在 cur 的左子樹中</span>
<a id="__codelineno-5-11" name="__codelineno-5-11" href="#__codelineno-5-11"></a> <span class="k">else</span> <span class="k">if</span> <span class="n">cur</span><span class="p">!.</span><span class="n">val</span> <span class="o">&gt;</span> <span class="n">num</span> <span class="p">{</span>
<a id="__codelineno-5-12" name="__codelineno-5-12" href="#__codelineno-5-12"></a> <span class="n">cur</span> <span class="p">=</span> <span class="n">cur</span><span class="p">?.</span><span class="kr">left</span>
<a id="__codelineno-5-13" name="__codelineno-5-13" href="#__codelineno-5-13"></a> <span class="p">}</span>
<a id="__codelineno-5-14" name="__codelineno-5-14" href="#__codelineno-5-14"></a> <span class="c1">// 找到目標節點,跳出迴圈</span>
<a id="__codelineno-5-15" name="__codelineno-5-15" href="#__codelineno-5-15"></a> <span class="k">else</span> <span class="p">{</span>
<a id="__codelineno-5-16" name="__codelineno-5-16" href="#__codelineno-5-16"></a> <span class="k">break</span>
<a id="__codelineno-5-17" name="__codelineno-5-17" href="#__codelineno-5-17"></a> <span class="p">}</span>
<a id="__codelineno-5-18" name="__codelineno-5-18" href="#__codelineno-5-18"></a> <span class="p">}</span>
<a id="__codelineno-5-19" name="__codelineno-5-19" href="#__codelineno-5-19"></a> <span class="c1">// 返回目標節點</span>
<a id="__codelineno-5-20" name="__codelineno-5-20" href="#__codelineno-5-20"></a> <span class="k">return</span> <span class="n">cur</span>
<a id="__codelineno-5-21" name="__codelineno-5-21" href="#__codelineno-5-21"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.js</span><pre><span></span><code><a id="__codelineno-6-1" name="__codelineno-6-1" href="#__codelineno-6-1"></a><span class="cm">/* 查詢節點 */</span>
<a id="__codelineno-6-2" name="__codelineno-6-2" href="#__codelineno-6-2"></a><span class="nx">search</span><span class="p">(</span><span class="nx">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-3" name="__codelineno-6-3" href="#__codelineno-6-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">this</span><span class="p">.</span><span class="nx">root</span><span class="p">;</span>
<a id="__codelineno-6-4" name="__codelineno-6-4" href="#__codelineno-6-4"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-6-5" name="__codelineno-6-5" href="#__codelineno-6-5"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="w"> </span><span class="o">!==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-6" name="__codelineno-6-6" href="#__codelineno-6-6"></a><span class="w"> </span><span class="c1">// 目標節點在 cur 的右子樹中</span>
<a id="__codelineno-6-7" name="__codelineno-6-7" href="#__codelineno-6-7"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="p">.</span><span class="nx">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">num</span><span class="p">)</span><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">right</span><span class="p">;</span>
<a id="__codelineno-6-8" name="__codelineno-6-8" href="#__codelineno-6-8"></a><span class="w"> </span><span class="c1">// 目標節點在 cur 的左子樹中</span>
<a id="__codelineno-6-9" name="__codelineno-6-9" href="#__codelineno-6-9"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="p">.</span><span class="nx">val</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="nx">num</span><span class="p">)</span><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">left</span><span class="p">;</span>
<a id="__codelineno-6-10" name="__codelineno-6-10" href="#__codelineno-6-10"></a><span class="w"> </span><span class="c1">// 找到目標節點,跳出迴圈</span>
<a id="__codelineno-6-11" name="__codelineno-6-11" href="#__codelineno-6-11"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-6-12" name="__codelineno-6-12" href="#__codelineno-6-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-6-13" name="__codelineno-6-13" href="#__codelineno-6-13"></a><span class="w"> </span><span class="c1">// 返回目標節點</span>
<a id="__codelineno-6-14" name="__codelineno-6-14" href="#__codelineno-6-14"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">cur</span><span class="p">;</span>
<a id="__codelineno-6-15" name="__codelineno-6-15" href="#__codelineno-6-15"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.ts</span><pre><span></span><code><a id="__codelineno-7-1" name="__codelineno-7-1" href="#__codelineno-7-1"></a><span class="cm">/* 查詢節點 */</span>
<a id="__codelineno-7-2" name="__codelineno-7-2" href="#__codelineno-7-2"></a><span class="nx">search</span><span class="p">(</span><span class="nx">num</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="nx">TreeNode</span><span class="w"> </span><span class="o">|</span><span class="w"> </span><span class="kc">null</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-3" name="__codelineno-7-3" href="#__codelineno-7-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">this</span><span class="p">.</span><span class="nx">root</span><span class="p">;</span>
<a id="__codelineno-7-4" name="__codelineno-7-4" href="#__codelineno-7-4"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-7-5" name="__codelineno-7-5" href="#__codelineno-7-5"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="w"> </span><span class="o">!==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-6" name="__codelineno-7-6" href="#__codelineno-7-6"></a><span class="w"> </span><span class="c1">// 目標節點在 cur 的右子樹中</span>
<a id="__codelineno-7-7" name="__codelineno-7-7" href="#__codelineno-7-7"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="p">.</span><span class="nx">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">num</span><span class="p">)</span><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">right</span><span class="p">;</span>
<a id="__codelineno-7-8" name="__codelineno-7-8" href="#__codelineno-7-8"></a><span class="w"> </span><span class="c1">// 目標節點在 cur 的左子樹中</span>
<a id="__codelineno-7-9" name="__codelineno-7-9" href="#__codelineno-7-9"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="p">.</span><span class="nx">val</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="nx">num</span><span class="p">)</span><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">left</span><span class="p">;</span>
<a id="__codelineno-7-10" name="__codelineno-7-10" href="#__codelineno-7-10"></a><span class="w"> </span><span class="c1">// 找到目標節點,跳出迴圈</span>
<a id="__codelineno-7-11" name="__codelineno-7-11" href="#__codelineno-7-11"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-7-12" name="__codelineno-7-12" href="#__codelineno-7-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-13" name="__codelineno-7-13" href="#__codelineno-7-13"></a><span class="w"> </span><span class="c1">// 返回目標節點</span>
<a id="__codelineno-7-14" name="__codelineno-7-14" href="#__codelineno-7-14"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">cur</span><span class="p">;</span>
<a id="__codelineno-7-15" name="__codelineno-7-15" href="#__codelineno-7-15"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.dart</span><pre><span></span><code><a id="__codelineno-8-1" name="__codelineno-8-1" href="#__codelineno-8-1"></a><span class="cm">/* 查詢節點 */</span>
<a id="__codelineno-8-2" name="__codelineno-8-2" href="#__codelineno-8-2"></a><span class="n">TreeNode</span><span class="o">?</span><span class="w"> </span><span class="n">search</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">_num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-8-3" name="__codelineno-8-3" href="#__codelineno-8-3"></a><span class="w"> </span><span class="n">TreeNode</span><span class="o">?</span><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">_root</span><span class="p">;</span>
<a id="__codelineno-8-4" name="__codelineno-8-4" href="#__codelineno-8-4"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-8-5" name="__codelineno-8-5" href="#__codelineno-8-5"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-8-6" name="__codelineno-8-6" href="#__codelineno-8-6"></a><span class="w"> </span><span class="c1">// 目標節點在 cur 的右子樹中</span>
<a id="__codelineno-8-7" name="__codelineno-8-7" href="#__codelineno-8-7"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">_num</span><span class="p">)</span>
<a id="__codelineno-8-8" name="__codelineno-8-8" href="#__codelineno-8-8"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-8-9" name="__codelineno-8-9" href="#__codelineno-8-9"></a><span class="w"> </span><span class="c1">// 目標節點在 cur 的左子樹中</span>
<a id="__codelineno-8-10" name="__codelineno-8-10" href="#__codelineno-8-10"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">_num</span><span class="p">)</span>
<a id="__codelineno-8-11" name="__codelineno-8-11" href="#__codelineno-8-11"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-8-12" name="__codelineno-8-12" href="#__codelineno-8-12"></a><span class="w"> </span><span class="c1">// 找到目標節點,跳出迴圈</span>
<a id="__codelineno-8-13" name="__codelineno-8-13" href="#__codelineno-8-13"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-8-14" name="__codelineno-8-14" href="#__codelineno-8-14"></a><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-8-15" name="__codelineno-8-15" href="#__codelineno-8-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-8-16" name="__codelineno-8-16" href="#__codelineno-8-16"></a><span class="w"> </span><span class="c1">// 返回目標節點</span>
<a id="__codelineno-8-17" name="__codelineno-8-17" href="#__codelineno-8-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-8-18" name="__codelineno-8-18" href="#__codelineno-8-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.rs</span><pre><span></span><code><a id="__codelineno-9-1" name="__codelineno-9-1" href="#__codelineno-9-1"></a><span class="cm">/* 查詢節點 */</span>
<a id="__codelineno-9-2" name="__codelineno-9-2" href="#__codelineno-9-2"></a><span class="k">pub</span><span class="w"> </span><span class="k">fn</span> <span class="nf">search</span><span class="p">(</span><span class="o">&amp;</span><span class="bp">self</span><span class="p">,</span><span class="w"> </span><span class="n">num</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span>-&gt; <span class="nc">OptionTreeNodeRc</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-3" name="__codelineno-9-3" href="#__codelineno-9-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="bp">self</span><span class="p">.</span><span class="n">root</span><span class="p">.</span><span class="n">clone</span><span class="p">();</span>
<a id="__codelineno-9-4" name="__codelineno-9-4" href="#__codelineno-9-4"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-9-5" name="__codelineno-9-5" href="#__codelineno-9-5"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nb">Some</span><span class="p">(</span><span class="n">node</span><span class="p">)</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">clone</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-6" name="__codelineno-9-6" href="#__codelineno-9-6"></a><span class="w"> </span><span class="k">match</span><span class="w"> </span><span class="n">num</span><span class="p">.</span><span class="n">cmp</span><span class="p">(</span><span class="o">&amp;</span><span class="n">node</span><span class="p">.</span><span class="n">borrow</span><span class="p">().</span><span class="n">val</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-7" name="__codelineno-9-7" href="#__codelineno-9-7"></a><span class="w"> </span><span class="c1">// 目標節點在 cur 的右子樹中</span>
<a id="__codelineno-9-8" name="__codelineno-9-8" href="#__codelineno-9-8"></a><span class="w"> </span><span class="n">Ordering</span>::<span class="n">Greater</span><span class="w"> </span><span class="o">=&gt;</span><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">.</span><span class="n">borrow</span><span class="p">().</span><span class="n">right</span><span class="p">.</span><span class="n">clone</span><span class="p">(),</span>
<a id="__codelineno-9-9" name="__codelineno-9-9" href="#__codelineno-9-9"></a><span class="w"> </span><span class="c1">// 目標節點在 cur 的左子樹中</span>
<a id="__codelineno-9-10" name="__codelineno-9-10" href="#__codelineno-9-10"></a><span class="w"> </span><span class="n">Ordering</span>::<span class="n">Less</span><span class="w"> </span><span class="o">=&gt;</span><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">.</span><span class="n">borrow</span><span class="p">().</span><span class="n">left</span><span class="p">.</span><span class="n">clone</span><span class="p">(),</span>
<a id="__codelineno-9-11" name="__codelineno-9-11" href="#__codelineno-9-11"></a><span class="w"> </span><span class="c1">// 找到目標節點,跳出迴圈</span>
<a id="__codelineno-9-12" name="__codelineno-9-12" href="#__codelineno-9-12"></a><span class="w"> </span><span class="n">Ordering</span>::<span class="n">Equal</span><span class="w"> </span><span class="o">=&gt;</span><span class="w"> </span><span class="k">break</span><span class="p">,</span>
<a id="__codelineno-9-13" name="__codelineno-9-13" href="#__codelineno-9-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-9-14" name="__codelineno-9-14" href="#__codelineno-9-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-9-15" name="__codelineno-9-15" href="#__codelineno-9-15"></a>
<a id="__codelineno-9-16" name="__codelineno-9-16" href="#__codelineno-9-16"></a><span class="w"> </span><span class="c1">// 返回目標節點</span>
<a id="__codelineno-9-17" name="__codelineno-9-17" href="#__codelineno-9-17"></a><span class="w"> </span><span class="n">cur</span>
<a id="__codelineno-9-18" name="__codelineno-9-18" href="#__codelineno-9-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.c</span><pre><span></span><code><a id="__codelineno-10-1" name="__codelineno-10-1" href="#__codelineno-10-1"></a><span class="cm">/* 查詢節點 */</span>
<a id="__codelineno-10-2" name="__codelineno-10-2" href="#__codelineno-10-2"></a><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="nf">search</span><span class="p">(</span><span class="n">BinarySearchTree</span><span class="w"> </span><span class="o">*</span><span class="n">bst</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-3" name="__codelineno-10-3" href="#__codelineno-10-3"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">bst</span><span class="o">-&gt;</span><span class="n">root</span><span class="p">;</span>
<a id="__codelineno-10-4" name="__codelineno-10-4" href="#__codelineno-10-4"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-10-5" name="__codelineno-10-5" href="#__codelineno-10-5"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="nb">NULL</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-6" name="__codelineno-10-6" href="#__codelineno-10-6"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-7" name="__codelineno-10-7" href="#__codelineno-10-7"></a><span class="w"> </span><span class="c1">// 目標節點在 cur 的右子樹中</span>
<a id="__codelineno-10-8" name="__codelineno-10-8" href="#__codelineno-10-8"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-10-9" name="__codelineno-10-9" href="#__codelineno-10-9"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-10" name="__codelineno-10-10" href="#__codelineno-10-10"></a><span class="w"> </span><span class="c1">// 目標節點在 cur 的左子樹中</span>
<a id="__codelineno-10-11" name="__codelineno-10-11" href="#__codelineno-10-11"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-10-12" name="__codelineno-10-12" href="#__codelineno-10-12"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-13" name="__codelineno-10-13" href="#__codelineno-10-13"></a><span class="w"> </span><span class="c1">// 找到目標節點,跳出迴圈</span>
<a id="__codelineno-10-14" name="__codelineno-10-14" href="#__codelineno-10-14"></a><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-10-15" name="__codelineno-10-15" href="#__codelineno-10-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-16" name="__codelineno-10-16" href="#__codelineno-10-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-17" name="__codelineno-10-17" href="#__codelineno-10-17"></a><span class="w"> </span><span class="c1">// 返回目標節點</span>
<a id="__codelineno-10-18" name="__codelineno-10-18" href="#__codelineno-10-18"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-10-19" name="__codelineno-10-19" href="#__codelineno-10-19"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.kt</span><pre><span></span><code><a id="__codelineno-11-1" name="__codelineno-11-1" href="#__codelineno-11-1"></a><span class="cm">/* 查詢節點 */</span>
<a id="__codelineno-11-2" name="__codelineno-11-2" href="#__codelineno-11-2"></a><span class="kd">fun</span><span class="w"> </span><span class="nf">search</span><span class="p">(</span><span class="n">num</span><span class="p">:</span><span class="w"> </span><span class="kt">Int</span><span class="p">):</span><span class="w"> </span><span class="n">TreeNode? </span><span class="p">{</span>
<a id="__codelineno-11-3" name="__codelineno-11-3" href="#__codelineno-11-3"></a><span class="w"> </span><span class="kd">var</span><span class="w"> </span><span class="nv">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">root</span>
<a id="__codelineno-11-4" name="__codelineno-11-4" href="#__codelineno-11-4"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-11-5" name="__codelineno-11-5" href="#__codelineno-11-5"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-6" name="__codelineno-11-6" href="#__codelineno-11-6"></a><span class="w"> </span><span class="c1">// 目標節點在 cur 的右子樹中</span>
<a id="__codelineno-11-7" name="__codelineno-11-7" href="#__codelineno-11-7"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="na">_val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-11-8" name="__codelineno-11-8" href="#__codelineno-11-8"></a><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">right</span>
<a id="__codelineno-11-9" name="__codelineno-11-9" href="#__codelineno-11-9"></a><span class="w"> </span><span class="c1">// 目標節點在 cur 的左子樹中</span>
<a id="__codelineno-11-10" name="__codelineno-11-10" href="#__codelineno-11-10"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="na">_val</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-11-11" name="__codelineno-11-11" href="#__codelineno-11-11"></a><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">left</span>
<a id="__codelineno-11-12" name="__codelineno-11-12" href="#__codelineno-11-12"></a><span class="w"> </span><span class="c1">// 找到目標節點,跳出迴圈</span>
<a id="__codelineno-11-13" name="__codelineno-11-13" href="#__codelineno-11-13"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-11-14" name="__codelineno-11-14" href="#__codelineno-11-14"></a><span class="w"> </span><span class="k">break</span>
<a id="__codelineno-11-15" name="__codelineno-11-15" href="#__codelineno-11-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-16" name="__codelineno-11-16" href="#__codelineno-11-16"></a><span class="w"> </span><span class="c1">// 返回目標節點</span>
<a id="__codelineno-11-17" name="__codelineno-11-17" href="#__codelineno-11-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">cur</span>
<a id="__codelineno-11-18" name="__codelineno-11-18" href="#__codelineno-11-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.rb</span><pre><span></span><code><a id="__codelineno-12-1" name="__codelineno-12-1" href="#__codelineno-12-1"></a><span class="c1">### 查詢節點 ###</span>
<a id="__codelineno-12-2" name="__codelineno-12-2" href="#__codelineno-12-2"></a><span class="k">def</span><span class="w"> </span><span class="nf">search</span><span class="p">(</span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-12-3" name="__codelineno-12-3" href="#__codelineno-12-3"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="vi">@root</span>
<a id="__codelineno-12-4" name="__codelineno-12-4" href="#__codelineno-12-4"></a>
<a id="__codelineno-12-5" name="__codelineno-12-5" href="#__codelineno-12-5"></a><span class="w"> </span><span class="c1"># 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-12-6" name="__codelineno-12-6" href="#__codelineno-12-6"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="o">!</span><span class="n">cur</span><span class="o">.</span><span class="n">nil?</span>
<a id="__codelineno-12-7" name="__codelineno-12-7" href="#__codelineno-12-7"></a><span class="w"> </span><span class="c1"># 目標節點在 cur 的右子樹中</span>
<a id="__codelineno-12-8" name="__codelineno-12-8" href="#__codelineno-12-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">cur</span><span class="o">.</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span>
<a id="__codelineno-12-9" name="__codelineno-12-9" href="#__codelineno-12-9"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">.</span><span class="n">right</span>
<a id="__codelineno-12-10" name="__codelineno-12-10" href="#__codelineno-12-10"></a><span class="w"> </span><span class="c1"># 目標節點在 cur 的左子樹中</span>
<a id="__codelineno-12-11" name="__codelineno-12-11" href="#__codelineno-12-11"></a><span class="w"> </span><span class="k">elsif</span><span class="w"> </span><span class="n">cur</span><span class="o">.</span><span class="n">val</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">num</span>
<a id="__codelineno-12-12" name="__codelineno-12-12" href="#__codelineno-12-12"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">.</span><span class="n">left</span>
<a id="__codelineno-12-13" name="__codelineno-12-13" href="#__codelineno-12-13"></a><span class="w"> </span><span class="c1"># 找到目標節點,跳出迴圈</span>
<a id="__codelineno-12-14" name="__codelineno-12-14" href="#__codelineno-12-14"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-12-15" name="__codelineno-12-15" href="#__codelineno-12-15"></a><span class="w"> </span><span class="k">break</span>
<a id="__codelineno-12-16" name="__codelineno-12-16" href="#__codelineno-12-16"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-12-17" name="__codelineno-12-17" href="#__codelineno-12-17"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-12-18" name="__codelineno-12-18" href="#__codelineno-12-18"></a>
<a id="__codelineno-12-19" name="__codelineno-12-19" href="#__codelineno-12-19"></a><span class="w"> </span><span class="n">cur</span>
<a id="__codelineno-12-20" name="__codelineno-12-20" href="#__codelineno-12-20"></a><span class="k">end</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.zig</span><pre><span></span><code><a id="__codelineno-13-1" name="__codelineno-13-1" href="#__codelineno-13-1"></a><span class="c1">// 查詢節點</span>
<a id="__codelineno-13-2" name="__codelineno-13-2" href="#__codelineno-13-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">search</span><span class="p">(</span><span class="n">self</span><span class="o">:</span><span class="w"> </span><span class="o">*</span><span class="n">Self</span><span class="p">,</span><span class="w"> </span><span class="n">num</span><span class="o">:</span><span class="w"> </span><span class="n">T</span><span class="p">)</span><span class="w"> </span><span class="o">?*</span><span class="n">inc</span><span class="p">.</span><span class="n">TreeNode</span><span class="p">(</span><span class="n">T</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-13-3" name="__codelineno-13-3" href="#__codelineno-13-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">self</span><span class="p">.</span><span class="n">root</span><span class="p">;</span>
<a id="__codelineno-13-4" name="__codelineno-13-4" href="#__codelineno-13-4"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-13-5" name="__codelineno-13-5" href="#__codelineno-13-5"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-13-6" name="__codelineno-13-6" href="#__codelineno-13-6"></a><span class="w"> </span><span class="c1">// 目標節點在 cur 的右子樹中</span>
<a id="__codelineno-13-7" name="__codelineno-13-7" href="#__codelineno-13-7"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-13-8" name="__codelineno-13-8" href="#__codelineno-13-8"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-13-9" name="__codelineno-13-9" href="#__codelineno-13-9"></a><span class="w"> </span><span class="c1">// 目標節點在 cur 的左子樹中</span>
<a id="__codelineno-13-10" name="__codelineno-13-10" href="#__codelineno-13-10"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-13-11" name="__codelineno-13-11" href="#__codelineno-13-11"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-13-12" name="__codelineno-13-12" href="#__codelineno-13-12"></a><span class="w"> </span><span class="c1">// 找到目標節點,跳出迴圈</span>
<a id="__codelineno-13-13" name="__codelineno-13-13" href="#__codelineno-13-13"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-13-14" name="__codelineno-13-14" href="#__codelineno-13-14"></a><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-13-15" name="__codelineno-13-15" href="#__codelineno-13-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-13-16" name="__codelineno-13-16" href="#__codelineno-13-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-13-17" name="__codelineno-13-17" href="#__codelineno-13-17"></a><span class="w"> </span><span class="c1">// 返回目標節點</span>
<a id="__codelineno-13-18" name="__codelineno-13-18" href="#__codelineno-13-18"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-13-19" name="__codelineno-13-19" href="#__codelineno-13-19"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<details class="pythontutor">
<summary>視覺化執行</summary>
<p><div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=class%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%A8%B9%E7%AF%80%E9%BB%9E%E9%A1%9E%E5%88%A5%22%22%22%0A%20%20%20%20def%20__init__%28self%2C%20val%29%3A%0A%20%20%20%20%20%20%20%20self.val%20%3D%20val%0A%20%20%20%20%20%20%20%20self.left%20%3D%20None%0A%20%20%20%20%20%20%20%20self.right%20%3D%20None%0A%0A%0Aclass%20BinarySearchTree%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%22%22%22%0A%0A%20%20%20%20def%20__init__%28self%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E5%BB%BA%E6%A7%8B%E5%AD%90%22%22%22%0A%20%20%20%20%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E7%A9%BA%E6%A8%B9%0A%20%20%20%20%20%20%20%20self._root%20%3D%20None%0A%0A%20%20%20%20def%20search%28self%2C%20num%3A%20int%29%20-%3E%20TreeNode%20%7C%20None%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%9F%A5%E8%A9%A2%E7%AF%80%E9%BB%9E%22%22%22%0A%20%20%20%20%20%20%20%20cur%20%3D%20self._root%0A%20%20%20%20%20%20%20%20%23%20%E8%BF%B4%E5%9C%88%E6%9F%A5%E8%A9%A2%EF%BC%8C%E8%B6%8A%E9%81%8E%E8%91%89%E7%AF%80%E9%BB%9E%E5%BE%8C%E8%B7%B3%E5%87%BA%0A%20%20%20%20%20%20%20%20while%20cur%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E7%9B%AE%E6%A8%99%E7%AF%80%E9%BB%9E%E5%9C%A8%20cur%20%E7%9A%84%E5%8F%B3%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E7%9B%AE%E6%A8%99%E7%AF%80%E9%BB%9E%E5%9C%A8%20cur%20%E7%9A%84%E5%B7%A6%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20elif%20cur.val%20%3E%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.left%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%89%BE%E5%88%B0%E7%9B%AE%E6%A8%99%E7%AF%80%E9%BB%9E%EF%BC%8C%E8%B7%B3%E5%87%BA%E8%BF%B4%E5%9C%88%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20break%0A%20%20%20%20%20%20%20%20return%20cur%0A%0A%20%20%20%20def%20insert%28self%2C%20num%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%22%22%22%0A%20%20%20%20%20%20%20%20%23%20%E8%8B%A5%E6%A8%B9%E7%82%BA%E7%A9%BA%EF%BC%8C%E5%89%87%E5%88%9D%E5%A7%8B%E5%8C%96%E6%A0%B9%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20if%20self._root%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20self._root%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%23%20%E8%BF%B4%E5%9C%88%E6%9F%A5%E8%A9%A2%EF%BC%8C%E8%B6%8A%E9%81%8E%E8%91%89%E7%AF%80%E9%BB%9E%E5%BE%8C%E8%B7%B3%E5%87%BA%0A%20%20%20%20%20%20%20%20cur%2C%20pre%20%3D%20self._root%2C%20None%0A%20%20%20%20%20%20%20%20while%20cur%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%89%BE%E5%88%B0%E9%87%8D%E8%A4%87%E7%AF%80%E9%BB%9E%EF%BC%8C%E7%9B%B4%E6%8E%A5%E8%BF%94%E5%9B%9E%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3D%3D%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%20%20%20%20pre%20%3D%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E4%BD%8D%E7%BD%AE%E5%9C%A8%20cur%20%E7%9A%84%E5%8F%B3%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E4%BD%8D%E7%BD%AE%E5%9C%A8%20cur%20%E7%9A%84%E5%B7%A6%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.left%0A%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20node%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20if%20pre.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.right%20%3D%20node%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.left%20%3D%20node%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%0A%20%20%20%20bst%20%3D%20BinarySearchTree%28%29%0A%20%20%20%20nums%20%3D%20%5B4%2C%202%2C%206%2C%201%2C%203%2C%205%2C%207%5D%0A%20%20%20%20for%20num%20in%20nums%3A%0A%20%20%20%20%20%20%20%20bst.insert%28num%29%0A%0A%20%20%20%20%23%20%E6%9F%A5%E8%A9%A2%E7%AF%80%E9%BB%9E%0A%20%20%20%20node%20%3D%20bst.search%287%29%0A%20%20%20%20print%28%22%5Cn%E6%9F%A5%E8%A9%A2%E5%88%B0%E7%9A%84%E7%AF%80%E9%BB%9E%E7%89%A9%E4%BB%B6%E7%82%BA%3A%20%7B%7D%EF%BC%8C%E7%AF%80%E9%BB%9E%E5%80%BC%20%3D%20%7B%7D%22.format%28node%2C%20node.val%29%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=162&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=class%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%A8%B9%E7%AF%80%E9%BB%9E%E9%A1%9E%E5%88%A5%22%22%22%0A%20%20%20%20def%20__init__%28self%2C%20val%29%3A%0A%20%20%20%20%20%20%20%20self.val%20%3D%20val%0A%20%20%20%20%20%20%20%20self.left%20%3D%20None%0A%20%20%20%20%20%20%20%20self.right%20%3D%20None%0A%0A%0Aclass%20BinarySearchTree%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%22%22%22%0A%0A%20%20%20%20def%20__init__%28self%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E5%BB%BA%E6%A7%8B%E5%AD%90%22%22%22%0A%20%20%20%20%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E7%A9%BA%E6%A8%B9%0A%20%20%20%20%20%20%20%20self._root%20%3D%20None%0A%0A%20%20%20%20def%20search%28self%2C%20num%3A%20int%29%20-%3E%20TreeNode%20%7C%20None%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%9F%A5%E8%A9%A2%E7%AF%80%E9%BB%9E%22%22%22%0A%20%20%20%20%20%20%20%20cur%20%3D%20self._root%0A%20%20%20%20%20%20%20%20%23%20%E8%BF%B4%E5%9C%88%E6%9F%A5%E8%A9%A2%EF%BC%8C%E8%B6%8A%E9%81%8E%E8%91%89%E7%AF%80%E9%BB%9E%E5%BE%8C%E8%B7%B3%E5%87%BA%0A%20%20%20%20%20%20%20%20while%20cur%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E7%9B%AE%E6%A8%99%E7%AF%80%E9%BB%9E%E5%9C%A8%20cur%20%E7%9A%84%E5%8F%B3%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E7%9B%AE%E6%A8%99%E7%AF%80%E9%BB%9E%E5%9C%A8%20cur%20%E7%9A%84%E5%B7%A6%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20elif%20cur.val%20%3E%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.left%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%89%BE%E5%88%B0%E7%9B%AE%E6%A8%99%E7%AF%80%E9%BB%9E%EF%BC%8C%E8%B7%B3%E5%87%BA%E8%BF%B4%E5%9C%88%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20break%0A%20%20%20%20%20%20%20%20return%20cur%0A%0A%20%20%20%20def%20insert%28self%2C%20num%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%22%22%22%0A%20%20%20%20%20%20%20%20%23%20%E8%8B%A5%E6%A8%B9%E7%82%BA%E7%A9%BA%EF%BC%8C%E5%89%87%E5%88%9D%E5%A7%8B%E5%8C%96%E6%A0%B9%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20if%20self._root%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20self._root%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%23%20%E8%BF%B4%E5%9C%88%E6%9F%A5%E8%A9%A2%EF%BC%8C%E8%B6%8A%E9%81%8E%E8%91%89%E7%AF%80%E9%BB%9E%E5%BE%8C%E8%B7%B3%E5%87%BA%0A%20%20%20%20%20%20%20%20cur%2C%20pre%20%3D%20self._root%2C%20None%0A%20%20%20%20%20%20%20%20while%20cur%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%89%BE%E5%88%B0%E9%87%8D%E8%A4%87%E7%AF%80%E9%BB%9E%EF%BC%8C%E7%9B%B4%E6%8E%A5%E8%BF%94%E5%9B%9E%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3D%3D%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%20%20%20%20pre%20%3D%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E4%BD%8D%E7%BD%AE%E5%9C%A8%20cur%20%E7%9A%84%E5%8F%B3%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E4%BD%8D%E7%BD%AE%E5%9C%A8%20cur%20%E7%9A%84%E5%B7%A6%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.left%0A%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20node%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20if%20pre.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.right%20%3D%20node%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.left%20%3D%20node%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%0A%20%20%20%20bst%20%3D%20BinarySearchTree%28%29%0A%20%20%20%20nums%20%3D%20%5B4%2C%202%2C%206%2C%201%2C%203%2C%205%2C%207%5D%0A%20%20%20%20for%20num%20in%20nums%3A%0A%20%20%20%20%20%20%20%20bst.insert%28num%29%0A%0A%20%20%20%20%23%20%E6%9F%A5%E8%A9%A2%E7%AF%80%E9%BB%9E%0A%20%20%20%20node%20%3D%20bst.search%287%29%0A%20%20%20%20print%28%22%5Cn%E6%9F%A5%E8%A9%A2%E5%88%B0%E7%9A%84%E7%AF%80%E9%BB%9E%E7%89%A9%E4%BB%B6%E7%82%BA%3A%20%7B%7D%EF%BC%8C%E7%AF%80%E9%BB%9E%E5%80%BC%20%3D%20%7B%7D%22.format%28node%2C%20node.val%29%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=162&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 &gt;</a></div></p>
</details>
<h3 id="2">2. &nbsp; 插入節點<a class="headerlink" href="#2" title="Permanent link">&para;</a></h3>
<p>給定一個待插入元素 <code>num</code> ,為了保持二元搜尋樹“左子樹 &lt; 根節點 &lt; 右子樹”的性質,插入操作流程如圖 7-18 所示。</p>
<ol>
<li><strong>查詢插入位置</strong>:與查詢操作相似,從根節點出發,根據當前節點值和 <code>num</code> 的大小關係迴圈向下搜尋,直到越過葉節點(走訪至 <code>None</code> )時跳出迴圈。</li>
<li><strong>在該位置插入節點</strong>:初始化節點 <code>num</code> ,將該節點置於 <code>None</code> 的位置。</li>
</ol>
<p><a class="glightbox" href="../binary_search_tree.assets/bst_insert.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="在二元搜尋樹中插入節點" class="animation-figure" src="../binary_search_tree.assets/bst_insert.png" /></a></p>
<p align="center"> 圖 7-18 &nbsp; 在二元搜尋樹中插入節點 </p>
<p>在程式碼實現中,需要注意以下兩點。</p>
<ul>
<li>二元搜尋樹不允許存在重複節點,否則將違反其定義。因此,若待插入節點在樹中已存在,則不執行插入,直接返回。</li>
<li>為了實現插入節點,我們需要藉助節點 <code>pre</code> 儲存上一輪迴圈的節點。這樣在走訪至 <code>None</code> 時,我們可以獲取到其父節點,從而完成節點插入操作。</li>
</ul>
<div class="tabbed-set tabbed-alternate" data-tabs="3:14"><input checked="checked" id="__tabbed_3_1" name="__tabbed_3" type="radio" /><input id="__tabbed_3_2" name="__tabbed_3" type="radio" /><input id="__tabbed_3_3" name="__tabbed_3" type="radio" /><input id="__tabbed_3_4" name="__tabbed_3" type="radio" /><input id="__tabbed_3_5" name="__tabbed_3" type="radio" /><input id="__tabbed_3_6" name="__tabbed_3" type="radio" /><input id="__tabbed_3_7" name="__tabbed_3" type="radio" /><input id="__tabbed_3_8" name="__tabbed_3" type="radio" /><input id="__tabbed_3_9" name="__tabbed_3" type="radio" /><input id="__tabbed_3_10" name="__tabbed_3" type="radio" /><input id="__tabbed_3_11" name="__tabbed_3" type="radio" /><input id="__tabbed_3_12" name="__tabbed_3" type="radio" /><input id="__tabbed_3_13" name="__tabbed_3" type="radio" /><input id="__tabbed_3_14" name="__tabbed_3" type="radio" /><div class="tabbed-labels"><label for="__tabbed_3_1">Python</label><label for="__tabbed_3_2">C++</label><label for="__tabbed_3_3">Java</label><label for="__tabbed_3_4">C#</label><label for="__tabbed_3_5">Go</label><label for="__tabbed_3_6">Swift</label><label for="__tabbed_3_7">JS</label><label for="__tabbed_3_8">TS</label><label for="__tabbed_3_9">Dart</label><label for="__tabbed_3_10">Rust</label><label for="__tabbed_3_11">C</label><label for="__tabbed_3_12">Kotlin</label><label for="__tabbed_3_13">Ruby</label><label for="__tabbed_3_14">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.py</span><pre><span></span><code><a id="__codelineno-14-1" name="__codelineno-14-1" href="#__codelineno-14-1"></a><span class="k">def</span> <span class="nf">insert</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">num</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span>
<a id="__codelineno-14-2" name="__codelineno-14-2" href="#__codelineno-14-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;插入節點&quot;&quot;&quot;</span>
<a id="__codelineno-14-3" name="__codelineno-14-3" href="#__codelineno-14-3"></a> <span class="c1"># 若樹為空,則初始化根節點</span>
<a id="__codelineno-14-4" name="__codelineno-14-4" href="#__codelineno-14-4"></a> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_root</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-14-5" name="__codelineno-14-5" href="#__codelineno-14-5"></a> <span class="bp">self</span><span class="o">.</span><span class="n">_root</span> <span class="o">=</span> <span class="n">TreeNode</span><span class="p">(</span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-14-6" name="__codelineno-14-6" href="#__codelineno-14-6"></a> <span class="k">return</span>
<a id="__codelineno-14-7" name="__codelineno-14-7" href="#__codelineno-14-7"></a> <span class="c1"># 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-14-8" name="__codelineno-14-8" href="#__codelineno-14-8"></a> <span class="n">cur</span><span class="p">,</span> <span class="n">pre</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_root</span><span class="p">,</span> <span class="kc">None</span>
<a id="__codelineno-14-9" name="__codelineno-14-9" href="#__codelineno-14-9"></a> <span class="k">while</span> <span class="n">cur</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-14-10" name="__codelineno-14-10" href="#__codelineno-14-10"></a> <span class="c1"># 找到重複節點,直接返回</span>
<a id="__codelineno-14-11" name="__codelineno-14-11" href="#__codelineno-14-11"></a> <span class="k">if</span> <span class="n">cur</span><span class="o">.</span><span class="n">val</span> <span class="o">==</span> <span class="n">num</span><span class="p">:</span>
<a id="__codelineno-14-12" name="__codelineno-14-12" href="#__codelineno-14-12"></a> <span class="k">return</span>
<a id="__codelineno-14-13" name="__codelineno-14-13" href="#__codelineno-14-13"></a> <span class="n">pre</span> <span class="o">=</span> <span class="n">cur</span>
<a id="__codelineno-14-14" name="__codelineno-14-14" href="#__codelineno-14-14"></a> <span class="c1"># 插入位置在 cur 的右子樹中</span>
<a id="__codelineno-14-15" name="__codelineno-14-15" href="#__codelineno-14-15"></a> <span class="k">if</span> <span class="n">cur</span><span class="o">.</span><span class="n">val</span> <span class="o">&lt;</span> <span class="n">num</span><span class="p">:</span>
<a id="__codelineno-14-16" name="__codelineno-14-16" href="#__codelineno-14-16"></a> <span class="n">cur</span> <span class="o">=</span> <span class="n">cur</span><span class="o">.</span><span class="n">right</span>
<a id="__codelineno-14-17" name="__codelineno-14-17" href="#__codelineno-14-17"></a> <span class="c1"># 插入位置在 cur 的左子樹中</span>
<a id="__codelineno-14-18" name="__codelineno-14-18" href="#__codelineno-14-18"></a> <span class="k">else</span><span class="p">:</span>
<a id="__codelineno-14-19" name="__codelineno-14-19" href="#__codelineno-14-19"></a> <span class="n">cur</span> <span class="o">=</span> <span class="n">cur</span><span class="o">.</span><span class="n">left</span>
<a id="__codelineno-14-20" name="__codelineno-14-20" href="#__codelineno-14-20"></a> <span class="c1"># 插入節點</span>
<a id="__codelineno-14-21" name="__codelineno-14-21" href="#__codelineno-14-21"></a> <span class="n">node</span> <span class="o">=</span> <span class="n">TreeNode</span><span class="p">(</span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-14-22" name="__codelineno-14-22" href="#__codelineno-14-22"></a> <span class="k">if</span> <span class="n">pre</span><span class="o">.</span><span class="n">val</span> <span class="o">&lt;</span> <span class="n">num</span><span class="p">:</span>
<a id="__codelineno-14-23" name="__codelineno-14-23" href="#__codelineno-14-23"></a> <span class="n">pre</span><span class="o">.</span><span class="n">right</span> <span class="o">=</span> <span class="n">node</span>
<a id="__codelineno-14-24" name="__codelineno-14-24" href="#__codelineno-14-24"></a> <span class="k">else</span><span class="p">:</span>
<a id="__codelineno-14-25" name="__codelineno-14-25" href="#__codelineno-14-25"></a> <span class="n">pre</span><span class="o">.</span><span class="n">left</span> <span class="o">=</span> <span class="n">node</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.cpp</span><pre><span></span><code><a id="__codelineno-15-1" name="__codelineno-15-1" href="#__codelineno-15-1"></a><span class="cm">/* 插入節點 */</span>
<a id="__codelineno-15-2" name="__codelineno-15-2" href="#__codelineno-15-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">insert</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-3" name="__codelineno-15-3" href="#__codelineno-15-3"></a><span class="w"> </span><span class="c1">// 若樹為空,則初始化根節點</span>
<a id="__codelineno-15-4" name="__codelineno-15-4" href="#__codelineno-15-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">root</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="k">nullptr</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-5" name="__codelineno-15-5" href="#__codelineno-15-5"></a><span class="w"> </span><span class="n">root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">TreeNode</span><span class="p">(</span><span class="n">num</span><span class="p">);</span>
<a id="__codelineno-15-6" name="__codelineno-15-6" href="#__codelineno-15-6"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-15-7" name="__codelineno-15-7" href="#__codelineno-15-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-15-8" name="__codelineno-15-8" href="#__codelineno-15-8"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">root</span><span class="p">,</span><span class="w"> </span><span class="o">*</span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">nullptr</span><span class="p">;</span>
<a id="__codelineno-15-9" name="__codelineno-15-9" href="#__codelineno-15-9"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-15-10" name="__codelineno-15-10" href="#__codelineno-15-10"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="k">nullptr</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-11" name="__codelineno-15-11" href="#__codelineno-15-11"></a><span class="w"> </span><span class="c1">// 找到重複節點,直接返回</span>
<a id="__codelineno-15-12" name="__codelineno-15-12" href="#__codelineno-15-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-15-13" name="__codelineno-15-13" href="#__codelineno-15-13"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-15-14" name="__codelineno-15-14" href="#__codelineno-15-14"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-15-15" name="__codelineno-15-15" href="#__codelineno-15-15"></a><span class="w"> </span><span class="c1">// 插入位置在 cur 的右子樹中</span>
<a id="__codelineno-15-16" name="__codelineno-15-16" href="#__codelineno-15-16"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-15-17" name="__codelineno-15-17" href="#__codelineno-15-17"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-15-18" name="__codelineno-15-18" href="#__codelineno-15-18"></a><span class="w"> </span><span class="c1">// 插入位置在 cur 的左子樹中</span>
<a id="__codelineno-15-19" name="__codelineno-15-19" href="#__codelineno-15-19"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-15-20" name="__codelineno-15-20" href="#__codelineno-15-20"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-15-21" name="__codelineno-15-21" href="#__codelineno-15-21"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-15-22" name="__codelineno-15-22" href="#__codelineno-15-22"></a><span class="w"> </span><span class="c1">// 插入節點</span>
<a id="__codelineno-15-23" name="__codelineno-15-23" href="#__codelineno-15-23"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="n">node</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">TreeNode</span><span class="p">(</span><span class="n">num</span><span class="p">);</span>
<a id="__codelineno-15-24" name="__codelineno-15-24" href="#__codelineno-15-24"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">pre</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-15-25" name="__codelineno-15-25" href="#__codelineno-15-25"></a><span class="w"> </span><span class="n">pre</span><span class="o">-&gt;</span><span class="n">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">;</span>
<a id="__codelineno-15-26" name="__codelineno-15-26" href="#__codelineno-15-26"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-15-27" name="__codelineno-15-27" href="#__codelineno-15-27"></a><span class="w"> </span><span class="n">pre</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">;</span>
<a id="__codelineno-15-28" name="__codelineno-15-28" href="#__codelineno-15-28"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.java</span><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="cm">/* 插入節點 */</span>
<a id="__codelineno-16-2" name="__codelineno-16-2" href="#__codelineno-16-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">insert</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-3" name="__codelineno-16-3" href="#__codelineno-16-3"></a><span class="w"> </span><span class="c1">// 若樹為空,則初始化根節點</span>
<a id="__codelineno-16-4" name="__codelineno-16-4" href="#__codelineno-16-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">root</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-5" name="__codelineno-16-5" href="#__codelineno-16-5"></a><span class="w"> </span><span class="n">root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">TreeNode</span><span class="p">(</span><span class="n">num</span><span class="p">);</span>
<a id="__codelineno-16-6" name="__codelineno-16-6" href="#__codelineno-16-6"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-16-7" name="__codelineno-16-7" href="#__codelineno-16-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-16-8" name="__codelineno-16-8" href="#__codelineno-16-8"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">root</span><span class="p">,</span><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">null</span><span class="p">;</span>
<a id="__codelineno-16-9" name="__codelineno-16-9" href="#__codelineno-16-9"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-16-10" name="__codelineno-16-10" href="#__codelineno-16-10"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-11" name="__codelineno-16-11" href="#__codelineno-16-11"></a><span class="w"> </span><span class="c1">// 找到重複節點,直接返回</span>
<a id="__codelineno-16-12" name="__codelineno-16-12" href="#__codelineno-16-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="na">val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-16-13" name="__codelineno-16-13" href="#__codelineno-16-13"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-16-14" name="__codelineno-16-14" href="#__codelineno-16-14"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-16-15" name="__codelineno-16-15" href="#__codelineno-16-15"></a><span class="w"> </span><span class="c1">// 插入位置在 cur 的右子樹中</span>
<a id="__codelineno-16-16" name="__codelineno-16-16" href="#__codelineno-16-16"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="na">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-16-17" name="__codelineno-16-17" href="#__codelineno-16-17"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">right</span><span class="p">;</span>
<a id="__codelineno-16-18" name="__codelineno-16-18" href="#__codelineno-16-18"></a><span class="w"> </span><span class="c1">// 插入位置在 cur 的左子樹中</span>
<a id="__codelineno-16-19" name="__codelineno-16-19" href="#__codelineno-16-19"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-16-20" name="__codelineno-16-20" href="#__codelineno-16-20"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">left</span><span class="p">;</span>
<a id="__codelineno-16-21" name="__codelineno-16-21" href="#__codelineno-16-21"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-16-22" name="__codelineno-16-22" href="#__codelineno-16-22"></a><span class="w"> </span><span class="c1">// 插入節點</span>
<a id="__codelineno-16-23" name="__codelineno-16-23" href="#__codelineno-16-23"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="n">node</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">TreeNode</span><span class="p">(</span><span class="n">num</span><span class="p">);</span>
<a id="__codelineno-16-24" name="__codelineno-16-24" href="#__codelineno-16-24"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">pre</span><span class="p">.</span><span class="na">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-16-25" name="__codelineno-16-25" href="#__codelineno-16-25"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="na">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">;</span>
<a id="__codelineno-16-26" name="__codelineno-16-26" href="#__codelineno-16-26"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-16-27" name="__codelineno-16-27" href="#__codelineno-16-27"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="na">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">;</span>
<a id="__codelineno-16-28" name="__codelineno-16-28" href="#__codelineno-16-28"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.cs</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="cm">/* 插入節點 */</span>
<a id="__codelineno-17-2" name="__codelineno-17-2" href="#__codelineno-17-2"></a><span class="k">void</span><span class="w"> </span><span class="nf">Insert</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-17-3" name="__codelineno-17-3" href="#__codelineno-17-3"></a><span class="w"> </span><span class="c1">// 若樹為空,則初始化根節點</span>
<a id="__codelineno-17-4" name="__codelineno-17-4" href="#__codelineno-17-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">root</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="k">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-17-5" name="__codelineno-17-5" href="#__codelineno-17-5"></a><span class="w"> </span><span class="n">root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">TreeNode</span><span class="p">(</span><span class="n">num</span><span class="p">);</span>
<a id="__codelineno-17-6" name="__codelineno-17-6" href="#__codelineno-17-6"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-17-7" name="__codelineno-17-7" href="#__codelineno-17-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-17-8" name="__codelineno-17-8" href="#__codelineno-17-8"></a><span class="w"> </span><span class="n">TreeNode</span><span class="o">?</span><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">root</span><span class="p">,</span><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">null</span><span class="p">;</span>
<a id="__codelineno-17-9" name="__codelineno-17-9" href="#__codelineno-17-9"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-17-10" name="__codelineno-17-10" href="#__codelineno-17-10"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="k">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-17-11" name="__codelineno-17-11" href="#__codelineno-17-11"></a><span class="w"> </span><span class="c1">// 找到重複節點,直接返回</span>
<a id="__codelineno-17-12" name="__codelineno-17-12" href="#__codelineno-17-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-17-13" name="__codelineno-17-13" href="#__codelineno-17-13"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-17-14" name="__codelineno-17-14" href="#__codelineno-17-14"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-17-15" name="__codelineno-17-15" href="#__codelineno-17-15"></a><span class="w"> </span><span class="c1">// 插入位置在 cur 的右子樹中</span>
<a id="__codelineno-17-16" name="__codelineno-17-16" href="#__codelineno-17-16"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-17-17" name="__codelineno-17-17" href="#__codelineno-17-17"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-17-18" name="__codelineno-17-18" href="#__codelineno-17-18"></a><span class="w"> </span><span class="c1">// 插入位置在 cur 的左子樹中</span>
<a id="__codelineno-17-19" name="__codelineno-17-19" href="#__codelineno-17-19"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-17-20" name="__codelineno-17-20" href="#__codelineno-17-20"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-17-21" name="__codelineno-17-21" href="#__codelineno-17-21"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-17-22" name="__codelineno-17-22" href="#__codelineno-17-22"></a>
<a id="__codelineno-17-23" name="__codelineno-17-23" href="#__codelineno-17-23"></a><span class="w"> </span><span class="c1">// 插入節點</span>
<a id="__codelineno-17-24" name="__codelineno-17-24" href="#__codelineno-17-24"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="n">node</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="p">(</span><span class="n">num</span><span class="p">);</span>
<a id="__codelineno-17-25" name="__codelineno-17-25" href="#__codelineno-17-25"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">pre</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="k">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-17-26" name="__codelineno-17-26" href="#__codelineno-17-26"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">pre</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-17-27" name="__codelineno-17-27" href="#__codelineno-17-27"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="n">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">;</span>
<a id="__codelineno-17-28" name="__codelineno-17-28" href="#__codelineno-17-28"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-17-29" name="__codelineno-17-29" href="#__codelineno-17-29"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">;</span>
<a id="__codelineno-17-30" name="__codelineno-17-30" href="#__codelineno-17-30"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-17-31" name="__codelineno-17-31" href="#__codelineno-17-31"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.go</span><pre><span></span><code><a id="__codelineno-18-1" name="__codelineno-18-1" href="#__codelineno-18-1"></a><span class="cm">/* 插入節點 */</span>
<a id="__codelineno-18-2" name="__codelineno-18-2" href="#__codelineno-18-2"></a><span class="kd">func</span><span class="w"> </span><span class="p">(</span><span class="nx">bst</span><span class="w"> </span><span class="o">*</span><span class="nx">binarySearchTree</span><span class="p">)</span><span class="w"> </span><span class="nx">insert</span><span class="p">(</span><span class="nx">num</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-3" name="__codelineno-18-3" href="#__codelineno-18-3"></a><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">bst</span><span class="p">.</span><span class="nx">root</span>
<a id="__codelineno-18-4" name="__codelineno-18-4" href="#__codelineno-18-4"></a><span class="w"> </span><span class="c1">// 若樹為空,則初始化根節點</span>
<a id="__codelineno-18-5" name="__codelineno-18-5" href="#__codelineno-18-5"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">nil</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-6" name="__codelineno-18-6" href="#__codelineno-18-6"></a><span class="w"> </span><span class="nx">bst</span><span class="p">.</span><span class="nx">root</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">NewTreeNode</span><span class="p">(</span><span class="nx">num</span><span class="p">)</span>
<a id="__codelineno-18-7" name="__codelineno-18-7" href="#__codelineno-18-7"></a><span class="w"> </span><span class="k">return</span>
<a id="__codelineno-18-8" name="__codelineno-18-8" href="#__codelineno-18-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-18-9" name="__codelineno-18-9" href="#__codelineno-18-9"></a><span class="w"> </span><span class="c1">// 待插入節點之前的節點位置</span>
<a id="__codelineno-18-10" name="__codelineno-18-10" href="#__codelineno-18-10"></a><span class="w"> </span><span class="kd">var</span><span class="w"> </span><span class="nx">pre</span><span class="w"> </span><span class="o">*</span><span class="nx">TreeNode</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="kc">nil</span>
<a id="__codelineno-18-11" name="__codelineno-18-11" href="#__codelineno-18-11"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-18-12" name="__codelineno-18-12" href="#__codelineno-18-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">nil</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-13" name="__codelineno-18-13" href="#__codelineno-18-13"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">Val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="nx">num</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-14" name="__codelineno-18-14" href="#__codelineno-18-14"></a><span class="w"> </span><span class="k">return</span>
<a id="__codelineno-18-15" name="__codelineno-18-15" href="#__codelineno-18-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-18-16" name="__codelineno-18-16" href="#__codelineno-18-16"></a><span class="w"> </span><span class="nx">pre</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">cur</span>
<a id="__codelineno-18-17" name="__codelineno-18-17" href="#__codelineno-18-17"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">Val</span><span class="p">.(</span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">num</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-18" name="__codelineno-18-18" href="#__codelineno-18-18"></a><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">Right</span>
<a id="__codelineno-18-19" name="__codelineno-18-19" href="#__codelineno-18-19"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-20" name="__codelineno-18-20" href="#__codelineno-18-20"></a><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">Left</span>
<a id="__codelineno-18-21" name="__codelineno-18-21" href="#__codelineno-18-21"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-18-22" name="__codelineno-18-22" href="#__codelineno-18-22"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-18-23" name="__codelineno-18-23" href="#__codelineno-18-23"></a><span class="w"> </span><span class="c1">// 插入節點</span>
<a id="__codelineno-18-24" name="__codelineno-18-24" href="#__codelineno-18-24"></a><span class="w"> </span><span class="nx">node</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">NewTreeNode</span><span class="p">(</span><span class="nx">num</span><span class="p">)</span>
<a id="__codelineno-18-25" name="__codelineno-18-25" href="#__codelineno-18-25"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">pre</span><span class="p">.</span><span class="nx">Val</span><span class="p">.(</span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">num</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-26" name="__codelineno-18-26" href="#__codelineno-18-26"></a><span class="w"> </span><span class="nx">pre</span><span class="p">.</span><span class="nx">Right</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">node</span>
<a id="__codelineno-18-27" name="__codelineno-18-27" href="#__codelineno-18-27"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-28" name="__codelineno-18-28" href="#__codelineno-18-28"></a><span class="w"> </span><span class="nx">pre</span><span class="p">.</span><span class="nx">Left</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">node</span>
<a id="__codelineno-18-29" name="__codelineno-18-29" href="#__codelineno-18-29"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-18-30" name="__codelineno-18-30" href="#__codelineno-18-30"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.swift</span><pre><span></span><code><a id="__codelineno-19-1" name="__codelineno-19-1" href="#__codelineno-19-1"></a><span class="cm">/* 插入節點 */</span>
<a id="__codelineno-19-2" name="__codelineno-19-2" href="#__codelineno-19-2"></a><span class="kd">func</span> <span class="nf">insert</span><span class="p">(</span><span class="n">num</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-19-3" name="__codelineno-19-3" href="#__codelineno-19-3"></a> <span class="c1">// 若樹為空,則初始化根節點</span>
<a id="__codelineno-19-4" name="__codelineno-19-4" href="#__codelineno-19-4"></a> <span class="k">if</span> <span class="n">root</span> <span class="p">==</span> <span class="kc">nil</span> <span class="p">{</span>
<a id="__codelineno-19-5" name="__codelineno-19-5" href="#__codelineno-19-5"></a> <span class="n">root</span> <span class="p">=</span> <span class="n">TreeNode</span><span class="p">(</span><span class="n">x</span><span class="p">:</span> <span class="n">num</span><span class="p">)</span>
<a id="__codelineno-19-6" name="__codelineno-19-6" href="#__codelineno-19-6"></a> <span class="k">return</span>
<a id="__codelineno-19-7" name="__codelineno-19-7" href="#__codelineno-19-7"></a> <span class="p">}</span>
<a id="__codelineno-19-8" name="__codelineno-19-8" href="#__codelineno-19-8"></a> <span class="kd">var</span> <span class="nv">cur</span> <span class="p">=</span> <span class="n">root</span>
<a id="__codelineno-19-9" name="__codelineno-19-9" href="#__codelineno-19-9"></a> <span class="kd">var</span> <span class="nv">pre</span><span class="p">:</span> <span class="n">TreeNode</span><span class="p">?</span>
<a id="__codelineno-19-10" name="__codelineno-19-10" href="#__codelineno-19-10"></a> <span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-19-11" name="__codelineno-19-11" href="#__codelineno-19-11"></a> <span class="k">while</span> <span class="n">cur</span> <span class="o">!=</span> <span class="kc">nil</span> <span class="p">{</span>
<a id="__codelineno-19-12" name="__codelineno-19-12" href="#__codelineno-19-12"></a> <span class="c1">// 找到重複節點,直接返回</span>
<a id="__codelineno-19-13" name="__codelineno-19-13" href="#__codelineno-19-13"></a> <span class="k">if</span> <span class="n">cur</span><span class="p">!.</span><span class="n">val</span> <span class="p">==</span> <span class="n">num</span> <span class="p">{</span>
<a id="__codelineno-19-14" name="__codelineno-19-14" href="#__codelineno-19-14"></a> <span class="k">return</span>
<a id="__codelineno-19-15" name="__codelineno-19-15" href="#__codelineno-19-15"></a> <span class="p">}</span>
<a id="__codelineno-19-16" name="__codelineno-19-16" href="#__codelineno-19-16"></a> <span class="n">pre</span> <span class="p">=</span> <span class="n">cur</span>
<a id="__codelineno-19-17" name="__codelineno-19-17" href="#__codelineno-19-17"></a> <span class="c1">// 插入位置在 cur 的右子樹中</span>
<a id="__codelineno-19-18" name="__codelineno-19-18" href="#__codelineno-19-18"></a> <span class="k">if</span> <span class="n">cur</span><span class="p">!.</span><span class="n">val</span> <span class="o">&lt;</span> <span class="n">num</span> <span class="p">{</span>
<a id="__codelineno-19-19" name="__codelineno-19-19" href="#__codelineno-19-19"></a> <span class="n">cur</span> <span class="p">=</span> <span class="n">cur</span><span class="p">?.</span><span class="kr">right</span>
<a id="__codelineno-19-20" name="__codelineno-19-20" href="#__codelineno-19-20"></a> <span class="p">}</span>
<a id="__codelineno-19-21" name="__codelineno-19-21" href="#__codelineno-19-21"></a> <span class="c1">// 插入位置在 cur 的左子樹中</span>
<a id="__codelineno-19-22" name="__codelineno-19-22" href="#__codelineno-19-22"></a> <span class="k">else</span> <span class="p">{</span>
<a id="__codelineno-19-23" name="__codelineno-19-23" href="#__codelineno-19-23"></a> <span class="n">cur</span> <span class="p">=</span> <span class="n">cur</span><span class="p">?.</span><span class="kr">left</span>
<a id="__codelineno-19-24" name="__codelineno-19-24" href="#__codelineno-19-24"></a> <span class="p">}</span>
<a id="__codelineno-19-25" name="__codelineno-19-25" href="#__codelineno-19-25"></a> <span class="p">}</span>
<a id="__codelineno-19-26" name="__codelineno-19-26" href="#__codelineno-19-26"></a> <span class="c1">// 插入節點</span>
<a id="__codelineno-19-27" name="__codelineno-19-27" href="#__codelineno-19-27"></a> <span class="kd">let</span> <span class="nv">node</span> <span class="p">=</span> <span class="n">TreeNode</span><span class="p">(</span><span class="n">x</span><span class="p">:</span> <span class="n">num</span><span class="p">)</span>
<a id="__codelineno-19-28" name="__codelineno-19-28" href="#__codelineno-19-28"></a> <span class="k">if</span> <span class="n">pre</span><span class="p">!.</span><span class="n">val</span> <span class="o">&lt;</span> <span class="n">num</span> <span class="p">{</span>
<a id="__codelineno-19-29" name="__codelineno-19-29" href="#__codelineno-19-29"></a> <span class="n">pre</span><span class="p">?.</span><span class="kr">right</span> <span class="p">=</span> <span class="n">node</span>
<a id="__codelineno-19-30" name="__codelineno-19-30" href="#__codelineno-19-30"></a> <span class="p">}</span> <span class="k">else</span> <span class="p">{</span>
<a id="__codelineno-19-31" name="__codelineno-19-31" href="#__codelineno-19-31"></a> <span class="n">pre</span><span class="p">?.</span><span class="kr">left</span> <span class="p">=</span> <span class="n">node</span>
<a id="__codelineno-19-32" name="__codelineno-19-32" href="#__codelineno-19-32"></a> <span class="p">}</span>
<a id="__codelineno-19-33" name="__codelineno-19-33" href="#__codelineno-19-33"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.js</span><pre><span></span><code><a id="__codelineno-20-1" name="__codelineno-20-1" href="#__codelineno-20-1"></a><span class="cm">/* 插入節點 */</span>
<a id="__codelineno-20-2" name="__codelineno-20-2" href="#__codelineno-20-2"></a><span class="nx">insert</span><span class="p">(</span><span class="nx">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-20-3" name="__codelineno-20-3" href="#__codelineno-20-3"></a><span class="w"> </span><span class="c1">// 若樹為空,則初始化根節點</span>
<a id="__codelineno-20-4" name="__codelineno-20-4" href="#__codelineno-20-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="k">this</span><span class="p">.</span><span class="nx">root</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-20-5" name="__codelineno-20-5" href="#__codelineno-20-5"></a><span class="w"> </span><span class="k">this</span><span class="p">.</span><span class="nx">root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nx">TreeNode</span><span class="p">(</span><span class="nx">num</span><span class="p">);</span>
<a id="__codelineno-20-6" name="__codelineno-20-6" href="#__codelineno-20-6"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-20-7" name="__codelineno-20-7" href="#__codelineno-20-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-20-8" name="__codelineno-20-8" href="#__codelineno-20-8"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">this</span><span class="p">.</span><span class="nx">root</span><span class="p">,</span>
<a id="__codelineno-20-9" name="__codelineno-20-9" href="#__codelineno-20-9"></a><span class="w"> </span><span class="nx">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">null</span><span class="p">;</span>
<a id="__codelineno-20-10" name="__codelineno-20-10" href="#__codelineno-20-10"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-20-11" name="__codelineno-20-11" href="#__codelineno-20-11"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="w"> </span><span class="o">!==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-20-12" name="__codelineno-20-12" href="#__codelineno-20-12"></a><span class="w"> </span><span class="c1">// 找到重複節點,直接返回</span>
<a id="__codelineno-20-13" name="__codelineno-20-13" href="#__codelineno-20-13"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="p">.</span><span class="nx">val</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="nx">num</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-20-14" name="__codelineno-20-14" href="#__codelineno-20-14"></a><span class="w"> </span><span class="nx">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">;</span>
<a id="__codelineno-20-15" name="__codelineno-20-15" href="#__codelineno-20-15"></a><span class="w"> </span><span class="c1">// 插入位置在 cur 的右子樹中</span>
<a id="__codelineno-20-16" name="__codelineno-20-16" href="#__codelineno-20-16"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="p">.</span><span class="nx">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">num</span><span class="p">)</span><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">right</span><span class="p">;</span>
<a id="__codelineno-20-17" name="__codelineno-20-17" href="#__codelineno-20-17"></a><span class="w"> </span><span class="c1">// 插入位置在 cur 的左子樹中</span>
<a id="__codelineno-20-18" name="__codelineno-20-18" href="#__codelineno-20-18"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">left</span><span class="p">;</span>
<a id="__codelineno-20-19" name="__codelineno-20-19" href="#__codelineno-20-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-20-20" name="__codelineno-20-20" href="#__codelineno-20-20"></a><span class="w"> </span><span class="c1">// 插入節點</span>
<a id="__codelineno-20-21" name="__codelineno-20-21" href="#__codelineno-20-21"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">node</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nx">TreeNode</span><span class="p">(</span><span class="nx">num</span><span class="p">);</span>
<a id="__codelineno-20-22" name="__codelineno-20-22" href="#__codelineno-20-22"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">pre</span><span class="p">.</span><span class="nx">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">num</span><span class="p">)</span><span class="w"> </span><span class="nx">pre</span><span class="p">.</span><span class="nx">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">node</span><span class="p">;</span>
<a id="__codelineno-20-23" name="__codelineno-20-23" href="#__codelineno-20-23"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="nx">pre</span><span class="p">.</span><span class="nx">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">node</span><span class="p">;</span>
<a id="__codelineno-20-24" name="__codelineno-20-24" href="#__codelineno-20-24"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.ts</span><pre><span></span><code><a id="__codelineno-21-1" name="__codelineno-21-1" href="#__codelineno-21-1"></a><span class="cm">/* 插入節點 */</span>
<a id="__codelineno-21-2" name="__codelineno-21-2" href="#__codelineno-21-2"></a><span class="nx">insert</span><span class="p">(</span><span class="nx">num</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-21-3" name="__codelineno-21-3" href="#__codelineno-21-3"></a><span class="w"> </span><span class="c1">// 若樹為空,則初始化根節點</span>
<a id="__codelineno-21-4" name="__codelineno-21-4" href="#__codelineno-21-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="k">this</span><span class="p">.</span><span class="nx">root</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-21-5" name="__codelineno-21-5" href="#__codelineno-21-5"></a><span class="w"> </span><span class="k">this</span><span class="p">.</span><span class="nx">root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nx">TreeNode</span><span class="p">(</span><span class="nx">num</span><span class="p">);</span>
<a id="__codelineno-21-6" name="__codelineno-21-6" href="#__codelineno-21-6"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-21-7" name="__codelineno-21-7" href="#__codelineno-21-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-21-8" name="__codelineno-21-8" href="#__codelineno-21-8"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">cur</span><span class="o">:</span><span class="w"> </span><span class="kt">TreeNode</span><span class="w"> </span><span class="o">|</span><span class="w"> </span><span class="kc">null</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">this</span><span class="p">.</span><span class="nx">root</span><span class="p">,</span>
<a id="__codelineno-21-9" name="__codelineno-21-9" href="#__codelineno-21-9"></a><span class="w"> </span><span class="nx">pre</span><span class="o">:</span><span class="w"> </span><span class="kt">TreeNode</span><span class="w"> </span><span class="o">|</span><span class="w"> </span><span class="kc">null</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">null</span><span class="p">;</span>
<a id="__codelineno-21-10" name="__codelineno-21-10" href="#__codelineno-21-10"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-21-11" name="__codelineno-21-11" href="#__codelineno-21-11"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="w"> </span><span class="o">!==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-21-12" name="__codelineno-21-12" href="#__codelineno-21-12"></a><span class="w"> </span><span class="c1">// 找到重複節點,直接返回</span>
<a id="__codelineno-21-13" name="__codelineno-21-13" href="#__codelineno-21-13"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="p">.</span><span class="nx">val</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="nx">num</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-21-14" name="__codelineno-21-14" href="#__codelineno-21-14"></a><span class="w"> </span><span class="nx">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">;</span>
<a id="__codelineno-21-15" name="__codelineno-21-15" href="#__codelineno-21-15"></a><span class="w"> </span><span class="c1">// 插入位置在 cur 的右子樹中</span>
<a id="__codelineno-21-16" name="__codelineno-21-16" href="#__codelineno-21-16"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="p">.</span><span class="nx">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">num</span><span class="p">)</span><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">right</span><span class="p">;</span>
<a id="__codelineno-21-17" name="__codelineno-21-17" href="#__codelineno-21-17"></a><span class="w"> </span><span class="c1">// 插入位置在 cur 的左子樹中</span>
<a id="__codelineno-21-18" name="__codelineno-21-18" href="#__codelineno-21-18"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">left</span><span class="p">;</span>
<a id="__codelineno-21-19" name="__codelineno-21-19" href="#__codelineno-21-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-21-20" name="__codelineno-21-20" href="#__codelineno-21-20"></a><span class="w"> </span><span class="c1">// 插入節點</span>
<a id="__codelineno-21-21" name="__codelineno-21-21" href="#__codelineno-21-21"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">node</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nx">TreeNode</span><span class="p">(</span><span class="nx">num</span><span class="p">);</span>
<a id="__codelineno-21-22" name="__codelineno-21-22" href="#__codelineno-21-22"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">pre</span><span class="o">!</span><span class="p">.</span><span class="nx">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">num</span><span class="p">)</span><span class="w"> </span><span class="nx">pre</span><span class="o">!</span><span class="p">.</span><span class="nx">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">node</span><span class="p">;</span>
<a id="__codelineno-21-23" name="__codelineno-21-23" href="#__codelineno-21-23"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="nx">pre</span><span class="o">!</span><span class="p">.</span><span class="nx">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">node</span><span class="p">;</span>
<a id="__codelineno-21-24" name="__codelineno-21-24" href="#__codelineno-21-24"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.dart</span><pre><span></span><code><a id="__codelineno-22-1" name="__codelineno-22-1" href="#__codelineno-22-1"></a><span class="cm">/* 插入節點 */</span>
<a id="__codelineno-22-2" name="__codelineno-22-2" href="#__codelineno-22-2"></a><span class="kt">void</span><span class="w"> </span><span class="n">insert</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">_num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-22-3" name="__codelineno-22-3" href="#__codelineno-22-3"></a><span class="w"> </span><span class="c1">// 若樹為空,則初始化根節點</span>
<a id="__codelineno-22-4" name="__codelineno-22-4" href="#__codelineno-22-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">_root</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-22-5" name="__codelineno-22-5" href="#__codelineno-22-5"></a><span class="w"> </span><span class="n">_root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">TreeNode</span><span class="p">(</span><span class="n">_num</span><span class="p">);</span>
<a id="__codelineno-22-6" name="__codelineno-22-6" href="#__codelineno-22-6"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-22-7" name="__codelineno-22-7" href="#__codelineno-22-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-22-8" name="__codelineno-22-8" href="#__codelineno-22-8"></a><span class="w"> </span><span class="n">TreeNode</span><span class="o">?</span><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">_root</span><span class="p">;</span>
<a id="__codelineno-22-9" name="__codelineno-22-9" href="#__codelineno-22-9"></a><span class="w"> </span><span class="n">TreeNode</span><span class="o">?</span><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">null</span><span class="p">;</span>
<a id="__codelineno-22-10" name="__codelineno-22-10" href="#__codelineno-22-10"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-22-11" name="__codelineno-22-11" href="#__codelineno-22-11"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-22-12" name="__codelineno-22-12" href="#__codelineno-22-12"></a><span class="w"> </span><span class="c1">// 找到重複節點,直接返回</span>
<a id="__codelineno-22-13" name="__codelineno-22-13" href="#__codelineno-22-13"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">_num</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-22-14" name="__codelineno-22-14" href="#__codelineno-22-14"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-22-15" name="__codelineno-22-15" href="#__codelineno-22-15"></a><span class="w"> </span><span class="c1">// 插入位置在 cur 的右子樹中</span>
<a id="__codelineno-22-16" name="__codelineno-22-16" href="#__codelineno-22-16"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">_num</span><span class="p">)</span>
<a id="__codelineno-22-17" name="__codelineno-22-17" href="#__codelineno-22-17"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-22-18" name="__codelineno-22-18" href="#__codelineno-22-18"></a><span class="w"> </span><span class="c1">// 插入位置在 cur 的左子樹中</span>
<a id="__codelineno-22-19" name="__codelineno-22-19" href="#__codelineno-22-19"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-22-20" name="__codelineno-22-20" href="#__codelineno-22-20"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-22-21" name="__codelineno-22-21" href="#__codelineno-22-21"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-22-22" name="__codelineno-22-22" href="#__codelineno-22-22"></a><span class="w"> </span><span class="c1">// 插入節點</span>
<a id="__codelineno-22-23" name="__codelineno-22-23" href="#__codelineno-22-23"></a><span class="w"> </span><span class="n">TreeNode</span><span class="o">?</span><span class="w"> </span><span class="n">node</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">TreeNode</span><span class="p">(</span><span class="n">_num</span><span class="p">);</span>
<a id="__codelineno-22-24" name="__codelineno-22-24" href="#__codelineno-22-24"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">pre</span><span class="o">!</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">_num</span><span class="p">)</span>
<a id="__codelineno-22-25" name="__codelineno-22-25" href="#__codelineno-22-25"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="n">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">;</span>
<a id="__codelineno-22-26" name="__codelineno-22-26" href="#__codelineno-22-26"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-22-27" name="__codelineno-22-27" href="#__codelineno-22-27"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">;</span>
<a id="__codelineno-22-28" name="__codelineno-22-28" href="#__codelineno-22-28"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.rs</span><pre><span></span><code><a id="__codelineno-23-1" name="__codelineno-23-1" href="#__codelineno-23-1"></a><span class="cm">/* 插入節點 */</span>
<a id="__codelineno-23-2" name="__codelineno-23-2" href="#__codelineno-23-2"></a><span class="k">pub</span><span class="w"> </span><span class="k">fn</span> <span class="nf">insert</span><span class="p">(</span><span class="o">&amp;</span><span class="k">mut</span><span class="w"> </span><span class="bp">self</span><span class="p">,</span><span class="w"> </span><span class="n">num</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-3" name="__codelineno-23-3" href="#__codelineno-23-3"></a><span class="w"> </span><span class="c1">// 若樹為空,則初始化根節點</span>
<a id="__codelineno-23-4" name="__codelineno-23-4" href="#__codelineno-23-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="bp">self</span><span class="p">.</span><span class="n">root</span><span class="p">.</span><span class="n">is_none</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-5" name="__codelineno-23-5" href="#__codelineno-23-5"></a><span class="w"> </span><span class="bp">self</span><span class="p">.</span><span class="n">root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Some</span><span class="p">(</span><span class="n">TreeNode</span>::<span class="n">new</span><span class="p">(</span><span class="n">num</span><span class="p">));</span>
<a id="__codelineno-23-6" name="__codelineno-23-6" href="#__codelineno-23-6"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-23-7" name="__codelineno-23-7" href="#__codelineno-23-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-23-8" name="__codelineno-23-8" href="#__codelineno-23-8"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="bp">self</span><span class="p">.</span><span class="n">root</span><span class="p">.</span><span class="n">clone</span><span class="p">();</span>
<a id="__codelineno-23-9" name="__codelineno-23-9" href="#__codelineno-23-9"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">None</span><span class="p">;</span>
<a id="__codelineno-23-10" name="__codelineno-23-10" href="#__codelineno-23-10"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-23-11" name="__codelineno-23-11" href="#__codelineno-23-11"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nb">Some</span><span class="p">(</span><span class="n">node</span><span class="p">)</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">clone</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-12" name="__codelineno-23-12" href="#__codelineno-23-12"></a><span class="w"> </span><span class="k">match</span><span class="w"> </span><span class="n">num</span><span class="p">.</span><span class="n">cmp</span><span class="p">(</span><span class="o">&amp;</span><span class="n">node</span><span class="p">.</span><span class="n">borrow</span><span class="p">().</span><span class="n">val</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-13" name="__codelineno-23-13" href="#__codelineno-23-13"></a><span class="w"> </span><span class="c1">// 找到重複節點,直接返回</span>
<a id="__codelineno-23-14" name="__codelineno-23-14" href="#__codelineno-23-14"></a><span class="w"> </span><span class="n">Ordering</span>::<span class="n">Equal</span><span class="w"> </span><span class="o">=&gt;</span><span class="w"> </span><span class="k">return</span><span class="p">,</span>
<a id="__codelineno-23-15" name="__codelineno-23-15" href="#__codelineno-23-15"></a><span class="w"> </span><span class="c1">// 插入位置在 cur 的右子樹中</span>
<a id="__codelineno-23-16" name="__codelineno-23-16" href="#__codelineno-23-16"></a><span class="w"> </span><span class="n">Ordering</span>::<span class="n">Greater</span><span class="w"> </span><span class="o">=&gt;</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-17" name="__codelineno-23-17" href="#__codelineno-23-17"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">clone</span><span class="p">();</span>
<a id="__codelineno-23-18" name="__codelineno-23-18" href="#__codelineno-23-18"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">.</span><span class="n">borrow</span><span class="p">().</span><span class="n">right</span><span class="p">.</span><span class="n">clone</span><span class="p">();</span>
<a id="__codelineno-23-19" name="__codelineno-23-19" href="#__codelineno-23-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-23-20" name="__codelineno-23-20" href="#__codelineno-23-20"></a><span class="w"> </span><span class="c1">// 插入位置在 cur 的左子樹中</span>
<a id="__codelineno-23-21" name="__codelineno-23-21" href="#__codelineno-23-21"></a><span class="w"> </span><span class="n">Ordering</span>::<span class="n">Less</span><span class="w"> </span><span class="o">=&gt;</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-22" name="__codelineno-23-22" href="#__codelineno-23-22"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">clone</span><span class="p">();</span>
<a id="__codelineno-23-23" name="__codelineno-23-23" href="#__codelineno-23-23"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">.</span><span class="n">borrow</span><span class="p">().</span><span class="n">left</span><span class="p">.</span><span class="n">clone</span><span class="p">();</span>
<a id="__codelineno-23-24" name="__codelineno-23-24" href="#__codelineno-23-24"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-23-25" name="__codelineno-23-25" href="#__codelineno-23-25"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-23-26" name="__codelineno-23-26" href="#__codelineno-23-26"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-23-27" name="__codelineno-23-27" href="#__codelineno-23-27"></a><span class="w"> </span><span class="c1">// 插入節點</span>
<a id="__codelineno-23-28" name="__codelineno-23-28" href="#__codelineno-23-28"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="n">unwrap</span><span class="p">();</span>
<a id="__codelineno-23-29" name="__codelineno-23-29" href="#__codelineno-23-29"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">node</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Some</span><span class="p">(</span><span class="n">TreeNode</span>::<span class="n">new</span><span class="p">(</span><span class="n">num</span><span class="p">));</span>
<a id="__codelineno-23-30" name="__codelineno-23-30" href="#__codelineno-23-30"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">num</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="n">borrow</span><span class="p">().</span><span class="n">val</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-31" name="__codelineno-23-31" href="#__codelineno-23-31"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="n">borrow_mut</span><span class="p">().</span><span class="n">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">;</span>
<a id="__codelineno-23-32" name="__codelineno-23-32" href="#__codelineno-23-32"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-33" name="__codelineno-23-33" href="#__codelineno-23-33"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="n">borrow_mut</span><span class="p">().</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">;</span>
<a id="__codelineno-23-34" name="__codelineno-23-34" href="#__codelineno-23-34"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-23-35" name="__codelineno-23-35" href="#__codelineno-23-35"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.c</span><pre><span></span><code><a id="__codelineno-24-1" name="__codelineno-24-1" href="#__codelineno-24-1"></a><span class="cm">/* 插入節點 */</span>
<a id="__codelineno-24-2" name="__codelineno-24-2" href="#__codelineno-24-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">insert</span><span class="p">(</span><span class="n">BinarySearchTree</span><span class="w"> </span><span class="o">*</span><span class="n">bst</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-24-3" name="__codelineno-24-3" href="#__codelineno-24-3"></a><span class="w"> </span><span class="c1">// 若樹為空,則初始化根節點</span>
<a id="__codelineno-24-4" name="__codelineno-24-4" href="#__codelineno-24-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">bst</span><span class="o">-&gt;</span><span class="n">root</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="nb">NULL</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-24-5" name="__codelineno-24-5" href="#__codelineno-24-5"></a><span class="w"> </span><span class="n">bst</span><span class="o">-&gt;</span><span class="n">root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">newTreeNode</span><span class="p">(</span><span class="n">num</span><span class="p">);</span>
<a id="__codelineno-24-6" name="__codelineno-24-6" href="#__codelineno-24-6"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-24-7" name="__codelineno-24-7" href="#__codelineno-24-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-24-8" name="__codelineno-24-8" href="#__codelineno-24-8"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">bst</span><span class="o">-&gt;</span><span class="n">root</span><span class="p">,</span><span class="w"> </span><span class="o">*</span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">NULL</span><span class="p">;</span>
<a id="__codelineno-24-9" name="__codelineno-24-9" href="#__codelineno-24-9"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-24-10" name="__codelineno-24-10" href="#__codelineno-24-10"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="nb">NULL</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-24-11" name="__codelineno-24-11" href="#__codelineno-24-11"></a><span class="w"> </span><span class="c1">// 找到重複節點,直接返回</span>
<a id="__codelineno-24-12" name="__codelineno-24-12" href="#__codelineno-24-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-24-13" name="__codelineno-24-13" href="#__codelineno-24-13"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-24-14" name="__codelineno-24-14" href="#__codelineno-24-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-24-15" name="__codelineno-24-15" href="#__codelineno-24-15"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-24-16" name="__codelineno-24-16" href="#__codelineno-24-16"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-24-17" name="__codelineno-24-17" href="#__codelineno-24-17"></a><span class="w"> </span><span class="c1">// 插入位置在 cur 的右子樹中</span>
<a id="__codelineno-24-18" name="__codelineno-24-18" href="#__codelineno-24-18"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-24-19" name="__codelineno-24-19" href="#__codelineno-24-19"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-24-20" name="__codelineno-24-20" href="#__codelineno-24-20"></a><span class="w"> </span><span class="c1">// 插入位置在 cur 的左子樹中</span>
<a id="__codelineno-24-21" name="__codelineno-24-21" href="#__codelineno-24-21"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-24-22" name="__codelineno-24-22" href="#__codelineno-24-22"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-24-23" name="__codelineno-24-23" href="#__codelineno-24-23"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-24-24" name="__codelineno-24-24" href="#__codelineno-24-24"></a><span class="w"> </span><span class="c1">// 插入節點</span>
<a id="__codelineno-24-25" name="__codelineno-24-25" href="#__codelineno-24-25"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="n">node</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">newTreeNode</span><span class="p">(</span><span class="n">num</span><span class="p">);</span>
<a id="__codelineno-24-26" name="__codelineno-24-26" href="#__codelineno-24-26"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">pre</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-24-27" name="__codelineno-24-27" href="#__codelineno-24-27"></a><span class="w"> </span><span class="n">pre</span><span class="o">-&gt;</span><span class="n">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">;</span>
<a id="__codelineno-24-28" name="__codelineno-24-28" href="#__codelineno-24-28"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-24-29" name="__codelineno-24-29" href="#__codelineno-24-29"></a><span class="w"> </span><span class="n">pre</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">;</span>
<a id="__codelineno-24-30" name="__codelineno-24-30" href="#__codelineno-24-30"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-24-31" name="__codelineno-24-31" href="#__codelineno-24-31"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.kt</span><pre><span></span><code><a id="__codelineno-25-1" name="__codelineno-25-1" href="#__codelineno-25-1"></a><span class="cm">/* 插入節點 */</span>
<a id="__codelineno-25-2" name="__codelineno-25-2" href="#__codelineno-25-2"></a><span class="kd">fun</span><span class="w"> </span><span class="nf">insert</span><span class="p">(</span><span class="n">num</span><span class="p">:</span><span class="w"> </span><span class="kt">Int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-25-3" name="__codelineno-25-3" href="#__codelineno-25-3"></a><span class="w"> </span><span class="c1">// 若樹為空,則初始化根節點</span>
<a id="__codelineno-25-4" name="__codelineno-25-4" href="#__codelineno-25-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">root</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-25-5" name="__codelineno-25-5" href="#__codelineno-25-5"></a><span class="w"> </span><span class="n">root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">TreeNode</span><span class="p">(</span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-25-6" name="__codelineno-25-6" href="#__codelineno-25-6"></a><span class="w"> </span><span class="k">return</span>
<a id="__codelineno-25-7" name="__codelineno-25-7" href="#__codelineno-25-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-25-8" name="__codelineno-25-8" href="#__codelineno-25-8"></a><span class="w"> </span><span class="kd">var</span><span class="w"> </span><span class="nv">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">root</span>
<a id="__codelineno-25-9" name="__codelineno-25-9" href="#__codelineno-25-9"></a><span class="w"> </span><span class="kd">var</span><span class="w"> </span><span class="nv">pre</span><span class="p">:</span><span class="w"> </span><span class="n">TreeNode? </span><span class="o">=</span><span class="w"> </span><span class="kc">null</span>
<a id="__codelineno-25-10" name="__codelineno-25-10" href="#__codelineno-25-10"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-25-11" name="__codelineno-25-11" href="#__codelineno-25-11"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-25-12" name="__codelineno-25-12" href="#__codelineno-25-12"></a><span class="w"> </span><span class="c1">// 找到重複節點,直接返回</span>
<a id="__codelineno-25-13" name="__codelineno-25-13" href="#__codelineno-25-13"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="na">_val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-25-14" name="__codelineno-25-14" href="#__codelineno-25-14"></a><span class="w"> </span><span class="k">return</span>
<a id="__codelineno-25-15" name="__codelineno-25-15" href="#__codelineno-25-15"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span>
<a id="__codelineno-25-16" name="__codelineno-25-16" href="#__codelineno-25-16"></a><span class="w"> </span><span class="c1">// 插入位置在 cur 的右子樹中</span>
<a id="__codelineno-25-17" name="__codelineno-25-17" href="#__codelineno-25-17"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="na">_val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-25-18" name="__codelineno-25-18" href="#__codelineno-25-18"></a><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">right</span>
<a id="__codelineno-25-19" name="__codelineno-25-19" href="#__codelineno-25-19"></a><span class="w"> </span><span class="c1">// 插入位置在 cur 的左子樹中</span>
<a id="__codelineno-25-20" name="__codelineno-25-20" href="#__codelineno-25-20"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-25-21" name="__codelineno-25-21" href="#__codelineno-25-21"></a><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">left</span>
<a id="__codelineno-25-22" name="__codelineno-25-22" href="#__codelineno-25-22"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-25-23" name="__codelineno-25-23" href="#__codelineno-25-23"></a><span class="w"> </span><span class="c1">// 插入節點</span>
<a id="__codelineno-25-24" name="__codelineno-25-24" href="#__codelineno-25-24"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">node</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">TreeNode</span><span class="p">(</span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-25-25" name="__codelineno-25-25" href="#__codelineno-25-25"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">pre</span><span class="o">?.</span><span class="na">_val</span><span class="o">!!</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-25-26" name="__codelineno-25-26" href="#__codelineno-25-26"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="na">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span>
<a id="__codelineno-25-27" name="__codelineno-25-27" href="#__codelineno-25-27"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-25-28" name="__codelineno-25-28" href="#__codelineno-25-28"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="na">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span>
<a id="__codelineno-25-29" name="__codelineno-25-29" href="#__codelineno-25-29"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.rb</span><pre><span></span><code><a id="__codelineno-26-1" name="__codelineno-26-1" href="#__codelineno-26-1"></a><span class="c1">### 插入節點 ###</span>
<a id="__codelineno-26-2" name="__codelineno-26-2" href="#__codelineno-26-2"></a><span class="k">def</span><span class="w"> </span><span class="nf">insert</span><span class="p">(</span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-26-3" name="__codelineno-26-3" href="#__codelineno-26-3"></a><span class="w"> </span><span class="c1"># 若樹為空,則初始化根節點</span>
<a id="__codelineno-26-4" name="__codelineno-26-4" href="#__codelineno-26-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="vi">@root</span><span class="o">.</span><span class="n">nil?</span>
<a id="__codelineno-26-5" name="__codelineno-26-5" href="#__codelineno-26-5"></a><span class="w"> </span><span class="vi">@root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="no">TreeNode</span><span class="o">.</span><span class="n">new</span><span class="p">(</span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-26-6" name="__codelineno-26-6" href="#__codelineno-26-6"></a><span class="w"> </span><span class="k">return</span>
<a id="__codelineno-26-7" name="__codelineno-26-7" href="#__codelineno-26-7"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-26-8" name="__codelineno-26-8" href="#__codelineno-26-8"></a>
<a id="__codelineno-26-9" name="__codelineno-26-9" href="#__codelineno-26-9"></a><span class="w"> </span><span class="c1"># 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-26-10" name="__codelineno-26-10" href="#__codelineno-26-10"></a><span class="w"> </span><span class="n">cur</span><span class="p">,</span><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="vi">@root</span><span class="p">,</span><span class="w"> </span><span class="kp">nil</span>
<a id="__codelineno-26-11" name="__codelineno-26-11" href="#__codelineno-26-11"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="o">!</span><span class="n">cur</span><span class="o">.</span><span class="n">nil?</span>
<a id="__codelineno-26-12" name="__codelineno-26-12" href="#__codelineno-26-12"></a><span class="w"> </span><span class="c1"># 找到重複節點,直接返回</span>
<a id="__codelineno-26-13" name="__codelineno-26-13" href="#__codelineno-26-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">cur</span><span class="o">.</span><span class="n">val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">num</span>
<a id="__codelineno-26-14" name="__codelineno-26-14" href="#__codelineno-26-14"></a>
<a id="__codelineno-26-15" name="__codelineno-26-15" href="#__codelineno-26-15"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span>
<a id="__codelineno-26-16" name="__codelineno-26-16" href="#__codelineno-26-16"></a><span class="w"> </span><span class="c1"># 插入位置在 cur 的右子樹中</span>
<a id="__codelineno-26-17" name="__codelineno-26-17" href="#__codelineno-26-17"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">cur</span><span class="o">.</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span>
<a id="__codelineno-26-18" name="__codelineno-26-18" href="#__codelineno-26-18"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">.</span><span class="n">right</span>
<a id="__codelineno-26-19" name="__codelineno-26-19" href="#__codelineno-26-19"></a><span class="w"> </span><span class="c1"># 插入位置在 cur 的左子樹中</span>
<a id="__codelineno-26-20" name="__codelineno-26-20" href="#__codelineno-26-20"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-26-21" name="__codelineno-26-21" href="#__codelineno-26-21"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">.</span><span class="n">left</span>
<a id="__codelineno-26-22" name="__codelineno-26-22" href="#__codelineno-26-22"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-26-23" name="__codelineno-26-23" href="#__codelineno-26-23"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-26-24" name="__codelineno-26-24" href="#__codelineno-26-24"></a>
<a id="__codelineno-26-25" name="__codelineno-26-25" href="#__codelineno-26-25"></a><span class="w"> </span><span class="c1"># 插入節點</span>
<a id="__codelineno-26-26" name="__codelineno-26-26" href="#__codelineno-26-26"></a><span class="w"> </span><span class="n">node</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="no">TreeNode</span><span class="o">.</span><span class="n">new</span><span class="p">(</span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-26-27" name="__codelineno-26-27" href="#__codelineno-26-27"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">pre</span><span class="o">.</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span>
<a id="__codelineno-26-28" name="__codelineno-26-28" href="#__codelineno-26-28"></a><span class="w"> </span><span class="n">pre</span><span class="o">.</span><span class="n">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span>
<a id="__codelineno-26-29" name="__codelineno-26-29" href="#__codelineno-26-29"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-26-30" name="__codelineno-26-30" href="#__codelineno-26-30"></a><span class="w"> </span><span class="n">pre</span><span class="o">.</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span>
<a id="__codelineno-26-31" name="__codelineno-26-31" href="#__codelineno-26-31"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-26-32" name="__codelineno-26-32" href="#__codelineno-26-32"></a><span class="k">end</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.zig</span><pre><span></span><code><a id="__codelineno-27-1" name="__codelineno-27-1" href="#__codelineno-27-1"></a><span class="c1">// 插入節點</span>
<a id="__codelineno-27-2" name="__codelineno-27-2" href="#__codelineno-27-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">insert</span><span class="p">(</span><span class="n">self</span><span class="o">:</span><span class="w"> </span><span class="o">*</span><span class="n">Self</span><span class="p">,</span><span class="w"> </span><span class="n">num</span><span class="o">:</span><span class="w"> </span><span class="n">T</span><span class="p">)</span><span class="w"> </span><span class="o">!</span><span class="kt">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-27-3" name="__codelineno-27-3" href="#__codelineno-27-3"></a><span class="w"> </span><span class="c1">// 若樹為空,則初始化根節點</span>
<a id="__codelineno-27-4" name="__codelineno-27-4" href="#__codelineno-27-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">self</span><span class="p">.</span><span class="n">root</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-27-5" name="__codelineno-27-5" href="#__codelineno-27-5"></a><span class="w"> </span><span class="n">self</span><span class="p">.</span><span class="n">root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">try</span><span class="w"> </span><span class="n">self</span><span class="p">.</span><span class="n">mem_allocator</span><span class="p">.</span><span class="n">create</span><span class="p">(</span><span class="n">inc</span><span class="p">.</span><span class="n">TreeNode</span><span class="p">(</span><span class="n">T</span><span class="p">));</span>
<a id="__codelineno-27-6" name="__codelineno-27-6" href="#__codelineno-27-6"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-27-7" name="__codelineno-27-7" href="#__codelineno-27-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-27-8" name="__codelineno-27-8" href="#__codelineno-27-8"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">self</span><span class="p">.</span><span class="n">root</span><span class="p">;</span>
<a id="__codelineno-27-9" name="__codelineno-27-9" href="#__codelineno-27-9"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">pre</span><span class="o">:</span><span class="w"> </span><span class="o">?*</span><span class="n">inc</span><span class="p">.</span><span class="n">TreeNode</span><span class="p">(</span><span class="n">T</span><span class="p">)</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">null</span><span class="p">;</span>
<a id="__codelineno-27-10" name="__codelineno-27-10" href="#__codelineno-27-10"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-27-11" name="__codelineno-27-11" href="#__codelineno-27-11"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-27-12" name="__codelineno-27-12" href="#__codelineno-27-12"></a><span class="w"> </span><span class="c1">// 找到重複節點,直接返回</span>
<a id="__codelineno-27-13" name="__codelineno-27-13" href="#__codelineno-27-13"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-27-14" name="__codelineno-27-14" href="#__codelineno-27-14"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-27-15" name="__codelineno-27-15" href="#__codelineno-27-15"></a><span class="w"> </span><span class="c1">// 插入位置在 cur 的右子樹中</span>
<a id="__codelineno-27-16" name="__codelineno-27-16" href="#__codelineno-27-16"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-27-17" name="__codelineno-27-17" href="#__codelineno-27-17"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-27-18" name="__codelineno-27-18" href="#__codelineno-27-18"></a><span class="w"> </span><span class="c1">// 插入位置在 cur 的左子樹中</span>
<a id="__codelineno-27-19" name="__codelineno-27-19" href="#__codelineno-27-19"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-27-20" name="__codelineno-27-20" href="#__codelineno-27-20"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-27-21" name="__codelineno-27-21" href="#__codelineno-27-21"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-27-22" name="__codelineno-27-22" href="#__codelineno-27-22"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-27-23" name="__codelineno-27-23" href="#__codelineno-27-23"></a><span class="w"> </span><span class="c1">// 插入節點</span>
<a id="__codelineno-27-24" name="__codelineno-27-24" href="#__codelineno-27-24"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">node</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">try</span><span class="w"> </span><span class="n">self</span><span class="p">.</span><span class="n">mem_allocator</span><span class="p">.</span><span class="n">create</span><span class="p">(</span><span class="n">inc</span><span class="p">.</span><span class="n">TreeNode</span><span class="p">(</span><span class="n">T</span><span class="p">));</span>
<a id="__codelineno-27-25" name="__codelineno-27-25" href="#__codelineno-27-25"></a><span class="w"> </span><span class="n">node</span><span class="p">.</span><span class="n">init</span><span class="p">(</span><span class="n">num</span><span class="p">);</span>
<a id="__codelineno-27-26" name="__codelineno-27-26" href="#__codelineno-27-26"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">pre</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-27-27" name="__codelineno-27-27" href="#__codelineno-27-27"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">;</span>
<a id="__codelineno-27-28" name="__codelineno-27-28" href="#__codelineno-27-28"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-27-29" name="__codelineno-27-29" href="#__codelineno-27-29"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">;</span>
<a id="__codelineno-27-30" name="__codelineno-27-30" href="#__codelineno-27-30"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-27-31" name="__codelineno-27-31" href="#__codelineno-27-31"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<details class="pythontutor">
<summary>視覺化執行</summary>
<p><div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=class%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%A8%B9%E7%AF%80%E9%BB%9E%E9%A1%9E%E5%88%A5%22%22%22%0A%20%20%20%20def%20__init__%28self%2C%20val%29%3A%0A%20%20%20%20%20%20%20%20self.val%20%3D%20val%0A%20%20%20%20%20%20%20%20self.left%20%3D%20None%0A%20%20%20%20%20%20%20%20self.right%20%3D%20None%0A%0A%0Aclass%20BinarySearchTree%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%22%22%22%0A%0A%20%20%20%20def%20__init__%28self%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E5%BB%BA%E6%A7%8B%E5%AD%90%22%22%22%0A%20%20%20%20%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E7%A9%BA%E6%A8%B9%0A%20%20%20%20%20%20%20%20self._root%20%3D%20None%0A%0A%20%20%20%20def%20insert%28self%2C%20num%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%22%22%22%0A%20%20%20%20%20%20%20%20%23%20%E8%8B%A5%E6%A8%B9%E7%82%BA%E7%A9%BA%EF%BC%8C%E5%89%87%E5%88%9D%E5%A7%8B%E5%8C%96%E6%A0%B9%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20if%20self._root%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20self._root%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%23%20%E8%BF%B4%E5%9C%88%E6%9F%A5%E8%A9%A2%EF%BC%8C%E8%B6%8A%E9%81%8E%E8%91%89%E7%AF%80%E9%BB%9E%E5%BE%8C%E8%B7%B3%E5%87%BA%0A%20%20%20%20%20%20%20%20cur%2C%20pre%20%3D%20self._root%2C%20None%0A%20%20%20%20%20%20%20%20while%20cur%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%89%BE%E5%88%B0%E9%87%8D%E8%A4%87%E7%AF%80%E9%BB%9E%EF%BC%8C%E7%9B%B4%E6%8E%A5%E8%BF%94%E5%9B%9E%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3D%3D%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%20%20%20%20pre%20%3D%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E4%BD%8D%E7%BD%AE%E5%9C%A8%20cur%20%E7%9A%84%E5%8F%B3%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E4%BD%8D%E7%BD%AE%E5%9C%A8%20cur%20%E7%9A%84%E5%B7%A6%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.left%0A%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20node%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20if%20pre.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.right%20%3D%20node%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.left%20%3D%20node%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%0A%20%20%20%20bst%20%3D%20BinarySearchTree%28%29%0A%20%20%20%20nums%20%3D%20%5B4%2C%202%2C%206%2C%201%2C%203%2C%205%2C%207%5D%0A%20%20%20%20for%20num%20in%20nums%3A%0A%20%20%20%20%20%20%20%20bst.insert%28num%29%0A%0A%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%0A%20%20%20%20bst.insert%2816%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=162&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=class%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%A8%B9%E7%AF%80%E9%BB%9E%E9%A1%9E%E5%88%A5%22%22%22%0A%20%20%20%20def%20__init__%28self%2C%20val%29%3A%0A%20%20%20%20%20%20%20%20self.val%20%3D%20val%0A%20%20%20%20%20%20%20%20self.left%20%3D%20None%0A%20%20%20%20%20%20%20%20self.right%20%3D%20None%0A%0A%0Aclass%20BinarySearchTree%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%22%22%22%0A%0A%20%20%20%20def%20__init__%28self%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E5%BB%BA%E6%A7%8B%E5%AD%90%22%22%22%0A%20%20%20%20%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E7%A9%BA%E6%A8%B9%0A%20%20%20%20%20%20%20%20self._root%20%3D%20None%0A%0A%20%20%20%20def%20insert%28self%2C%20num%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%22%22%22%0A%20%20%20%20%20%20%20%20%23%20%E8%8B%A5%E6%A8%B9%E7%82%BA%E7%A9%BA%EF%BC%8C%E5%89%87%E5%88%9D%E5%A7%8B%E5%8C%96%E6%A0%B9%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20if%20self._root%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20self._root%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%23%20%E8%BF%B4%E5%9C%88%E6%9F%A5%E8%A9%A2%EF%BC%8C%E8%B6%8A%E9%81%8E%E8%91%89%E7%AF%80%E9%BB%9E%E5%BE%8C%E8%B7%B3%E5%87%BA%0A%20%20%20%20%20%20%20%20cur%2C%20pre%20%3D%20self._root%2C%20None%0A%20%20%20%20%20%20%20%20while%20cur%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%89%BE%E5%88%B0%E9%87%8D%E8%A4%87%E7%AF%80%E9%BB%9E%EF%BC%8C%E7%9B%B4%E6%8E%A5%E8%BF%94%E5%9B%9E%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3D%3D%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%20%20%20%20pre%20%3D%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E4%BD%8D%E7%BD%AE%E5%9C%A8%20cur%20%E7%9A%84%E5%8F%B3%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E4%BD%8D%E7%BD%AE%E5%9C%A8%20cur%20%E7%9A%84%E5%B7%A6%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.left%0A%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20node%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20if%20pre.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.right%20%3D%20node%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.left%20%3D%20node%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%0A%20%20%20%20bst%20%3D%20BinarySearchTree%28%29%0A%20%20%20%20nums%20%3D%20%5B4%2C%202%2C%206%2C%201%2C%203%2C%205%2C%207%5D%0A%20%20%20%20for%20num%20in%20nums%3A%0A%20%20%20%20%20%20%20%20bst.insert%28num%29%0A%0A%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%0A%20%20%20%20bst.insert%2816%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=162&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 &gt;</a></div></p>
</details>
<p>與查詢節點相同,插入節點使用 <span class="arithmatex">\(O(\log n)\)</span> 時間。</p>
<h3 id="3">3. &nbsp; 刪除節點<a class="headerlink" href="#3" title="Permanent link">&para;</a></h3>
<p>先在二元樹中查詢到目標節點,再將其刪除。與插入節點類似,我們需要保證在刪除操作完成後,二元搜尋樹的“左子樹 &lt; 根節點 &lt; 右子樹”的性質仍然滿足。因此,我們根據目標節點的子節點數量,分 0、1 和 2 三種情況,執行對應的刪除節點操作。</p>
<p>如圖 7-19 所示,當待刪除節點的度為 <span class="arithmatex">\(0\)</span> 時,表示該節點是葉節點,可以直接刪除。</p>
<p><a class="glightbox" href="../binary_search_tree.assets/bst_remove_case1.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="在二元搜尋樹中刪除節點(度為 0 " class="animation-figure" src="../binary_search_tree.assets/bst_remove_case1.png" /></a></p>
<p align="center"> 圖 7-19 &nbsp; 在二元搜尋樹中刪除節點(度為 0 </p>
<p>如圖 7-20 所示,當待刪除節點的度為 <span class="arithmatex">\(1\)</span> 時,將待刪除節點替換為其子節點即可。</p>
<p><a class="glightbox" href="../binary_search_tree.assets/bst_remove_case2.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="在二元搜尋樹中刪除節點(度為 1 " class="animation-figure" src="../binary_search_tree.assets/bst_remove_case2.png" /></a></p>
<p align="center"> 圖 7-20 &nbsp; 在二元搜尋樹中刪除節點(度為 1 </p>
<p>當待刪除節點的度為 <span class="arithmatex">\(2\)</span> 時,我們無法直接刪除它,而需要使用一個節點替換該節點。由於要保持二元搜尋樹“左子樹 <span class="arithmatex">\(&lt;\)</span> 根節點 <span class="arithmatex">\(&lt;\)</span> 右子樹”的性質,<strong>因此這個節點可以是右子樹的最小節點或左子樹的最大節點</strong></p>
<p>假設我們選擇右子樹的最小節點(中序走訪的下一個節點),則刪除操作流程如圖 7-21 所示。</p>
<ol>
<li>找到待刪除節點在“中序走訪序列”中的下一個節點,記為 <code>tmp</code></li>
<li><code>tmp</code> 的值覆蓋待刪除節點的值,並在樹中遞迴刪除節點 <code>tmp</code></li>
</ol>
<div class="tabbed-set tabbed-alternate" data-tabs="4:4"><input checked="checked" id="__tabbed_4_1" name="__tabbed_4" type="radio" /><input id="__tabbed_4_2" name="__tabbed_4" type="radio" /><input id="__tabbed_4_3" name="__tabbed_4" type="radio" /><input id="__tabbed_4_4" name="__tabbed_4" type="radio" /><div class="tabbed-labels"><label for="__tabbed_4_1">&lt;1&gt;</label><label for="__tabbed_4_2">&lt;2&gt;</label><label for="__tabbed_4_3">&lt;3&gt;</label><label for="__tabbed_4_4">&lt;4&gt;</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<p><a class="glightbox" href="../binary_search_tree.assets/bst_remove_case3_step1.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="在二元搜尋樹中刪除節點(度為 2 " class="animation-figure" src="../binary_search_tree.assets/bst_remove_case3_step1.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../binary_search_tree.assets/bst_remove_case3_step2.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="bst_remove_case3_step2" class="animation-figure" src="../binary_search_tree.assets/bst_remove_case3_step2.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../binary_search_tree.assets/bst_remove_case3_step3.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="bst_remove_case3_step3" class="animation-figure" src="../binary_search_tree.assets/bst_remove_case3_step3.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../binary_search_tree.assets/bst_remove_case3_step4.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="bst_remove_case3_step4" class="animation-figure" src="../binary_search_tree.assets/bst_remove_case3_step4.png" /></a></p>
</div>
</div>
</div>
<p align="center"> 圖 7-21 &nbsp; 在二元搜尋樹中刪除節點(度為 2 </p>
<p>刪除節點操作同樣使用 <span class="arithmatex">\(O(\log n)\)</span> 時間,其中查詢待刪除節點需要 <span class="arithmatex">\(O(\log n)\)</span> 時間,獲取中序走訪後繼節點需要 <span class="arithmatex">\(O(\log n)\)</span> 時間。示例程式碼如下:</p>
<div class="tabbed-set tabbed-alternate" data-tabs="5:14"><input checked="checked" id="__tabbed_5_1" name="__tabbed_5" type="radio" /><input id="__tabbed_5_2" name="__tabbed_5" type="radio" /><input id="__tabbed_5_3" name="__tabbed_5" type="radio" /><input id="__tabbed_5_4" name="__tabbed_5" type="radio" /><input id="__tabbed_5_5" name="__tabbed_5" type="radio" /><input id="__tabbed_5_6" name="__tabbed_5" type="radio" /><input id="__tabbed_5_7" name="__tabbed_5" type="radio" /><input id="__tabbed_5_8" name="__tabbed_5" type="radio" /><input id="__tabbed_5_9" name="__tabbed_5" type="radio" /><input id="__tabbed_5_10" name="__tabbed_5" type="radio" /><input id="__tabbed_5_11" name="__tabbed_5" type="radio" /><input id="__tabbed_5_12" name="__tabbed_5" type="radio" /><input id="__tabbed_5_13" name="__tabbed_5" type="radio" /><input id="__tabbed_5_14" name="__tabbed_5" type="radio" /><div class="tabbed-labels"><label for="__tabbed_5_1">Python</label><label for="__tabbed_5_2">C++</label><label for="__tabbed_5_3">Java</label><label for="__tabbed_5_4">C#</label><label for="__tabbed_5_5">Go</label><label for="__tabbed_5_6">Swift</label><label for="__tabbed_5_7">JS</label><label for="__tabbed_5_8">TS</label><label for="__tabbed_5_9">Dart</label><label for="__tabbed_5_10">Rust</label><label for="__tabbed_5_11">C</label><label for="__tabbed_5_12">Kotlin</label><label for="__tabbed_5_13">Ruby</label><label for="__tabbed_5_14">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.py</span><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a><span class="k">def</span> <span class="nf">remove</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">num</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span>
<a id="__codelineno-28-2" name="__codelineno-28-2" href="#__codelineno-28-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;刪除節點&quot;&quot;&quot;</span>
<a id="__codelineno-28-3" name="__codelineno-28-3" href="#__codelineno-28-3"></a> <span class="c1"># 若樹為空,直接提前返回</span>
<a id="__codelineno-28-4" name="__codelineno-28-4" href="#__codelineno-28-4"></a> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_root</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-28-5" name="__codelineno-28-5" href="#__codelineno-28-5"></a> <span class="k">return</span>
<a id="__codelineno-28-6" name="__codelineno-28-6" href="#__codelineno-28-6"></a> <span class="c1"># 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-28-7" name="__codelineno-28-7" href="#__codelineno-28-7"></a> <span class="n">cur</span><span class="p">,</span> <span class="n">pre</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_root</span><span class="p">,</span> <span class="kc">None</span>
<a id="__codelineno-28-8" name="__codelineno-28-8" href="#__codelineno-28-8"></a> <span class="k">while</span> <span class="n">cur</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-28-9" name="__codelineno-28-9" href="#__codelineno-28-9"></a> <span class="c1"># 找到待刪除節點,跳出迴圈</span>
<a id="__codelineno-28-10" name="__codelineno-28-10" href="#__codelineno-28-10"></a> <span class="k">if</span> <span class="n">cur</span><span class="o">.</span><span class="n">val</span> <span class="o">==</span> <span class="n">num</span><span class="p">:</span>
<a id="__codelineno-28-11" name="__codelineno-28-11" href="#__codelineno-28-11"></a> <span class="k">break</span>
<a id="__codelineno-28-12" name="__codelineno-28-12" href="#__codelineno-28-12"></a> <span class="n">pre</span> <span class="o">=</span> <span class="n">cur</span>
<a id="__codelineno-28-13" name="__codelineno-28-13" href="#__codelineno-28-13"></a> <span class="c1"># 待刪除節點在 cur 的右子樹中</span>
<a id="__codelineno-28-14" name="__codelineno-28-14" href="#__codelineno-28-14"></a> <span class="k">if</span> <span class="n">cur</span><span class="o">.</span><span class="n">val</span> <span class="o">&lt;</span> <span class="n">num</span><span class="p">:</span>
<a id="__codelineno-28-15" name="__codelineno-28-15" href="#__codelineno-28-15"></a> <span class="n">cur</span> <span class="o">=</span> <span class="n">cur</span><span class="o">.</span><span class="n">right</span>
<a id="__codelineno-28-16" name="__codelineno-28-16" href="#__codelineno-28-16"></a> <span class="c1"># 待刪除節點在 cur 的左子樹中</span>
<a id="__codelineno-28-17" name="__codelineno-28-17" href="#__codelineno-28-17"></a> <span class="k">else</span><span class="p">:</span>
<a id="__codelineno-28-18" name="__codelineno-28-18" href="#__codelineno-28-18"></a> <span class="n">cur</span> <span class="o">=</span> <span class="n">cur</span><span class="o">.</span><span class="n">left</span>
<a id="__codelineno-28-19" name="__codelineno-28-19" href="#__codelineno-28-19"></a> <span class="c1"># 若無待刪除節點,則直接返回</span>
<a id="__codelineno-28-20" name="__codelineno-28-20" href="#__codelineno-28-20"></a> <span class="k">if</span> <span class="n">cur</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-28-21" name="__codelineno-28-21" href="#__codelineno-28-21"></a> <span class="k">return</span>
<a id="__codelineno-28-22" name="__codelineno-28-22" href="#__codelineno-28-22"></a>
<a id="__codelineno-28-23" name="__codelineno-28-23" href="#__codelineno-28-23"></a> <span class="c1"># 子節點數量 = 0 or 1</span>
<a id="__codelineno-28-24" name="__codelineno-28-24" href="#__codelineno-28-24"></a> <span class="k">if</span> <span class="n">cur</span><span class="o">.</span><span class="n">left</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">cur</span><span class="o">.</span><span class="n">right</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-28-25" name="__codelineno-28-25" href="#__codelineno-28-25"></a> <span class="c1"># 當子節點數量 = 0 / 1 時, child = null / 該子節點</span>
<a id="__codelineno-28-26" name="__codelineno-28-26" href="#__codelineno-28-26"></a> <span class="n">child</span> <span class="o">=</span> <span class="n">cur</span><span class="o">.</span><span class="n">left</span> <span class="ow">or</span> <span class="n">cur</span><span class="o">.</span><span class="n">right</span>
<a id="__codelineno-28-27" name="__codelineno-28-27" href="#__codelineno-28-27"></a> <span class="c1"># 刪除節點 cur</span>
<a id="__codelineno-28-28" name="__codelineno-28-28" href="#__codelineno-28-28"></a> <span class="k">if</span> <span class="n">cur</span> <span class="o">!=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_root</span><span class="p">:</span>
<a id="__codelineno-28-29" name="__codelineno-28-29" href="#__codelineno-28-29"></a> <span class="k">if</span> <span class="n">pre</span><span class="o">.</span><span class="n">left</span> <span class="o">==</span> <span class="n">cur</span><span class="p">:</span>
<a id="__codelineno-28-30" name="__codelineno-28-30" href="#__codelineno-28-30"></a> <span class="n">pre</span><span class="o">.</span><span class="n">left</span> <span class="o">=</span> <span class="n">child</span>
<a id="__codelineno-28-31" name="__codelineno-28-31" href="#__codelineno-28-31"></a> <span class="k">else</span><span class="p">:</span>
<a id="__codelineno-28-32" name="__codelineno-28-32" href="#__codelineno-28-32"></a> <span class="n">pre</span><span class="o">.</span><span class="n">right</span> <span class="o">=</span> <span class="n">child</span>
<a id="__codelineno-28-33" name="__codelineno-28-33" href="#__codelineno-28-33"></a> <span class="k">else</span><span class="p">:</span>
<a id="__codelineno-28-34" name="__codelineno-28-34" href="#__codelineno-28-34"></a> <span class="c1"># 若刪除節點為根節點,則重新指定根節點</span>
<a id="__codelineno-28-35" name="__codelineno-28-35" href="#__codelineno-28-35"></a> <span class="bp">self</span><span class="o">.</span><span class="n">_root</span> <span class="o">=</span> <span class="n">child</span>
<a id="__codelineno-28-36" name="__codelineno-28-36" href="#__codelineno-28-36"></a> <span class="c1"># 子節點數量 = 2</span>
<a id="__codelineno-28-37" name="__codelineno-28-37" href="#__codelineno-28-37"></a> <span class="k">else</span><span class="p">:</span>
<a id="__codelineno-28-38" name="__codelineno-28-38" href="#__codelineno-28-38"></a> <span class="c1"># 獲取中序走訪中 cur 的下一個節點</span>
<a id="__codelineno-28-39" name="__codelineno-28-39" href="#__codelineno-28-39"></a> <span class="n">tmp</span><span class="p">:</span> <span class="n">TreeNode</span> <span class="o">=</span> <span class="n">cur</span><span class="o">.</span><span class="n">right</span>
<a id="__codelineno-28-40" name="__codelineno-28-40" href="#__codelineno-28-40"></a> <span class="k">while</span> <span class="n">tmp</span><span class="o">.</span><span class="n">left</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-28-41" name="__codelineno-28-41" href="#__codelineno-28-41"></a> <span class="n">tmp</span> <span class="o">=</span> <span class="n">tmp</span><span class="o">.</span><span class="n">left</span>
<a id="__codelineno-28-42" name="__codelineno-28-42" href="#__codelineno-28-42"></a> <span class="c1"># 遞迴刪除節點 tmp</span>
<a id="__codelineno-28-43" name="__codelineno-28-43" href="#__codelineno-28-43"></a> <span class="bp">self</span><span class="o">.</span><span class="n">remove</span><span class="p">(</span><span class="n">tmp</span><span class="o">.</span><span class="n">val</span><span class="p">)</span>
<a id="__codelineno-28-44" name="__codelineno-28-44" href="#__codelineno-28-44"></a> <span class="c1"># 用 tmp 覆蓋 cur</span>
<a id="__codelineno-28-45" name="__codelineno-28-45" href="#__codelineno-28-45"></a> <span class="n">cur</span><span class="o">.</span><span class="n">val</span> <span class="o">=</span> <span class="n">tmp</span><span class="o">.</span><span class="n">val</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.cpp</span><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a><span class="cm">/* 刪除節點 */</span>
<a id="__codelineno-29-2" name="__codelineno-29-2" href="#__codelineno-29-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">remove</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-3" name="__codelineno-29-3" href="#__codelineno-29-3"></a><span class="w"> </span><span class="c1">// 若樹為空,直接提前返回</span>
<a id="__codelineno-29-4" name="__codelineno-29-4" href="#__codelineno-29-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">root</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="k">nullptr</span><span class="p">)</span>
<a id="__codelineno-29-5" name="__codelineno-29-5" href="#__codelineno-29-5"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-29-6" name="__codelineno-29-6" href="#__codelineno-29-6"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">root</span><span class="p">,</span><span class="w"> </span><span class="o">*</span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">nullptr</span><span class="p">;</span>
<a id="__codelineno-29-7" name="__codelineno-29-7" href="#__codelineno-29-7"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-29-8" name="__codelineno-29-8" href="#__codelineno-29-8"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="k">nullptr</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-9" name="__codelineno-29-9" href="#__codelineno-29-9"></a><span class="w"> </span><span class="c1">// 找到待刪除節點,跳出迴圈</span>
<a id="__codelineno-29-10" name="__codelineno-29-10" href="#__codelineno-29-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-29-11" name="__codelineno-29-11" href="#__codelineno-29-11"></a><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-29-12" name="__codelineno-29-12" href="#__codelineno-29-12"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-29-13" name="__codelineno-29-13" href="#__codelineno-29-13"></a><span class="w"> </span><span class="c1">// 待刪除節點在 cur 的右子樹中</span>
<a id="__codelineno-29-14" name="__codelineno-29-14" href="#__codelineno-29-14"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-29-15" name="__codelineno-29-15" href="#__codelineno-29-15"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-29-16" name="__codelineno-29-16" href="#__codelineno-29-16"></a><span class="w"> </span><span class="c1">// 待刪除節點在 cur 的左子樹中</span>
<a id="__codelineno-29-17" name="__codelineno-29-17" href="#__codelineno-29-17"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-29-18" name="__codelineno-29-18" href="#__codelineno-29-18"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-29-19" name="__codelineno-29-19" href="#__codelineno-29-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-29-20" name="__codelineno-29-20" href="#__codelineno-29-20"></a><span class="w"> </span><span class="c1">// 若無待刪除節點,則直接返回</span>
<a id="__codelineno-29-21" name="__codelineno-29-21" href="#__codelineno-29-21"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="k">nullptr</span><span class="p">)</span>
<a id="__codelineno-29-22" name="__codelineno-29-22" href="#__codelineno-29-22"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-29-23" name="__codelineno-29-23" href="#__codelineno-29-23"></a><span class="w"> </span><span class="c1">// 子節點數量 = 0 or 1</span>
<a id="__codelineno-29-24" name="__codelineno-29-24" href="#__codelineno-29-24"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="k">nullptr</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">right</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="k">nullptr</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-25" name="__codelineno-29-25" href="#__codelineno-29-25"></a><span class="w"> </span><span class="c1">// 當子節點數量 = 0 / 1 時, child = nullptr / 該子節點</span>
<a id="__codelineno-29-26" name="__codelineno-29-26" href="#__codelineno-29-26"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="n">child</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="k">nullptr</span><span class="w"> </span><span class="o">?</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-29-27" name="__codelineno-29-27" href="#__codelineno-29-27"></a><span class="w"> </span><span class="c1">// 刪除節點 cur</span>
<a id="__codelineno-29-28" name="__codelineno-29-28" href="#__codelineno-29-28"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="n">root</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-29" name="__codelineno-29-29" href="#__codelineno-29-29"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">pre</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">cur</span><span class="p">)</span>
<a id="__codelineno-29-30" name="__codelineno-29-30" href="#__codelineno-29-30"></a><span class="w"> </span><span class="n">pre</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-29-31" name="__codelineno-29-31" href="#__codelineno-29-31"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-29-32" name="__codelineno-29-32" href="#__codelineno-29-32"></a><span class="w"> </span><span class="n">pre</span><span class="o">-&gt;</span><span class="n">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-29-33" name="__codelineno-29-33" href="#__codelineno-29-33"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-34" name="__codelineno-29-34" href="#__codelineno-29-34"></a><span class="w"> </span><span class="c1">// 若刪除節點為根節點,則重新指定根節點</span>
<a id="__codelineno-29-35" name="__codelineno-29-35" href="#__codelineno-29-35"></a><span class="w"> </span><span class="n">root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-29-36" name="__codelineno-29-36" href="#__codelineno-29-36"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-29-37" name="__codelineno-29-37" href="#__codelineno-29-37"></a><span class="w"> </span><span class="c1">// 釋放記憶體</span>
<a id="__codelineno-29-38" name="__codelineno-29-38" href="#__codelineno-29-38"></a><span class="w"> </span><span class="k">delete</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-29-39" name="__codelineno-29-39" href="#__codelineno-29-39"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-29-40" name="__codelineno-29-40" href="#__codelineno-29-40"></a><span class="w"> </span><span class="c1">// 子節點數量 = 2</span>
<a id="__codelineno-29-41" name="__codelineno-29-41" href="#__codelineno-29-41"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-42" name="__codelineno-29-42" href="#__codelineno-29-42"></a><span class="w"> </span><span class="c1">// 獲取中序走訪中 cur 的下一個節點</span>
<a id="__codelineno-29-43" name="__codelineno-29-43" href="#__codelineno-29-43"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-29-44" name="__codelineno-29-44" href="#__codelineno-29-44"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">tmp</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="k">nullptr</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-45" name="__codelineno-29-45" href="#__codelineno-29-45"></a><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="o">-&gt;</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-29-46" name="__codelineno-29-46" href="#__codelineno-29-46"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-29-47" name="__codelineno-29-47" href="#__codelineno-29-47"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmpVal</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="o">-&gt;</span><span class="n">val</span><span class="p">;</span>
<a id="__codelineno-29-48" name="__codelineno-29-48" href="#__codelineno-29-48"></a><span class="w"> </span><span class="c1">// 遞迴刪除節點 tmp</span>
<a id="__codelineno-29-49" name="__codelineno-29-49" href="#__codelineno-29-49"></a><span class="w"> </span><span class="n">remove</span><span class="p">(</span><span class="n">tmp</span><span class="o">-&gt;</span><span class="n">val</span><span class="p">);</span>
<a id="__codelineno-29-50" name="__codelineno-29-50" href="#__codelineno-29-50"></a><span class="w"> </span><span class="c1">// 用 tmp 覆蓋 cur</span>
<a id="__codelineno-29-51" name="__codelineno-29-51" href="#__codelineno-29-51"></a><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmpVal</span><span class="p">;</span>
<a id="__codelineno-29-52" name="__codelineno-29-52" href="#__codelineno-29-52"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-29-53" name="__codelineno-29-53" href="#__codelineno-29-53"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.java</span><pre><span></span><code><a id="__codelineno-30-1" name="__codelineno-30-1" href="#__codelineno-30-1"></a><span class="cm">/* 刪除節點 */</span>
<a id="__codelineno-30-2" name="__codelineno-30-2" href="#__codelineno-30-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">remove</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-3" name="__codelineno-30-3" href="#__codelineno-30-3"></a><span class="w"> </span><span class="c1">// 若樹為空,直接提前返回</span>
<a id="__codelineno-30-4" name="__codelineno-30-4" href="#__codelineno-30-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">root</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span>
<a id="__codelineno-30-5" name="__codelineno-30-5" href="#__codelineno-30-5"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-30-6" name="__codelineno-30-6" href="#__codelineno-30-6"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">root</span><span class="p">,</span><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">null</span><span class="p">;</span>
<a id="__codelineno-30-7" name="__codelineno-30-7" href="#__codelineno-30-7"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-30-8" name="__codelineno-30-8" href="#__codelineno-30-8"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-9" name="__codelineno-30-9" href="#__codelineno-30-9"></a><span class="w"> </span><span class="c1">// 找到待刪除節點,跳出迴圈</span>
<a id="__codelineno-30-10" name="__codelineno-30-10" href="#__codelineno-30-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="na">val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-30-11" name="__codelineno-30-11" href="#__codelineno-30-11"></a><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-30-12" name="__codelineno-30-12" href="#__codelineno-30-12"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-30-13" name="__codelineno-30-13" href="#__codelineno-30-13"></a><span class="w"> </span><span class="c1">// 待刪除節點在 cur 的右子樹中</span>
<a id="__codelineno-30-14" name="__codelineno-30-14" href="#__codelineno-30-14"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="na">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-30-15" name="__codelineno-30-15" href="#__codelineno-30-15"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">right</span><span class="p">;</span>
<a id="__codelineno-30-16" name="__codelineno-30-16" href="#__codelineno-30-16"></a><span class="w"> </span><span class="c1">// 待刪除節點在 cur 的左子樹中</span>
<a id="__codelineno-30-17" name="__codelineno-30-17" href="#__codelineno-30-17"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-30-18" name="__codelineno-30-18" href="#__codelineno-30-18"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">left</span><span class="p">;</span>
<a id="__codelineno-30-19" name="__codelineno-30-19" href="#__codelineno-30-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-30-20" name="__codelineno-30-20" href="#__codelineno-30-20"></a><span class="w"> </span><span class="c1">// 若無待刪除節點,則直接返回</span>
<a id="__codelineno-30-21" name="__codelineno-30-21" href="#__codelineno-30-21"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span>
<a id="__codelineno-30-22" name="__codelineno-30-22" href="#__codelineno-30-22"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-30-23" name="__codelineno-30-23" href="#__codelineno-30-23"></a><span class="w"> </span><span class="c1">// 子節點數量 = 0 or 1</span>
<a id="__codelineno-30-24" name="__codelineno-30-24" href="#__codelineno-30-24"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="na">left</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">right</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-25" name="__codelineno-30-25" href="#__codelineno-30-25"></a><span class="w"> </span><span class="c1">// 當子節點數量 = 0 / 1 時, child = null / 該子節點</span>
<a id="__codelineno-30-26" name="__codelineno-30-26" href="#__codelineno-30-26"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="n">child</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">left</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="w"> </span><span class="o">?</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">left</span><span class="w"> </span><span class="p">:</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">right</span><span class="p">;</span>
<a id="__codelineno-30-27" name="__codelineno-30-27" href="#__codelineno-30-27"></a><span class="w"> </span><span class="c1">// 刪除節點 cur</span>
<a id="__codelineno-30-28" name="__codelineno-30-28" href="#__codelineno-30-28"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="n">root</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-29" name="__codelineno-30-29" href="#__codelineno-30-29"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">pre</span><span class="p">.</span><span class="na">left</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">cur</span><span class="p">)</span>
<a id="__codelineno-30-30" name="__codelineno-30-30" href="#__codelineno-30-30"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="na">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-30-31" name="__codelineno-30-31" href="#__codelineno-30-31"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-30-32" name="__codelineno-30-32" href="#__codelineno-30-32"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="na">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-30-33" name="__codelineno-30-33" href="#__codelineno-30-33"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-34" name="__codelineno-30-34" href="#__codelineno-30-34"></a><span class="w"> </span><span class="c1">// 若刪除節點為根節點,則重新指定根節點</span>
<a id="__codelineno-30-35" name="__codelineno-30-35" href="#__codelineno-30-35"></a><span class="w"> </span><span class="n">root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-30-36" name="__codelineno-30-36" href="#__codelineno-30-36"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-30-37" name="__codelineno-30-37" href="#__codelineno-30-37"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-30-38" name="__codelineno-30-38" href="#__codelineno-30-38"></a><span class="w"> </span><span class="c1">// 子節點數量 = 2</span>
<a id="__codelineno-30-39" name="__codelineno-30-39" href="#__codelineno-30-39"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-40" name="__codelineno-30-40" href="#__codelineno-30-40"></a><span class="w"> </span><span class="c1">// 獲取中序走訪中 cur 的下一個節點</span>
<a id="__codelineno-30-41" name="__codelineno-30-41" href="#__codelineno-30-41"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">right</span><span class="p">;</span>
<a id="__codelineno-30-42" name="__codelineno-30-42" href="#__codelineno-30-42"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">tmp</span><span class="p">.</span><span class="na">left</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-43" name="__codelineno-30-43" href="#__codelineno-30-43"></a><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">.</span><span class="na">left</span><span class="p">;</span>
<a id="__codelineno-30-44" name="__codelineno-30-44" href="#__codelineno-30-44"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-30-45" name="__codelineno-30-45" href="#__codelineno-30-45"></a><span class="w"> </span><span class="c1">// 遞迴刪除節點 tmp</span>
<a id="__codelineno-30-46" name="__codelineno-30-46" href="#__codelineno-30-46"></a><span class="w"> </span><span class="n">remove</span><span class="p">(</span><span class="n">tmp</span><span class="p">.</span><span class="na">val</span><span class="p">);</span>
<a id="__codelineno-30-47" name="__codelineno-30-47" href="#__codelineno-30-47"></a><span class="w"> </span><span class="c1">// 用 tmp 覆蓋 cur</span>
<a id="__codelineno-30-48" name="__codelineno-30-48" href="#__codelineno-30-48"></a><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">val</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">.</span><span class="na">val</span><span class="p">;</span>
<a id="__codelineno-30-49" name="__codelineno-30-49" href="#__codelineno-30-49"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-30-50" name="__codelineno-30-50" href="#__codelineno-30-50"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.cs</span><pre><span></span><code><a id="__codelineno-31-1" name="__codelineno-31-1" href="#__codelineno-31-1"></a><span class="cm">/* 刪除節點 */</span>
<a id="__codelineno-31-2" name="__codelineno-31-2" href="#__codelineno-31-2"></a><span class="k">void</span><span class="w"> </span><span class="nf">Remove</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-31-3" name="__codelineno-31-3" href="#__codelineno-31-3"></a><span class="w"> </span><span class="c1">// 若樹為空,直接提前返回</span>
<a id="__codelineno-31-4" name="__codelineno-31-4" href="#__codelineno-31-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">root</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="k">null</span><span class="p">)</span>
<a id="__codelineno-31-5" name="__codelineno-31-5" href="#__codelineno-31-5"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-31-6" name="__codelineno-31-6" href="#__codelineno-31-6"></a><span class="w"> </span><span class="n">TreeNode</span><span class="o">?</span><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">root</span><span class="p">,</span><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">null</span><span class="p">;</span>
<a id="__codelineno-31-7" name="__codelineno-31-7" href="#__codelineno-31-7"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-31-8" name="__codelineno-31-8" href="#__codelineno-31-8"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="k">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-31-9" name="__codelineno-31-9" href="#__codelineno-31-9"></a><span class="w"> </span><span class="c1">// 找到待刪除節點,跳出迴圈</span>
<a id="__codelineno-31-10" name="__codelineno-31-10" href="#__codelineno-31-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-31-11" name="__codelineno-31-11" href="#__codelineno-31-11"></a><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-31-12" name="__codelineno-31-12" href="#__codelineno-31-12"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-31-13" name="__codelineno-31-13" href="#__codelineno-31-13"></a><span class="w"> </span><span class="c1">// 待刪除節點在 cur 的右子樹中</span>
<a id="__codelineno-31-14" name="__codelineno-31-14" href="#__codelineno-31-14"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-31-15" name="__codelineno-31-15" href="#__codelineno-31-15"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-31-16" name="__codelineno-31-16" href="#__codelineno-31-16"></a><span class="w"> </span><span class="c1">// 待刪除節點在 cur 的左子樹中</span>
<a id="__codelineno-31-17" name="__codelineno-31-17" href="#__codelineno-31-17"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-31-18" name="__codelineno-31-18" href="#__codelineno-31-18"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-31-19" name="__codelineno-31-19" href="#__codelineno-31-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-31-20" name="__codelineno-31-20" href="#__codelineno-31-20"></a><span class="w"> </span><span class="c1">// 若無待刪除節點,則直接返回</span>
<a id="__codelineno-31-21" name="__codelineno-31-21" href="#__codelineno-31-21"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="k">null</span><span class="p">)</span>
<a id="__codelineno-31-22" name="__codelineno-31-22" href="#__codelineno-31-22"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-31-23" name="__codelineno-31-23" href="#__codelineno-31-23"></a><span class="w"> </span><span class="c1">// 子節點數量 = 0 or 1</span>
<a id="__codelineno-31-24" name="__codelineno-31-24" href="#__codelineno-31-24"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="n">left</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="k">null</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">right</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="k">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-31-25" name="__codelineno-31-25" href="#__codelineno-31-25"></a><span class="w"> </span><span class="c1">// 當子節點數量 = 0 / 1 時, child = null / 該子節點</span>
<a id="__codelineno-31-26" name="__codelineno-31-26" href="#__codelineno-31-26"></a><span class="w"> </span><span class="n">TreeNode</span><span class="o">?</span><span class="w"> </span><span class="n">child</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">left</span><span class="w"> </span><span class="o">??</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-31-27" name="__codelineno-31-27" href="#__codelineno-31-27"></a><span class="w"> </span><span class="c1">// 刪除節點 cur</span>
<a id="__codelineno-31-28" name="__codelineno-31-28" href="#__codelineno-31-28"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="n">root</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-31-29" name="__codelineno-31-29" href="#__codelineno-31-29"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">pre</span><span class="o">!</span><span class="p">.</span><span class="n">left</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">cur</span><span class="p">)</span>
<a id="__codelineno-31-30" name="__codelineno-31-30" href="#__codelineno-31-30"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-31-31" name="__codelineno-31-31" href="#__codelineno-31-31"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-31-32" name="__codelineno-31-32" href="#__codelineno-31-32"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="n">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-31-33" name="__codelineno-31-33" href="#__codelineno-31-33"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-31-34" name="__codelineno-31-34" href="#__codelineno-31-34"></a><span class="w"> </span><span class="c1">// 若刪除節點為根節點,則重新指定根節點</span>
<a id="__codelineno-31-35" name="__codelineno-31-35" href="#__codelineno-31-35"></a><span class="w"> </span><span class="n">root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-31-36" name="__codelineno-31-36" href="#__codelineno-31-36"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-31-37" name="__codelineno-31-37" href="#__codelineno-31-37"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-31-38" name="__codelineno-31-38" href="#__codelineno-31-38"></a><span class="w"> </span><span class="c1">// 子節點數量 = 2</span>
<a id="__codelineno-31-39" name="__codelineno-31-39" href="#__codelineno-31-39"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-31-40" name="__codelineno-31-40" href="#__codelineno-31-40"></a><span class="w"> </span><span class="c1">// 獲取中序走訪中 cur 的下一個節點</span>
<a id="__codelineno-31-41" name="__codelineno-31-41" href="#__codelineno-31-41"></a><span class="w"> </span><span class="n">TreeNode</span><span class="o">?</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-31-42" name="__codelineno-31-42" href="#__codelineno-31-42"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">tmp</span><span class="p">.</span><span class="n">left</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="k">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-31-43" name="__codelineno-31-43" href="#__codelineno-31-43"></a><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">.</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-31-44" name="__codelineno-31-44" href="#__codelineno-31-44"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-31-45" name="__codelineno-31-45" href="#__codelineno-31-45"></a><span class="w"> </span><span class="c1">// 遞迴刪除節點 tmp</span>
<a id="__codelineno-31-46" name="__codelineno-31-46" href="#__codelineno-31-46"></a><span class="w"> </span><span class="n">Remove</span><span class="p">(</span><span class="n">tmp</span><span class="p">.</span><span class="n">val</span><span class="o">!</span><span class="p">.</span><span class="n">Value</span><span class="p">);</span>
<a id="__codelineno-31-47" name="__codelineno-31-47" href="#__codelineno-31-47"></a><span class="w"> </span><span class="c1">// 用 tmp 覆蓋 cur</span>
<a id="__codelineno-31-48" name="__codelineno-31-48" href="#__codelineno-31-48"></a><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">.</span><span class="n">val</span><span class="p">;</span>
<a id="__codelineno-31-49" name="__codelineno-31-49" href="#__codelineno-31-49"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-31-50" name="__codelineno-31-50" href="#__codelineno-31-50"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.go</span><pre><span></span><code><a id="__codelineno-32-1" name="__codelineno-32-1" href="#__codelineno-32-1"></a><span class="cm">/* 刪除節點 */</span>
<a id="__codelineno-32-2" name="__codelineno-32-2" href="#__codelineno-32-2"></a><span class="kd">func</span><span class="w"> </span><span class="p">(</span><span class="nx">bst</span><span class="w"> </span><span class="o">*</span><span class="nx">binarySearchTree</span><span class="p">)</span><span class="w"> </span><span class="nx">remove</span><span class="p">(</span><span class="nx">num</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-32-3" name="__codelineno-32-3" href="#__codelineno-32-3"></a><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">bst</span><span class="p">.</span><span class="nx">root</span>
<a id="__codelineno-32-4" name="__codelineno-32-4" href="#__codelineno-32-4"></a><span class="w"> </span><span class="c1">// 若樹為空,直接提前返回</span>
<a id="__codelineno-32-5" name="__codelineno-32-5" href="#__codelineno-32-5"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">nil</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-32-6" name="__codelineno-32-6" href="#__codelineno-32-6"></a><span class="w"> </span><span class="k">return</span>
<a id="__codelineno-32-7" name="__codelineno-32-7" href="#__codelineno-32-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-32-8" name="__codelineno-32-8" href="#__codelineno-32-8"></a><span class="w"> </span><span class="c1">// 待刪除節點之前的節點位置</span>
<a id="__codelineno-32-9" name="__codelineno-32-9" href="#__codelineno-32-9"></a><span class="w"> </span><span class="kd">var</span><span class="w"> </span><span class="nx">pre</span><span class="w"> </span><span class="o">*</span><span class="nx">TreeNode</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="kc">nil</span>
<a id="__codelineno-32-10" name="__codelineno-32-10" href="#__codelineno-32-10"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-32-11" name="__codelineno-32-11" href="#__codelineno-32-11"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">nil</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-32-12" name="__codelineno-32-12" href="#__codelineno-32-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">Val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="nx">num</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-32-13" name="__codelineno-32-13" href="#__codelineno-32-13"></a><span class="w"> </span><span class="k">break</span>
<a id="__codelineno-32-14" name="__codelineno-32-14" href="#__codelineno-32-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-32-15" name="__codelineno-32-15" href="#__codelineno-32-15"></a><span class="w"> </span><span class="nx">pre</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">cur</span>
<a id="__codelineno-32-16" name="__codelineno-32-16" href="#__codelineno-32-16"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">Val</span><span class="p">.(</span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">num</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-32-17" name="__codelineno-32-17" href="#__codelineno-32-17"></a><span class="w"> </span><span class="c1">// 待刪除節點在右子樹中</span>
<a id="__codelineno-32-18" name="__codelineno-32-18" href="#__codelineno-32-18"></a><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">Right</span>
<a id="__codelineno-32-19" name="__codelineno-32-19" href="#__codelineno-32-19"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-32-20" name="__codelineno-32-20" href="#__codelineno-32-20"></a><span class="w"> </span><span class="c1">// 待刪除節點在左子樹中</span>
<a id="__codelineno-32-21" name="__codelineno-32-21" href="#__codelineno-32-21"></a><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">Left</span>
<a id="__codelineno-32-22" name="__codelineno-32-22" href="#__codelineno-32-22"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-32-23" name="__codelineno-32-23" href="#__codelineno-32-23"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-32-24" name="__codelineno-32-24" href="#__codelineno-32-24"></a><span class="w"> </span><span class="c1">// 若無待刪除節點,則直接返回</span>
<a id="__codelineno-32-25" name="__codelineno-32-25" href="#__codelineno-32-25"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">nil</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-32-26" name="__codelineno-32-26" href="#__codelineno-32-26"></a><span class="w"> </span><span class="k">return</span>
<a id="__codelineno-32-27" name="__codelineno-32-27" href="#__codelineno-32-27"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-32-28" name="__codelineno-32-28" href="#__codelineno-32-28"></a><span class="w"> </span><span class="c1">// 子節點數為 0 或 1</span>
<a id="__codelineno-32-29" name="__codelineno-32-29" href="#__codelineno-32-29"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">Left</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">nil</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">Right</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">nil</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-32-30" name="__codelineno-32-30" href="#__codelineno-32-30"></a><span class="w"> </span><span class="kd">var</span><span class="w"> </span><span class="nx">child</span><span class="w"> </span><span class="o">*</span><span class="nx">TreeNode</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="kc">nil</span>
<a id="__codelineno-32-31" name="__codelineno-32-31" href="#__codelineno-32-31"></a><span class="w"> </span><span class="c1">// 取出待刪除節點的子節點</span>
<a id="__codelineno-32-32" name="__codelineno-32-32" href="#__codelineno-32-32"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">Left</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">nil</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-32-33" name="__codelineno-32-33" href="#__codelineno-32-33"></a><span class="w"> </span><span class="nx">child</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">Left</span>
<a id="__codelineno-32-34" name="__codelineno-32-34" href="#__codelineno-32-34"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-32-35" name="__codelineno-32-35" href="#__codelineno-32-35"></a><span class="w"> </span><span class="nx">child</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">Right</span>
<a id="__codelineno-32-36" name="__codelineno-32-36" href="#__codelineno-32-36"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-32-37" name="__codelineno-32-37" href="#__codelineno-32-37"></a><span class="w"> </span><span class="c1">// 刪除節點 cur</span>
<a id="__codelineno-32-38" name="__codelineno-32-38" href="#__codelineno-32-38"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="nx">bst</span><span class="p">.</span><span class="nx">root</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-32-39" name="__codelineno-32-39" href="#__codelineno-32-39"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">pre</span><span class="p">.</span><span class="nx">Left</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-32-40" name="__codelineno-32-40" href="#__codelineno-32-40"></a><span class="w"> </span><span class="nx">pre</span><span class="p">.</span><span class="nx">Left</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">child</span>
<a id="__codelineno-32-41" name="__codelineno-32-41" href="#__codelineno-32-41"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-32-42" name="__codelineno-32-42" href="#__codelineno-32-42"></a><span class="w"> </span><span class="nx">pre</span><span class="p">.</span><span class="nx">Right</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">child</span>
<a id="__codelineno-32-43" name="__codelineno-32-43" href="#__codelineno-32-43"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-32-44" name="__codelineno-32-44" href="#__codelineno-32-44"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-32-45" name="__codelineno-32-45" href="#__codelineno-32-45"></a><span class="w"> </span><span class="c1">// 若刪除節點為根節點,則重新指定根節點</span>
<a id="__codelineno-32-46" name="__codelineno-32-46" href="#__codelineno-32-46"></a><span class="w"> </span><span class="nx">bst</span><span class="p">.</span><span class="nx">root</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">child</span>
<a id="__codelineno-32-47" name="__codelineno-32-47" href="#__codelineno-32-47"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-32-48" name="__codelineno-32-48" href="#__codelineno-32-48"></a><span class="w"> </span><span class="c1">// 子節點數為 2</span>
<a id="__codelineno-32-49" name="__codelineno-32-49" href="#__codelineno-32-49"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-32-50" name="__codelineno-32-50" href="#__codelineno-32-50"></a><span class="w"> </span><span class="c1">// 獲取中序走訪中待刪除節點 cur 的下一個節點</span>
<a id="__codelineno-32-51" name="__codelineno-32-51" href="#__codelineno-32-51"></a><span class="w"> </span><span class="nx">tmp</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">Right</span>
<a id="__codelineno-32-52" name="__codelineno-32-52" href="#__codelineno-32-52"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">tmp</span><span class="p">.</span><span class="nx">Left</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">nil</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-32-53" name="__codelineno-32-53" href="#__codelineno-32-53"></a><span class="w"> </span><span class="nx">tmp</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">tmp</span><span class="p">.</span><span class="nx">Left</span>
<a id="__codelineno-32-54" name="__codelineno-32-54" href="#__codelineno-32-54"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-32-55" name="__codelineno-32-55" href="#__codelineno-32-55"></a><span class="w"> </span><span class="c1">// 遞迴刪除節點 tmp</span>
<a id="__codelineno-32-56" name="__codelineno-32-56" href="#__codelineno-32-56"></a><span class="w"> </span><span class="nx">bst</span><span class="p">.</span><span class="nx">remove</span><span class="p">(</span><span class="nx">tmp</span><span class="p">.</span><span class="nx">Val</span><span class="p">.(</span><span class="kt">int</span><span class="p">))</span>
<a id="__codelineno-32-57" name="__codelineno-32-57" href="#__codelineno-32-57"></a><span class="w"> </span><span class="c1">// 用 tmp 覆蓋 cur</span>
<a id="__codelineno-32-58" name="__codelineno-32-58" href="#__codelineno-32-58"></a><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">Val</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">tmp</span><span class="p">.</span><span class="nx">Val</span>
<a id="__codelineno-32-59" name="__codelineno-32-59" href="#__codelineno-32-59"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-32-60" name="__codelineno-32-60" href="#__codelineno-32-60"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.swift</span><pre><span></span><code><a id="__codelineno-33-1" name="__codelineno-33-1" href="#__codelineno-33-1"></a><span class="cm">/* 刪除節點 */</span>
<a id="__codelineno-33-2" name="__codelineno-33-2" href="#__codelineno-33-2"></a><span class="kd">func</span> <span class="nf">remove</span><span class="p">(</span><span class="n">num</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-33-3" name="__codelineno-33-3" href="#__codelineno-33-3"></a> <span class="c1">// 若樹為空,直接提前返回</span>
<a id="__codelineno-33-4" name="__codelineno-33-4" href="#__codelineno-33-4"></a> <span class="k">if</span> <span class="n">root</span> <span class="p">==</span> <span class="kc">nil</span> <span class="p">{</span>
<a id="__codelineno-33-5" name="__codelineno-33-5" href="#__codelineno-33-5"></a> <span class="k">return</span>
<a id="__codelineno-33-6" name="__codelineno-33-6" href="#__codelineno-33-6"></a> <span class="p">}</span>
<a id="__codelineno-33-7" name="__codelineno-33-7" href="#__codelineno-33-7"></a> <span class="kd">var</span> <span class="nv">cur</span> <span class="p">=</span> <span class="n">root</span>
<a id="__codelineno-33-8" name="__codelineno-33-8" href="#__codelineno-33-8"></a> <span class="kd">var</span> <span class="nv">pre</span><span class="p">:</span> <span class="n">TreeNode</span><span class="p">?</span>
<a id="__codelineno-33-9" name="__codelineno-33-9" href="#__codelineno-33-9"></a> <span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-33-10" name="__codelineno-33-10" href="#__codelineno-33-10"></a> <span class="k">while</span> <span class="n">cur</span> <span class="o">!=</span> <span class="kc">nil</span> <span class="p">{</span>
<a id="__codelineno-33-11" name="__codelineno-33-11" href="#__codelineno-33-11"></a> <span class="c1">// 找到待刪除節點,跳出迴圈</span>
<a id="__codelineno-33-12" name="__codelineno-33-12" href="#__codelineno-33-12"></a> <span class="k">if</span> <span class="n">cur</span><span class="p">!.</span><span class="n">val</span> <span class="p">==</span> <span class="n">num</span> <span class="p">{</span>
<a id="__codelineno-33-13" name="__codelineno-33-13" href="#__codelineno-33-13"></a> <span class="k">break</span>
<a id="__codelineno-33-14" name="__codelineno-33-14" href="#__codelineno-33-14"></a> <span class="p">}</span>
<a id="__codelineno-33-15" name="__codelineno-33-15" href="#__codelineno-33-15"></a> <span class="n">pre</span> <span class="p">=</span> <span class="n">cur</span>
<a id="__codelineno-33-16" name="__codelineno-33-16" href="#__codelineno-33-16"></a> <span class="c1">// 待刪除節點在 cur 的右子樹中</span>
<a id="__codelineno-33-17" name="__codelineno-33-17" href="#__codelineno-33-17"></a> <span class="k">if</span> <span class="n">cur</span><span class="p">!.</span><span class="n">val</span> <span class="o">&lt;</span> <span class="n">num</span> <span class="p">{</span>
<a id="__codelineno-33-18" name="__codelineno-33-18" href="#__codelineno-33-18"></a> <span class="n">cur</span> <span class="p">=</span> <span class="n">cur</span><span class="p">?.</span><span class="kr">right</span>
<a id="__codelineno-33-19" name="__codelineno-33-19" href="#__codelineno-33-19"></a> <span class="p">}</span>
<a id="__codelineno-33-20" name="__codelineno-33-20" href="#__codelineno-33-20"></a> <span class="c1">// 待刪除節點在 cur 的左子樹中</span>
<a id="__codelineno-33-21" name="__codelineno-33-21" href="#__codelineno-33-21"></a> <span class="k">else</span> <span class="p">{</span>
<a id="__codelineno-33-22" name="__codelineno-33-22" href="#__codelineno-33-22"></a> <span class="n">cur</span> <span class="p">=</span> <span class="n">cur</span><span class="p">?.</span><span class="kr">left</span>
<a id="__codelineno-33-23" name="__codelineno-33-23" href="#__codelineno-33-23"></a> <span class="p">}</span>
<a id="__codelineno-33-24" name="__codelineno-33-24" href="#__codelineno-33-24"></a> <span class="p">}</span>
<a id="__codelineno-33-25" name="__codelineno-33-25" href="#__codelineno-33-25"></a> <span class="c1">// 若無待刪除節點,則直接返回</span>
<a id="__codelineno-33-26" name="__codelineno-33-26" href="#__codelineno-33-26"></a> <span class="k">if</span> <span class="n">cur</span> <span class="p">==</span> <span class="kc">nil</span> <span class="p">{</span>
<a id="__codelineno-33-27" name="__codelineno-33-27" href="#__codelineno-33-27"></a> <span class="k">return</span>
<a id="__codelineno-33-28" name="__codelineno-33-28" href="#__codelineno-33-28"></a> <span class="p">}</span>
<a id="__codelineno-33-29" name="__codelineno-33-29" href="#__codelineno-33-29"></a> <span class="c1">// 子節點數量 = 0 or 1</span>
<a id="__codelineno-33-30" name="__codelineno-33-30" href="#__codelineno-33-30"></a> <span class="k">if</span> <span class="n">cur</span><span class="p">?.</span><span class="kr">left</span> <span class="p">==</span> <span class="kc">nil</span> <span class="o">||</span> <span class="n">cur</span><span class="p">?.</span><span class="kr">right</span> <span class="p">==</span> <span class="kc">nil</span> <span class="p">{</span>
<a id="__codelineno-33-31" name="__codelineno-33-31" href="#__codelineno-33-31"></a> <span class="c1">// 當子節點數量 = 0 / 1 時, child = null / 該子節點</span>
<a id="__codelineno-33-32" name="__codelineno-33-32" href="#__codelineno-33-32"></a> <span class="kd">let</span> <span class="nv">child</span> <span class="p">=</span> <span class="n">cur</span><span class="p">?.</span><span class="kr">left</span> <span class="p">??</span> <span class="n">cur</span><span class="p">?.</span><span class="kr">right</span>
<a id="__codelineno-33-33" name="__codelineno-33-33" href="#__codelineno-33-33"></a> <span class="c1">// 刪除節點 cur</span>
<a id="__codelineno-33-34" name="__codelineno-33-34" href="#__codelineno-33-34"></a> <span class="k">if</span> <span class="n">cur</span> <span class="o">!==</span> <span class="n">root</span> <span class="p">{</span>
<a id="__codelineno-33-35" name="__codelineno-33-35" href="#__codelineno-33-35"></a> <span class="k">if</span> <span class="n">pre</span><span class="p">?.</span><span class="kr">left</span> <span class="p">===</span> <span class="n">cur</span> <span class="p">{</span>
<a id="__codelineno-33-36" name="__codelineno-33-36" href="#__codelineno-33-36"></a> <span class="n">pre</span><span class="p">?.</span><span class="kr">left</span> <span class="p">=</span> <span class="n">child</span>
<a id="__codelineno-33-37" name="__codelineno-33-37" href="#__codelineno-33-37"></a> <span class="p">}</span> <span class="k">else</span> <span class="p">{</span>
<a id="__codelineno-33-38" name="__codelineno-33-38" href="#__codelineno-33-38"></a> <span class="n">pre</span><span class="p">?.</span><span class="kr">right</span> <span class="p">=</span> <span class="n">child</span>
<a id="__codelineno-33-39" name="__codelineno-33-39" href="#__codelineno-33-39"></a> <span class="p">}</span>
<a id="__codelineno-33-40" name="__codelineno-33-40" href="#__codelineno-33-40"></a> <span class="p">}</span> <span class="k">else</span> <span class="p">{</span>
<a id="__codelineno-33-41" name="__codelineno-33-41" href="#__codelineno-33-41"></a> <span class="c1">// 若刪除節點為根節點,則重新指定根節點</span>
<a id="__codelineno-33-42" name="__codelineno-33-42" href="#__codelineno-33-42"></a> <span class="n">root</span> <span class="p">=</span> <span class="n">child</span>
<a id="__codelineno-33-43" name="__codelineno-33-43" href="#__codelineno-33-43"></a> <span class="p">}</span>
<a id="__codelineno-33-44" name="__codelineno-33-44" href="#__codelineno-33-44"></a> <span class="p">}</span>
<a id="__codelineno-33-45" name="__codelineno-33-45" href="#__codelineno-33-45"></a> <span class="c1">// 子節點數量 = 2</span>
<a id="__codelineno-33-46" name="__codelineno-33-46" href="#__codelineno-33-46"></a> <span class="k">else</span> <span class="p">{</span>
<a id="__codelineno-33-47" name="__codelineno-33-47" href="#__codelineno-33-47"></a> <span class="c1">// 獲取中序走訪中 cur 的下一個節點</span>
<a id="__codelineno-33-48" name="__codelineno-33-48" href="#__codelineno-33-48"></a> <span class="kd">var</span> <span class="nv">tmp</span> <span class="p">=</span> <span class="n">cur</span><span class="p">?.</span><span class="kr">right</span>
<a id="__codelineno-33-49" name="__codelineno-33-49" href="#__codelineno-33-49"></a> <span class="k">while</span> <span class="n">tmp</span><span class="p">?.</span><span class="kr">left</span> <span class="o">!=</span> <span class="kc">nil</span> <span class="p">{</span>
<a id="__codelineno-33-50" name="__codelineno-33-50" href="#__codelineno-33-50"></a> <span class="n">tmp</span> <span class="p">=</span> <span class="n">tmp</span><span class="p">?.</span><span class="kr">left</span>
<a id="__codelineno-33-51" name="__codelineno-33-51" href="#__codelineno-33-51"></a> <span class="p">}</span>
<a id="__codelineno-33-52" name="__codelineno-33-52" href="#__codelineno-33-52"></a> <span class="c1">// 遞迴刪除節點 tmp</span>
<a id="__codelineno-33-53" name="__codelineno-33-53" href="#__codelineno-33-53"></a> <span class="n">remove</span><span class="p">(</span><span class="n">num</span><span class="p">:</span> <span class="n">tmp</span><span class="p">!.</span><span class="n">val</span><span class="p">)</span>
<a id="__codelineno-33-54" name="__codelineno-33-54" href="#__codelineno-33-54"></a> <span class="c1">// 用 tmp 覆蓋 cur</span>
<a id="__codelineno-33-55" name="__codelineno-33-55" href="#__codelineno-33-55"></a> <span class="n">cur</span><span class="p">?.</span><span class="n">val</span> <span class="p">=</span> <span class="n">tmp</span><span class="p">!.</span><span class="n">val</span>
<a id="__codelineno-33-56" name="__codelineno-33-56" href="#__codelineno-33-56"></a> <span class="p">}</span>
<a id="__codelineno-33-57" name="__codelineno-33-57" href="#__codelineno-33-57"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.js</span><pre><span></span><code><a id="__codelineno-34-1" name="__codelineno-34-1" href="#__codelineno-34-1"></a><span class="cm">/* 刪除節點 */</span>
<a id="__codelineno-34-2" name="__codelineno-34-2" href="#__codelineno-34-2"></a><span class="nx">remove</span><span class="p">(</span><span class="nx">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-3" name="__codelineno-34-3" href="#__codelineno-34-3"></a><span class="w"> </span><span class="c1">// 若樹為空,直接提前返回</span>
<a id="__codelineno-34-4" name="__codelineno-34-4" href="#__codelineno-34-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="k">this</span><span class="p">.</span><span class="nx">root</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-34-5" name="__codelineno-34-5" href="#__codelineno-34-5"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">this</span><span class="p">.</span><span class="nx">root</span><span class="p">,</span>
<a id="__codelineno-34-6" name="__codelineno-34-6" href="#__codelineno-34-6"></a><span class="w"> </span><span class="nx">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">null</span><span class="p">;</span>
<a id="__codelineno-34-7" name="__codelineno-34-7" href="#__codelineno-34-7"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-34-8" name="__codelineno-34-8" href="#__codelineno-34-8"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="w"> </span><span class="o">!==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-9" name="__codelineno-34-9" href="#__codelineno-34-9"></a><span class="w"> </span><span class="c1">// 找到待刪除節點,跳出迴圈</span>
<a id="__codelineno-34-10" name="__codelineno-34-10" href="#__codelineno-34-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="p">.</span><span class="nx">val</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="nx">num</span><span class="p">)</span><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-34-11" name="__codelineno-34-11" href="#__codelineno-34-11"></a><span class="w"> </span><span class="nx">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">;</span>
<a id="__codelineno-34-12" name="__codelineno-34-12" href="#__codelineno-34-12"></a><span class="w"> </span><span class="c1">// 待刪除節點在 cur 的右子樹中</span>
<a id="__codelineno-34-13" name="__codelineno-34-13" href="#__codelineno-34-13"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="p">.</span><span class="nx">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">num</span><span class="p">)</span><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">right</span><span class="p">;</span>
<a id="__codelineno-34-14" name="__codelineno-34-14" href="#__codelineno-34-14"></a><span class="w"> </span><span class="c1">// 待刪除節點在 cur 的左子樹中</span>
<a id="__codelineno-34-15" name="__codelineno-34-15" href="#__codelineno-34-15"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">left</span><span class="p">;</span>
<a id="__codelineno-34-16" name="__codelineno-34-16" href="#__codelineno-34-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-34-17" name="__codelineno-34-17" href="#__codelineno-34-17"></a><span class="w"> </span><span class="c1">// 若無待刪除節點,則直接返回</span>
<a id="__codelineno-34-18" name="__codelineno-34-18" href="#__codelineno-34-18"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-34-19" name="__codelineno-34-19" href="#__codelineno-34-19"></a><span class="w"> </span><span class="c1">// 子節點數量 = 0 or 1</span>
<a id="__codelineno-34-20" name="__codelineno-34-20" href="#__codelineno-34-20"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="p">.</span><span class="nx">left</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="kc">null</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">right</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-21" name="__codelineno-34-21" href="#__codelineno-34-21"></a><span class="w"> </span><span class="c1">// 當子節點數量 = 0 / 1 時, child = null / 該子節點</span>
<a id="__codelineno-34-22" name="__codelineno-34-22" href="#__codelineno-34-22"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">child</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">left</span><span class="w"> </span><span class="o">!==</span><span class="w"> </span><span class="kc">null</span><span class="w"> </span><span class="o">?</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">left</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">right</span><span class="p">;</span>
<a id="__codelineno-34-23" name="__codelineno-34-23" href="#__codelineno-34-23"></a><span class="w"> </span><span class="c1">// 刪除節點 cur</span>
<a id="__codelineno-34-24" name="__codelineno-34-24" href="#__codelineno-34-24"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="w"> </span><span class="o">!==</span><span class="w"> </span><span class="k">this</span><span class="p">.</span><span class="nx">root</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-25" name="__codelineno-34-25" href="#__codelineno-34-25"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">pre</span><span class="p">.</span><span class="nx">left</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="nx">cur</span><span class="p">)</span><span class="w"> </span><span class="nx">pre</span><span class="p">.</span><span class="nx">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">child</span><span class="p">;</span>
<a id="__codelineno-34-26" name="__codelineno-34-26" href="#__codelineno-34-26"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="nx">pre</span><span class="p">.</span><span class="nx">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">child</span><span class="p">;</span>
<a id="__codelineno-34-27" name="__codelineno-34-27" href="#__codelineno-34-27"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-28" name="__codelineno-34-28" href="#__codelineno-34-28"></a><span class="w"> </span><span class="c1">// 若刪除節點為根節點,則重新指定根節點</span>
<a id="__codelineno-34-29" name="__codelineno-34-29" href="#__codelineno-34-29"></a><span class="w"> </span><span class="k">this</span><span class="p">.</span><span class="nx">root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">child</span><span class="p">;</span>
<a id="__codelineno-34-30" name="__codelineno-34-30" href="#__codelineno-34-30"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-34-31" name="__codelineno-34-31" href="#__codelineno-34-31"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-34-32" name="__codelineno-34-32" href="#__codelineno-34-32"></a><span class="w"> </span><span class="c1">// 子節點數量 = 2</span>
<a id="__codelineno-34-33" name="__codelineno-34-33" href="#__codelineno-34-33"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-34" name="__codelineno-34-34" href="#__codelineno-34-34"></a><span class="w"> </span><span class="c1">// 獲取中序走訪中 cur 的下一個節點</span>
<a id="__codelineno-34-35" name="__codelineno-34-35" href="#__codelineno-34-35"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">right</span><span class="p">;</span>
<a id="__codelineno-34-36" name="__codelineno-34-36" href="#__codelineno-34-36"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="nx">tmp</span><span class="p">.</span><span class="nx">left</span><span class="w"> </span><span class="o">!==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-37" name="__codelineno-34-37" href="#__codelineno-34-37"></a><span class="w"> </span><span class="nx">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">tmp</span><span class="p">.</span><span class="nx">left</span><span class="p">;</span>
<a id="__codelineno-34-38" name="__codelineno-34-38" href="#__codelineno-34-38"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-34-39" name="__codelineno-34-39" href="#__codelineno-34-39"></a><span class="w"> </span><span class="c1">// 遞迴刪除節點 tmp</span>
<a id="__codelineno-34-40" name="__codelineno-34-40" href="#__codelineno-34-40"></a><span class="w"> </span><span class="k">this</span><span class="p">.</span><span class="nx">remove</span><span class="p">(</span><span class="nx">tmp</span><span class="p">.</span><span class="nx">val</span><span class="p">);</span>
<a id="__codelineno-34-41" name="__codelineno-34-41" href="#__codelineno-34-41"></a><span class="w"> </span><span class="c1">// 用 tmp 覆蓋 cur</span>
<a id="__codelineno-34-42" name="__codelineno-34-42" href="#__codelineno-34-42"></a><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">val</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">tmp</span><span class="p">.</span><span class="nx">val</span><span class="p">;</span>
<a id="__codelineno-34-43" name="__codelineno-34-43" href="#__codelineno-34-43"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-34-44" name="__codelineno-34-44" href="#__codelineno-34-44"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.ts</span><pre><span></span><code><a id="__codelineno-35-1" name="__codelineno-35-1" href="#__codelineno-35-1"></a><span class="cm">/* 刪除節點 */</span>
<a id="__codelineno-35-2" name="__codelineno-35-2" href="#__codelineno-35-2"></a><span class="nx">remove</span><span class="p">(</span><span class="nx">num</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-35-3" name="__codelineno-35-3" href="#__codelineno-35-3"></a><span class="w"> </span><span class="c1">// 若樹為空,直接提前返回</span>
<a id="__codelineno-35-4" name="__codelineno-35-4" href="#__codelineno-35-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="k">this</span><span class="p">.</span><span class="nx">root</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-35-5" name="__codelineno-35-5" href="#__codelineno-35-5"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">cur</span><span class="o">:</span><span class="w"> </span><span class="kt">TreeNode</span><span class="w"> </span><span class="o">|</span><span class="w"> </span><span class="kc">null</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">this</span><span class="p">.</span><span class="nx">root</span><span class="p">,</span>
<a id="__codelineno-35-6" name="__codelineno-35-6" href="#__codelineno-35-6"></a><span class="w"> </span><span class="nx">pre</span><span class="o">:</span><span class="w"> </span><span class="kt">TreeNode</span><span class="w"> </span><span class="o">|</span><span class="w"> </span><span class="kc">null</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">null</span><span class="p">;</span>
<a id="__codelineno-35-7" name="__codelineno-35-7" href="#__codelineno-35-7"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-35-8" name="__codelineno-35-8" href="#__codelineno-35-8"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="w"> </span><span class="o">!==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-35-9" name="__codelineno-35-9" href="#__codelineno-35-9"></a><span class="w"> </span><span class="c1">// 找到待刪除節點,跳出迴圈</span>
<a id="__codelineno-35-10" name="__codelineno-35-10" href="#__codelineno-35-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="p">.</span><span class="nx">val</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="nx">num</span><span class="p">)</span><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-35-11" name="__codelineno-35-11" href="#__codelineno-35-11"></a><span class="w"> </span><span class="nx">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">;</span>
<a id="__codelineno-35-12" name="__codelineno-35-12" href="#__codelineno-35-12"></a><span class="w"> </span><span class="c1">// 待刪除節點在 cur 的右子樹中</span>
<a id="__codelineno-35-13" name="__codelineno-35-13" href="#__codelineno-35-13"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="p">.</span><span class="nx">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">num</span><span class="p">)</span><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">right</span><span class="p">;</span>
<a id="__codelineno-35-14" name="__codelineno-35-14" href="#__codelineno-35-14"></a><span class="w"> </span><span class="c1">// 待刪除節點在 cur 的左子樹中</span>
<a id="__codelineno-35-15" name="__codelineno-35-15" href="#__codelineno-35-15"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="nx">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">left</span><span class="p">;</span>
<a id="__codelineno-35-16" name="__codelineno-35-16" href="#__codelineno-35-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-35-17" name="__codelineno-35-17" href="#__codelineno-35-17"></a><span class="w"> </span><span class="c1">// 若無待刪除節點,則直接返回</span>
<a id="__codelineno-35-18" name="__codelineno-35-18" href="#__codelineno-35-18"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-35-19" name="__codelineno-35-19" href="#__codelineno-35-19"></a><span class="w"> </span><span class="c1">// 子節點數量 = 0 or 1</span>
<a id="__codelineno-35-20" name="__codelineno-35-20" href="#__codelineno-35-20"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="p">.</span><span class="nx">left</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="kc">null</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">right</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-35-21" name="__codelineno-35-21" href="#__codelineno-35-21"></a><span class="w"> </span><span class="c1">// 當子節點數量 = 0 / 1 時, child = null / 該子節點</span>
<a id="__codelineno-35-22" name="__codelineno-35-22" href="#__codelineno-35-22"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">child</span><span class="o">:</span><span class="w"> </span><span class="kt">TreeNode</span><span class="w"> </span><span class="o">|</span><span class="w"> </span><span class="kc">null</span><span class="w"> </span><span class="o">=</span>
<a id="__codelineno-35-23" name="__codelineno-35-23" href="#__codelineno-35-23"></a><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">left</span><span class="w"> </span><span class="o">!==</span><span class="w"> </span><span class="kc">null</span><span class="w"> </span><span class="o">?</span><span class="w"> </span><span class="nx">cur.left</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="kt">cur.right</span><span class="p">;</span>
<a id="__codelineno-35-24" name="__codelineno-35-24" href="#__codelineno-35-24"></a><span class="w"> </span><span class="c1">// 刪除節點 cur</span>
<a id="__codelineno-35-25" name="__codelineno-35-25" href="#__codelineno-35-25"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">cur</span><span class="w"> </span><span class="o">!==</span><span class="w"> </span><span class="k">this</span><span class="p">.</span><span class="nx">root</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-35-26" name="__codelineno-35-26" href="#__codelineno-35-26"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">pre</span><span class="o">!</span><span class="p">.</span><span class="nx">left</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="nx">cur</span><span class="p">)</span><span class="w"> </span><span class="nx">pre</span><span class="o">!</span><span class="p">.</span><span class="nx">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">child</span><span class="p">;</span>
<a id="__codelineno-35-27" name="__codelineno-35-27" href="#__codelineno-35-27"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="nx">pre</span><span class="o">!</span><span class="p">.</span><span class="nx">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">child</span><span class="p">;</span>
<a id="__codelineno-35-28" name="__codelineno-35-28" href="#__codelineno-35-28"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-35-29" name="__codelineno-35-29" href="#__codelineno-35-29"></a><span class="w"> </span><span class="c1">// 若刪除節點為根節點,則重新指定根節點</span>
<a id="__codelineno-35-30" name="__codelineno-35-30" href="#__codelineno-35-30"></a><span class="w"> </span><span class="k">this</span><span class="p">.</span><span class="nx">root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">child</span><span class="p">;</span>
<a id="__codelineno-35-31" name="__codelineno-35-31" href="#__codelineno-35-31"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-35-32" name="__codelineno-35-32" href="#__codelineno-35-32"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-35-33" name="__codelineno-35-33" href="#__codelineno-35-33"></a><span class="w"> </span><span class="c1">// 子節點數量 = 2</span>
<a id="__codelineno-35-34" name="__codelineno-35-34" href="#__codelineno-35-34"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-35-35" name="__codelineno-35-35" href="#__codelineno-35-35"></a><span class="w"> </span><span class="c1">// 獲取中序走訪中 cur 的下一個節點</span>
<a id="__codelineno-35-36" name="__codelineno-35-36" href="#__codelineno-35-36"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">tmp</span><span class="o">:</span><span class="w"> </span><span class="kt">TreeNode</span><span class="w"> </span><span class="o">|</span><span class="w"> </span><span class="kc">null</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">right</span><span class="p">;</span>
<a id="__codelineno-35-37" name="__codelineno-35-37" href="#__codelineno-35-37"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="nx">tmp</span><span class="o">!</span><span class="p">.</span><span class="nx">left</span><span class="w"> </span><span class="o">!==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-35-38" name="__codelineno-35-38" href="#__codelineno-35-38"></a><span class="w"> </span><span class="nx">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">tmp</span><span class="o">!</span><span class="p">.</span><span class="nx">left</span><span class="p">;</span>
<a id="__codelineno-35-39" name="__codelineno-35-39" href="#__codelineno-35-39"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-35-40" name="__codelineno-35-40" href="#__codelineno-35-40"></a><span class="w"> </span><span class="c1">// 遞迴刪除節點 tmp</span>
<a id="__codelineno-35-41" name="__codelineno-35-41" href="#__codelineno-35-41"></a><span class="w"> </span><span class="k">this</span><span class="p">.</span><span class="nx">remove</span><span class="p">(</span><span class="nx">tmp</span><span class="o">!</span><span class="p">.</span><span class="nx">val</span><span class="p">);</span>
<a id="__codelineno-35-42" name="__codelineno-35-42" href="#__codelineno-35-42"></a><span class="w"> </span><span class="c1">// 用 tmp 覆蓋 cur</span>
<a id="__codelineno-35-43" name="__codelineno-35-43" href="#__codelineno-35-43"></a><span class="w"> </span><span class="nx">cur</span><span class="p">.</span><span class="nx">val</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">tmp</span><span class="o">!</span><span class="p">.</span><span class="nx">val</span><span class="p">;</span>
<a id="__codelineno-35-44" name="__codelineno-35-44" href="#__codelineno-35-44"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-35-45" name="__codelineno-35-45" href="#__codelineno-35-45"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.dart</span><pre><span></span><code><a id="__codelineno-36-1" name="__codelineno-36-1" href="#__codelineno-36-1"></a><span class="cm">/* 刪除節點 */</span>
<a id="__codelineno-36-2" name="__codelineno-36-2" href="#__codelineno-36-2"></a><span class="kt">void</span><span class="w"> </span><span class="n">remove</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">_num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-36-3" name="__codelineno-36-3" href="#__codelineno-36-3"></a><span class="w"> </span><span class="c1">// 若樹為空,直接提前返回</span>
<a id="__codelineno-36-4" name="__codelineno-36-4" href="#__codelineno-36-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">_root</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-36-5" name="__codelineno-36-5" href="#__codelineno-36-5"></a><span class="w"> </span><span class="n">TreeNode</span><span class="o">?</span><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">_root</span><span class="p">;</span>
<a id="__codelineno-36-6" name="__codelineno-36-6" href="#__codelineno-36-6"></a><span class="w"> </span><span class="n">TreeNode</span><span class="o">?</span><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">null</span><span class="p">;</span>
<a id="__codelineno-36-7" name="__codelineno-36-7" href="#__codelineno-36-7"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-36-8" name="__codelineno-36-8" href="#__codelineno-36-8"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-36-9" name="__codelineno-36-9" href="#__codelineno-36-9"></a><span class="w"> </span><span class="c1">// 找到待刪除節點,跳出迴圈</span>
<a id="__codelineno-36-10" name="__codelineno-36-10" href="#__codelineno-36-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">_num</span><span class="p">)</span><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-36-11" name="__codelineno-36-11" href="#__codelineno-36-11"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-36-12" name="__codelineno-36-12" href="#__codelineno-36-12"></a><span class="w"> </span><span class="c1">// 待刪除節點在 cur 的右子樹中</span>
<a id="__codelineno-36-13" name="__codelineno-36-13" href="#__codelineno-36-13"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">_num</span><span class="p">)</span>
<a id="__codelineno-36-14" name="__codelineno-36-14" href="#__codelineno-36-14"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-36-15" name="__codelineno-36-15" href="#__codelineno-36-15"></a><span class="w"> </span><span class="c1">// 待刪除節點在 cur 的左子樹中</span>
<a id="__codelineno-36-16" name="__codelineno-36-16" href="#__codelineno-36-16"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-36-17" name="__codelineno-36-17" href="#__codelineno-36-17"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-36-18" name="__codelineno-36-18" href="#__codelineno-36-18"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-36-19" name="__codelineno-36-19" href="#__codelineno-36-19"></a><span class="w"> </span><span class="c1">// 若無待刪除節點,直接返回</span>
<a id="__codelineno-36-20" name="__codelineno-36-20" href="#__codelineno-36-20"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-36-21" name="__codelineno-36-21" href="#__codelineno-36-21"></a><span class="w"> </span><span class="c1">// 子節點數量 = 0 or 1</span>
<a id="__codelineno-36-22" name="__codelineno-36-22" href="#__codelineno-36-22"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="n">left</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">right</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-36-23" name="__codelineno-36-23" href="#__codelineno-36-23"></a><span class="w"> </span><span class="c1">// 當子節點數量 = 0 / 1 時, child = null / 該子節點</span>
<a id="__codelineno-36-24" name="__codelineno-36-24" href="#__codelineno-36-24"></a><span class="w"> </span><span class="n">TreeNode</span><span class="o">?</span><span class="w"> </span><span class="n">child</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">left</span><span class="w"> </span><span class="o">??</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-36-25" name="__codelineno-36-25" href="#__codelineno-36-25"></a><span class="w"> </span><span class="c1">// 刪除節點 cur</span>
<a id="__codelineno-36-26" name="__codelineno-36-26" href="#__codelineno-36-26"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="n">_root</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-36-27" name="__codelineno-36-27" href="#__codelineno-36-27"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">pre</span><span class="o">!</span><span class="p">.</span><span class="n">left</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">cur</span><span class="p">)</span>
<a id="__codelineno-36-28" name="__codelineno-36-28" href="#__codelineno-36-28"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-36-29" name="__codelineno-36-29" href="#__codelineno-36-29"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-36-30" name="__codelineno-36-30" href="#__codelineno-36-30"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="n">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-36-31" name="__codelineno-36-31" href="#__codelineno-36-31"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-36-32" name="__codelineno-36-32" href="#__codelineno-36-32"></a><span class="w"> </span><span class="c1">// 若刪除節點為根節點,則重新指定根節點</span>
<a id="__codelineno-36-33" name="__codelineno-36-33" href="#__codelineno-36-33"></a><span class="w"> </span><span class="n">_root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-36-34" name="__codelineno-36-34" href="#__codelineno-36-34"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-36-35" name="__codelineno-36-35" href="#__codelineno-36-35"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-36-36" name="__codelineno-36-36" href="#__codelineno-36-36"></a><span class="w"> </span><span class="c1">// 子節點數量 = 2</span>
<a id="__codelineno-36-37" name="__codelineno-36-37" href="#__codelineno-36-37"></a><span class="w"> </span><span class="c1">// 獲取中序走訪中 cur 的下一個節點</span>
<a id="__codelineno-36-38" name="__codelineno-36-38" href="#__codelineno-36-38"></a><span class="w"> </span><span class="n">TreeNode</span><span class="o">?</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-36-39" name="__codelineno-36-39" href="#__codelineno-36-39"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">tmp</span><span class="o">!</span><span class="p">.</span><span class="n">left</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-36-40" name="__codelineno-36-40" href="#__codelineno-36-40"></a><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">.</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-36-41" name="__codelineno-36-41" href="#__codelineno-36-41"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-36-42" name="__codelineno-36-42" href="#__codelineno-36-42"></a><span class="w"> </span><span class="c1">// 遞迴刪除節點 tmp</span>
<a id="__codelineno-36-43" name="__codelineno-36-43" href="#__codelineno-36-43"></a><span class="w"> </span><span class="n">remove</span><span class="p">(</span><span class="n">tmp</span><span class="p">.</span><span class="n">val</span><span class="p">);</span>
<a id="__codelineno-36-44" name="__codelineno-36-44" href="#__codelineno-36-44"></a><span class="w"> </span><span class="c1">// 用 tmp 覆蓋 cur</span>
<a id="__codelineno-36-45" name="__codelineno-36-45" href="#__codelineno-36-45"></a><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">.</span><span class="n">val</span><span class="p">;</span>
<a id="__codelineno-36-46" name="__codelineno-36-46" href="#__codelineno-36-46"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-36-47" name="__codelineno-36-47" href="#__codelineno-36-47"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.rs</span><pre><span></span><code><a id="__codelineno-37-1" name="__codelineno-37-1" href="#__codelineno-37-1"></a><span class="cm">/* 刪除節點 */</span>
<a id="__codelineno-37-2" name="__codelineno-37-2" href="#__codelineno-37-2"></a><span class="k">pub</span><span class="w"> </span><span class="k">fn</span> <span class="nf">remove</span><span class="p">(</span><span class="o">&amp;</span><span class="k">mut</span><span class="w"> </span><span class="bp">self</span><span class="p">,</span><span class="w"> </span><span class="n">num</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-3" name="__codelineno-37-3" href="#__codelineno-37-3"></a><span class="w"> </span><span class="c1">// 若樹為空,直接提前返回</span>
<a id="__codelineno-37-4" name="__codelineno-37-4" href="#__codelineno-37-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="bp">self</span><span class="p">.</span><span class="n">root</span><span class="p">.</span><span class="n">is_none</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-5" name="__codelineno-37-5" href="#__codelineno-37-5"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-37-6" name="__codelineno-37-6" href="#__codelineno-37-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-37-7" name="__codelineno-37-7" href="#__codelineno-37-7"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="bp">self</span><span class="p">.</span><span class="n">root</span><span class="p">.</span><span class="n">clone</span><span class="p">();</span>
<a id="__codelineno-37-8" name="__codelineno-37-8" href="#__codelineno-37-8"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">None</span><span class="p">;</span>
<a id="__codelineno-37-9" name="__codelineno-37-9" href="#__codelineno-37-9"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-37-10" name="__codelineno-37-10" href="#__codelineno-37-10"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nb">Some</span><span class="p">(</span><span class="n">node</span><span class="p">)</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">clone</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-11" name="__codelineno-37-11" href="#__codelineno-37-11"></a><span class="w"> </span><span class="k">match</span><span class="w"> </span><span class="n">num</span><span class="p">.</span><span class="n">cmp</span><span class="p">(</span><span class="o">&amp;</span><span class="n">node</span><span class="p">.</span><span class="n">borrow</span><span class="p">().</span><span class="n">val</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-12" name="__codelineno-37-12" href="#__codelineno-37-12"></a><span class="w"> </span><span class="c1">// 找到待刪除節點,跳出迴圈</span>
<a id="__codelineno-37-13" name="__codelineno-37-13" href="#__codelineno-37-13"></a><span class="w"> </span><span class="n">Ordering</span>::<span class="n">Equal</span><span class="w"> </span><span class="o">=&gt;</span><span class="w"> </span><span class="k">break</span><span class="p">,</span>
<a id="__codelineno-37-14" name="__codelineno-37-14" href="#__codelineno-37-14"></a><span class="w"> </span><span class="c1">// 待刪除節點在 cur 的右子樹中</span>
<a id="__codelineno-37-15" name="__codelineno-37-15" href="#__codelineno-37-15"></a><span class="w"> </span><span class="n">Ordering</span>::<span class="n">Greater</span><span class="w"> </span><span class="o">=&gt;</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-16" name="__codelineno-37-16" href="#__codelineno-37-16"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">clone</span><span class="p">();</span>
<a id="__codelineno-37-17" name="__codelineno-37-17" href="#__codelineno-37-17"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">.</span><span class="n">borrow</span><span class="p">().</span><span class="n">right</span><span class="p">.</span><span class="n">clone</span><span class="p">();</span>
<a id="__codelineno-37-18" name="__codelineno-37-18" href="#__codelineno-37-18"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-37-19" name="__codelineno-37-19" href="#__codelineno-37-19"></a><span class="w"> </span><span class="c1">// 待刪除節點在 cur 的左子樹中</span>
<a id="__codelineno-37-20" name="__codelineno-37-20" href="#__codelineno-37-20"></a><span class="w"> </span><span class="n">Ordering</span>::<span class="n">Less</span><span class="w"> </span><span class="o">=&gt;</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-21" name="__codelineno-37-21" href="#__codelineno-37-21"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">clone</span><span class="p">();</span>
<a id="__codelineno-37-22" name="__codelineno-37-22" href="#__codelineno-37-22"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">.</span><span class="n">borrow</span><span class="p">().</span><span class="n">left</span><span class="p">.</span><span class="n">clone</span><span class="p">();</span>
<a id="__codelineno-37-23" name="__codelineno-37-23" href="#__codelineno-37-23"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-37-24" name="__codelineno-37-24" href="#__codelineno-37-24"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-37-25" name="__codelineno-37-25" href="#__codelineno-37-25"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-37-26" name="__codelineno-37-26" href="#__codelineno-37-26"></a><span class="w"> </span><span class="c1">// 若無待刪除節點,則直接返回</span>
<a id="__codelineno-37-27" name="__codelineno-37-27" href="#__codelineno-37-27"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">is_none</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-28" name="__codelineno-37-28" href="#__codelineno-37-28"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-37-29" name="__codelineno-37-29" href="#__codelineno-37-29"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-37-30" name="__codelineno-37-30" href="#__codelineno-37-30"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">unwrap</span><span class="p">();</span>
<a id="__codelineno-37-31" name="__codelineno-37-31" href="#__codelineno-37-31"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="p">(</span><span class="n">left_child</span><span class="p">,</span><span class="w"> </span><span class="n">right_child</span><span class="p">)</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="n">borrow</span><span class="p">().</span><span class="n">left</span><span class="p">.</span><span class="n">clone</span><span class="p">(),</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">borrow</span><span class="p">().</span><span class="n">right</span><span class="p">.</span><span class="n">clone</span><span class="p">());</span>
<a id="__codelineno-37-32" name="__codelineno-37-32" href="#__codelineno-37-32"></a><span class="w"> </span><span class="k">match</span><span class="w"> </span><span class="p">(</span><span class="n">left_child</span><span class="p">.</span><span class="n">clone</span><span class="p">(),</span><span class="w"> </span><span class="n">right_child</span><span class="p">.</span><span class="n">clone</span><span class="p">())</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-33" name="__codelineno-37-33" href="#__codelineno-37-33"></a><span class="w"> </span><span class="c1">// 子節點數量 = 0 or 1</span>
<a id="__codelineno-37-34" name="__codelineno-37-34" href="#__codelineno-37-34"></a><span class="w"> </span><span class="p">(</span><span class="nb">None</span><span class="p">,</span><span class="w"> </span><span class="nb">None</span><span class="p">)</span><span class="w"> </span><span class="o">|</span><span class="w"> </span><span class="p">(</span><span class="nb">Some</span><span class="p">(</span><span class="n">_</span><span class="p">),</span><span class="w"> </span><span class="nb">None</span><span class="p">)</span><span class="w"> </span><span class="o">|</span><span class="w"> </span><span class="p">(</span><span class="nb">None</span><span class="p">,</span><span class="w"> </span><span class="nb">Some</span><span class="p">(</span><span class="n">_</span><span class="p">))</span><span class="w"> </span><span class="o">=&gt;</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-35" name="__codelineno-37-35" href="#__codelineno-37-35"></a><span class="w"> </span><span class="c1">// 當子節點數量 = 0 / 1 時, child = nullptr / 該子節點</span>
<a id="__codelineno-37-36" name="__codelineno-37-36" href="#__codelineno-37-36"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">child</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">left_child</span><span class="p">.</span><span class="n">or</span><span class="p">(</span><span class="n">right_child</span><span class="p">);</span>
<a id="__codelineno-37-37" name="__codelineno-37-37" href="#__codelineno-37-37"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="n">unwrap</span><span class="p">();</span>
<a id="__codelineno-37-38" name="__codelineno-37-38" href="#__codelineno-37-38"></a><span class="w"> </span><span class="c1">// 刪除節點 cur</span>
<a id="__codelineno-37-39" name="__codelineno-37-39" href="#__codelineno-37-39"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="o">!</span><span class="n">Rc</span>::<span class="n">ptr_eq</span><span class="p">(</span><span class="o">&amp;</span><span class="n">cur</span><span class="p">,</span><span class="w"> </span><span class="bp">self</span><span class="p">.</span><span class="n">root</span><span class="p">.</span><span class="n">as_ref</span><span class="p">().</span><span class="n">unwrap</span><span class="p">())</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-40" name="__codelineno-37-40" href="#__codelineno-37-40"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="n">borrow</span><span class="p">().</span><span class="n">left</span><span class="p">.</span><span class="n">clone</span><span class="p">();</span>
<a id="__codelineno-37-41" name="__codelineno-37-41" href="#__codelineno-37-41"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">left</span><span class="p">.</span><span class="n">is_some</span><span class="p">()</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="n">Rc</span>::<span class="n">ptr_eq</span><span class="p">(</span><span class="o">&amp;</span><span class="n">left</span><span class="p">.</span><span class="n">as_ref</span><span class="p">().</span><span class="n">unwrap</span><span class="p">(),</span><span class="w"> </span><span class="o">&amp;</span><span class="n">cur</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-42" name="__codelineno-37-42" href="#__codelineno-37-42"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="n">borrow_mut</span><span class="p">().</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-37-43" name="__codelineno-37-43" href="#__codelineno-37-43"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-44" name="__codelineno-37-44" href="#__codelineno-37-44"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="n">borrow_mut</span><span class="p">().</span><span class="n">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-37-45" name="__codelineno-37-45" href="#__codelineno-37-45"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-37-46" name="__codelineno-37-46" href="#__codelineno-37-46"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-47" name="__codelineno-37-47" href="#__codelineno-37-47"></a><span class="w"> </span><span class="c1">// 若刪除節點為根節點,則重新指定根節點</span>
<a id="__codelineno-37-48" name="__codelineno-37-48" href="#__codelineno-37-48"></a><span class="w"> </span><span class="bp">self</span><span class="p">.</span><span class="n">root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-37-49" name="__codelineno-37-49" href="#__codelineno-37-49"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-37-50" name="__codelineno-37-50" href="#__codelineno-37-50"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-37-51" name="__codelineno-37-51" href="#__codelineno-37-51"></a><span class="w"> </span><span class="c1">// 子節點數量 = 2</span>
<a id="__codelineno-37-52" name="__codelineno-37-52" href="#__codelineno-37-52"></a><span class="w"> </span><span class="p">(</span><span class="nb">Some</span><span class="p">(</span><span class="n">_</span><span class="p">),</span><span class="w"> </span><span class="nb">Some</span><span class="p">(</span><span class="n">_</span><span class="p">))</span><span class="w"> </span><span class="o">=&gt;</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-53" name="__codelineno-37-53" href="#__codelineno-37-53"></a><span class="w"> </span><span class="c1">// 獲取中序走訪中 cur 的下一個節點</span>
<a id="__codelineno-37-54" name="__codelineno-37-54" href="#__codelineno-37-54"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">borrow</span><span class="p">().</span><span class="n">right</span><span class="p">.</span><span class="n">clone</span><span class="p">();</span>
<a id="__codelineno-37-55" name="__codelineno-37-55" href="#__codelineno-37-55"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nb">Some</span><span class="p">(</span><span class="n">node</span><span class="p">)</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">.</span><span class="n">clone</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-56" name="__codelineno-37-56" href="#__codelineno-37-56"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">node</span><span class="p">.</span><span class="n">borrow</span><span class="p">().</span><span class="n">left</span><span class="p">.</span><span class="n">is_some</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-57" name="__codelineno-37-57" href="#__codelineno-37-57"></a><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">.</span><span class="n">borrow</span><span class="p">().</span><span class="n">left</span><span class="p">.</span><span class="n">clone</span><span class="p">();</span>
<a id="__codelineno-37-58" name="__codelineno-37-58" href="#__codelineno-37-58"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-59" name="__codelineno-37-59" href="#__codelineno-37-59"></a><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-37-60" name="__codelineno-37-60" href="#__codelineno-37-60"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-37-61" name="__codelineno-37-61" href="#__codelineno-37-61"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-37-62" name="__codelineno-37-62" href="#__codelineno-37-62"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">tmpval</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">.</span><span class="n">unwrap</span><span class="p">().</span><span class="n">borrow</span><span class="p">().</span><span class="n">val</span><span class="p">;</span>
<a id="__codelineno-37-63" name="__codelineno-37-63" href="#__codelineno-37-63"></a><span class="w"> </span><span class="c1">// 遞迴刪除節點 tmp</span>
<a id="__codelineno-37-64" name="__codelineno-37-64" href="#__codelineno-37-64"></a><span class="w"> </span><span class="bp">self</span><span class="p">.</span><span class="n">remove</span><span class="p">(</span><span class="n">tmpval</span><span class="p">);</span>
<a id="__codelineno-37-65" name="__codelineno-37-65" href="#__codelineno-37-65"></a><span class="w"> </span><span class="c1">// 用 tmp 覆蓋 cur</span>
<a id="__codelineno-37-66" name="__codelineno-37-66" href="#__codelineno-37-66"></a><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="n">borrow_mut</span><span class="p">().</span><span class="n">val</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmpval</span><span class="p">;</span>
<a id="__codelineno-37-67" name="__codelineno-37-67" href="#__codelineno-37-67"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-37-68" name="__codelineno-37-68" href="#__codelineno-37-68"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-37-69" name="__codelineno-37-69" href="#__codelineno-37-69"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.c</span><pre><span></span><code><a id="__codelineno-38-1" name="__codelineno-38-1" href="#__codelineno-38-1"></a><span class="cm">/* 刪除節點 */</span>
<a id="__codelineno-38-2" name="__codelineno-38-2" href="#__codelineno-38-2"></a><span class="c1">// 由於引入了 stdio.h ,此處無法使用 remove 關鍵詞</span>
<a id="__codelineno-38-3" name="__codelineno-38-3" href="#__codelineno-38-3"></a><span class="kt">void</span><span class="w"> </span><span class="nf">removeItem</span><span class="p">(</span><span class="n">BinarySearchTree</span><span class="w"> </span><span class="o">*</span><span class="n">bst</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-38-4" name="__codelineno-38-4" href="#__codelineno-38-4"></a><span class="w"> </span><span class="c1">// 若樹為空,直接提前返回</span>
<a id="__codelineno-38-5" name="__codelineno-38-5" href="#__codelineno-38-5"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">bst</span><span class="o">-&gt;</span><span class="n">root</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="nb">NULL</span><span class="p">)</span>
<a id="__codelineno-38-6" name="__codelineno-38-6" href="#__codelineno-38-6"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-38-7" name="__codelineno-38-7" href="#__codelineno-38-7"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">bst</span><span class="o">-&gt;</span><span class="n">root</span><span class="p">,</span><span class="w"> </span><span class="o">*</span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">NULL</span><span class="p">;</span>
<a id="__codelineno-38-8" name="__codelineno-38-8" href="#__codelineno-38-8"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-38-9" name="__codelineno-38-9" href="#__codelineno-38-9"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="nb">NULL</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-38-10" name="__codelineno-38-10" href="#__codelineno-38-10"></a><span class="w"> </span><span class="c1">// 找到待刪除節點,跳出迴圈</span>
<a id="__codelineno-38-11" name="__codelineno-38-11" href="#__codelineno-38-11"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-38-12" name="__codelineno-38-12" href="#__codelineno-38-12"></a><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-38-13" name="__codelineno-38-13" href="#__codelineno-38-13"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-38-14" name="__codelineno-38-14" href="#__codelineno-38-14"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-38-15" name="__codelineno-38-15" href="#__codelineno-38-15"></a><span class="w"> </span><span class="c1">// 待刪除節點在 root 的右子樹中</span>
<a id="__codelineno-38-16" name="__codelineno-38-16" href="#__codelineno-38-16"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-38-17" name="__codelineno-38-17" href="#__codelineno-38-17"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-38-18" name="__codelineno-38-18" href="#__codelineno-38-18"></a><span class="w"> </span><span class="c1">// 待刪除節點在 root 的左子樹中</span>
<a id="__codelineno-38-19" name="__codelineno-38-19" href="#__codelineno-38-19"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-38-20" name="__codelineno-38-20" href="#__codelineno-38-20"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-38-21" name="__codelineno-38-21" href="#__codelineno-38-21"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-38-22" name="__codelineno-38-22" href="#__codelineno-38-22"></a><span class="w"> </span><span class="c1">// 若無待刪除節點,則直接返回</span>
<a id="__codelineno-38-23" name="__codelineno-38-23" href="#__codelineno-38-23"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="nb">NULL</span><span class="p">)</span>
<a id="__codelineno-38-24" name="__codelineno-38-24" href="#__codelineno-38-24"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-38-25" name="__codelineno-38-25" href="#__codelineno-38-25"></a><span class="w"> </span><span class="c1">// 判斷待刪除節點是否存在子節點</span>
<a id="__codelineno-38-26" name="__codelineno-38-26" href="#__codelineno-38-26"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="nb">NULL</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">right</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="nb">NULL</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-38-27" name="__codelineno-38-27" href="#__codelineno-38-27"></a><span class="w"> </span><span class="cm">/* 子節點數量 = 0 or 1 */</span>
<a id="__codelineno-38-28" name="__codelineno-38-28" href="#__codelineno-38-28"></a><span class="w"> </span><span class="c1">// 當子節點數量 = 0 / 1 時, child = nullptr / 該子節點</span>
<a id="__codelineno-38-29" name="__codelineno-38-29" href="#__codelineno-38-29"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="n">child</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="nb">NULL</span><span class="w"> </span><span class="o">?</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-38-30" name="__codelineno-38-30" href="#__codelineno-38-30"></a><span class="w"> </span><span class="c1">// 刪除節點 cur</span>
<a id="__codelineno-38-31" name="__codelineno-38-31" href="#__codelineno-38-31"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">pre</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">cur</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-38-32" name="__codelineno-38-32" href="#__codelineno-38-32"></a><span class="w"> </span><span class="n">pre</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-38-33" name="__codelineno-38-33" href="#__codelineno-38-33"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-38-34" name="__codelineno-38-34" href="#__codelineno-38-34"></a><span class="w"> </span><span class="n">pre</span><span class="o">-&gt;</span><span class="n">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-38-35" name="__codelineno-38-35" href="#__codelineno-38-35"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-38-36" name="__codelineno-38-36" href="#__codelineno-38-36"></a><span class="w"> </span><span class="c1">// 釋放記憶體</span>
<a id="__codelineno-38-37" name="__codelineno-38-37" href="#__codelineno-38-37"></a><span class="w"> </span><span class="n">free</span><span class="p">(</span><span class="n">cur</span><span class="p">);</span>
<a id="__codelineno-38-38" name="__codelineno-38-38" href="#__codelineno-38-38"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-38-39" name="__codelineno-38-39" href="#__codelineno-38-39"></a><span class="w"> </span><span class="cm">/* 子節點數量 = 2 */</span>
<a id="__codelineno-38-40" name="__codelineno-38-40" href="#__codelineno-38-40"></a><span class="w"> </span><span class="c1">// 獲取中序走訪中 cur 的下一個節點</span>
<a id="__codelineno-38-41" name="__codelineno-38-41" href="#__codelineno-38-41"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-38-42" name="__codelineno-38-42" href="#__codelineno-38-42"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">tmp</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="nb">NULL</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-38-43" name="__codelineno-38-43" href="#__codelineno-38-43"></a><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="o">-&gt;</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-38-44" name="__codelineno-38-44" href="#__codelineno-38-44"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-38-45" name="__codelineno-38-45" href="#__codelineno-38-45"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmpVal</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="o">-&gt;</span><span class="n">val</span><span class="p">;</span>
<a id="__codelineno-38-46" name="__codelineno-38-46" href="#__codelineno-38-46"></a><span class="w"> </span><span class="c1">// 遞迴刪除節點 tmp</span>
<a id="__codelineno-38-47" name="__codelineno-38-47" href="#__codelineno-38-47"></a><span class="w"> </span><span class="n">removeItem</span><span class="p">(</span><span class="n">bst</span><span class="p">,</span><span class="w"> </span><span class="n">tmp</span><span class="o">-&gt;</span><span class="n">val</span><span class="p">);</span>
<a id="__codelineno-38-48" name="__codelineno-38-48" href="#__codelineno-38-48"></a><span class="w"> </span><span class="c1">// 用 tmp 覆蓋 cur</span>
<a id="__codelineno-38-49" name="__codelineno-38-49" href="#__codelineno-38-49"></a><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmpVal</span><span class="p">;</span>
<a id="__codelineno-38-50" name="__codelineno-38-50" href="#__codelineno-38-50"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-38-51" name="__codelineno-38-51" href="#__codelineno-38-51"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.kt</span><pre><span></span><code><a id="__codelineno-39-1" name="__codelineno-39-1" href="#__codelineno-39-1"></a><span class="cm">/* 刪除節點 */</span>
<a id="__codelineno-39-2" name="__codelineno-39-2" href="#__codelineno-39-2"></a><span class="kd">fun</span><span class="w"> </span><span class="nf">remove</span><span class="p">(</span><span class="n">num</span><span class="p">:</span><span class="w"> </span><span class="kt">Int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-39-3" name="__codelineno-39-3" href="#__codelineno-39-3"></a><span class="w"> </span><span class="c1">// 若樹為空,直接提前返回</span>
<a id="__codelineno-39-4" name="__codelineno-39-4" href="#__codelineno-39-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">root</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span>
<a id="__codelineno-39-5" name="__codelineno-39-5" href="#__codelineno-39-5"></a><span class="w"> </span><span class="k">return</span>
<a id="__codelineno-39-6" name="__codelineno-39-6" href="#__codelineno-39-6"></a><span class="w"> </span><span class="kd">var</span><span class="w"> </span><span class="nv">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">root</span>
<a id="__codelineno-39-7" name="__codelineno-39-7" href="#__codelineno-39-7"></a><span class="w"> </span><span class="kd">var</span><span class="w"> </span><span class="nv">pre</span><span class="p">:</span><span class="w"> </span><span class="n">TreeNode? </span><span class="o">=</span><span class="w"> </span><span class="kc">null</span>
<a id="__codelineno-39-8" name="__codelineno-39-8" href="#__codelineno-39-8"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-39-9" name="__codelineno-39-9" href="#__codelineno-39-9"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-39-10" name="__codelineno-39-10" href="#__codelineno-39-10"></a><span class="w"> </span><span class="c1">// 找到待刪除節點,跳出迴圈</span>
<a id="__codelineno-39-11" name="__codelineno-39-11" href="#__codelineno-39-11"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="na">_val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-39-12" name="__codelineno-39-12" href="#__codelineno-39-12"></a><span class="w"> </span><span class="k">break</span>
<a id="__codelineno-39-13" name="__codelineno-39-13" href="#__codelineno-39-13"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span>
<a id="__codelineno-39-14" name="__codelineno-39-14" href="#__codelineno-39-14"></a><span class="w"> </span><span class="c1">// 待刪除節點在 cur 的右子樹中</span>
<a id="__codelineno-39-15" name="__codelineno-39-15" href="#__codelineno-39-15"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="na">_val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-39-16" name="__codelineno-39-16" href="#__codelineno-39-16"></a><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">right</span>
<a id="__codelineno-39-17" name="__codelineno-39-17" href="#__codelineno-39-17"></a><span class="w"> </span><span class="c1">// 待刪除節點在 cur 的左子樹中</span>
<a id="__codelineno-39-18" name="__codelineno-39-18" href="#__codelineno-39-18"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-39-19" name="__codelineno-39-19" href="#__codelineno-39-19"></a><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">left</span>
<a id="__codelineno-39-20" name="__codelineno-39-20" href="#__codelineno-39-20"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-39-21" name="__codelineno-39-21" href="#__codelineno-39-21"></a><span class="w"> </span><span class="c1">// 若無待刪除節點,則直接返回</span>
<a id="__codelineno-39-22" name="__codelineno-39-22" href="#__codelineno-39-22"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span>
<a id="__codelineno-39-23" name="__codelineno-39-23" href="#__codelineno-39-23"></a><span class="w"> </span><span class="k">return</span>
<a id="__codelineno-39-24" name="__codelineno-39-24" href="#__codelineno-39-24"></a><span class="w"> </span><span class="c1">// 子節點數量 = 0 or 1</span>
<a id="__codelineno-39-25" name="__codelineno-39-25" href="#__codelineno-39-25"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="na">left</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">right</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-39-26" name="__codelineno-39-26" href="#__codelineno-39-26"></a><span class="w"> </span><span class="c1">// 當子節點數量 = 0 / 1 時, child = null / 該子節點</span>
<a id="__codelineno-39-27" name="__codelineno-39-27" href="#__codelineno-39-27"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">child</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="na">left</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span>
<a id="__codelineno-39-28" name="__codelineno-39-28" href="#__codelineno-39-28"></a><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">left</span>
<a id="__codelineno-39-29" name="__codelineno-39-29" href="#__codelineno-39-29"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-39-30" name="__codelineno-39-30" href="#__codelineno-39-30"></a><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">right</span>
<a id="__codelineno-39-31" name="__codelineno-39-31" href="#__codelineno-39-31"></a><span class="w"> </span><span class="c1">// 刪除節點 cur</span>
<a id="__codelineno-39-32" name="__codelineno-39-32" href="#__codelineno-39-32"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="n">root</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-39-33" name="__codelineno-39-33" href="#__codelineno-39-33"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">pre</span><span class="o">!!</span><span class="p">.</span><span class="na">left</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">cur</span><span class="p">)</span>
<a id="__codelineno-39-34" name="__codelineno-39-34" href="#__codelineno-39-34"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="na">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span>
<a id="__codelineno-39-35" name="__codelineno-39-35" href="#__codelineno-39-35"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-39-36" name="__codelineno-39-36" href="#__codelineno-39-36"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="na">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span>
<a id="__codelineno-39-37" name="__codelineno-39-37" href="#__codelineno-39-37"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-39-38" name="__codelineno-39-38" href="#__codelineno-39-38"></a><span class="w"> </span><span class="c1">// 若刪除節點為根節點,則重新指定根節點</span>
<a id="__codelineno-39-39" name="__codelineno-39-39" href="#__codelineno-39-39"></a><span class="w"> </span><span class="n">root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span>
<a id="__codelineno-39-40" name="__codelineno-39-40" href="#__codelineno-39-40"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-39-41" name="__codelineno-39-41" href="#__codelineno-39-41"></a><span class="w"> </span><span class="c1">// 子節點數量 = 2</span>
<a id="__codelineno-39-42" name="__codelineno-39-42" href="#__codelineno-39-42"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-39-43" name="__codelineno-39-43" href="#__codelineno-39-43"></a><span class="w"> </span><span class="c1">// 獲取中序走訪中 cur 的下一個節點</span>
<a id="__codelineno-39-44" name="__codelineno-39-44" href="#__codelineno-39-44"></a><span class="w"> </span><span class="kd">var</span><span class="w"> </span><span class="nv">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">right</span>
<a id="__codelineno-39-45" name="__codelineno-39-45" href="#__codelineno-39-45"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">tmp</span><span class="o">!!</span><span class="p">.</span><span class="na">left</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-39-46" name="__codelineno-39-46" href="#__codelineno-39-46"></a><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">.</span><span class="na">left</span>
<a id="__codelineno-39-47" name="__codelineno-39-47" href="#__codelineno-39-47"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-39-48" name="__codelineno-39-48" href="#__codelineno-39-48"></a><span class="w"> </span><span class="c1">// 遞迴刪除節點 tmp</span>
<a id="__codelineno-39-49" name="__codelineno-39-49" href="#__codelineno-39-49"></a><span class="w"> </span><span class="n">remove</span><span class="p">(</span><span class="n">tmp</span><span class="p">.</span><span class="na">_val</span><span class="p">)</span>
<a id="__codelineno-39-50" name="__codelineno-39-50" href="#__codelineno-39-50"></a><span class="w"> </span><span class="c1">// 用 tmp 覆蓋 cur</span>
<a id="__codelineno-39-51" name="__codelineno-39-51" href="#__codelineno-39-51"></a><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">_val</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">.</span><span class="na">_val</span>
<a id="__codelineno-39-52" name="__codelineno-39-52" href="#__codelineno-39-52"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-39-53" name="__codelineno-39-53" href="#__codelineno-39-53"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.rb</span><pre><span></span><code><a id="__codelineno-40-1" name="__codelineno-40-1" href="#__codelineno-40-1"></a><span class="c1">### 刪除節點 ###</span>
<a id="__codelineno-40-2" name="__codelineno-40-2" href="#__codelineno-40-2"></a><span class="k">def</span><span class="w"> </span><span class="nf">remove</span><span class="p">(</span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-40-3" name="__codelineno-40-3" href="#__codelineno-40-3"></a><span class="w"> </span><span class="c1"># 若樹為空,直接提前返回</span>
<a id="__codelineno-40-4" name="__codelineno-40-4" href="#__codelineno-40-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="vi">@root</span><span class="o">.</span><span class="n">nil?</span>
<a id="__codelineno-40-5" name="__codelineno-40-5" href="#__codelineno-40-5"></a>
<a id="__codelineno-40-6" name="__codelineno-40-6" href="#__codelineno-40-6"></a><span class="w"> </span><span class="c1"># 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-40-7" name="__codelineno-40-7" href="#__codelineno-40-7"></a><span class="w"> </span><span class="n">cur</span><span class="p">,</span><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="vi">@root</span><span class="p">,</span><span class="w"> </span><span class="kp">nil</span>
<a id="__codelineno-40-8" name="__codelineno-40-8" href="#__codelineno-40-8"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="o">!</span><span class="n">cur</span><span class="o">.</span><span class="n">nil?</span>
<a id="__codelineno-40-9" name="__codelineno-40-9" href="#__codelineno-40-9"></a><span class="w"> </span><span class="c1"># 找到待刪除節點,跳出迴圈</span>
<a id="__codelineno-40-10" name="__codelineno-40-10" href="#__codelineno-40-10"></a><span class="w"> </span><span class="k">break</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">cur</span><span class="o">.</span><span class="n">val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">num</span>
<a id="__codelineno-40-11" name="__codelineno-40-11" href="#__codelineno-40-11"></a>
<a id="__codelineno-40-12" name="__codelineno-40-12" href="#__codelineno-40-12"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span>
<a id="__codelineno-40-13" name="__codelineno-40-13" href="#__codelineno-40-13"></a><span class="w"> </span><span class="c1"># 待刪除節點在 cur 的右子樹中</span>
<a id="__codelineno-40-14" name="__codelineno-40-14" href="#__codelineno-40-14"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">cur</span><span class="o">.</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span>
<a id="__codelineno-40-15" name="__codelineno-40-15" href="#__codelineno-40-15"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">.</span><span class="n">right</span>
<a id="__codelineno-40-16" name="__codelineno-40-16" href="#__codelineno-40-16"></a><span class="w"> </span><span class="c1"># 待刪除節點在 cur 的左子樹中</span>
<a id="__codelineno-40-17" name="__codelineno-40-17" href="#__codelineno-40-17"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-40-18" name="__codelineno-40-18" href="#__codelineno-40-18"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">.</span><span class="n">left</span>
<a id="__codelineno-40-19" name="__codelineno-40-19" href="#__codelineno-40-19"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-40-20" name="__codelineno-40-20" href="#__codelineno-40-20"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-40-21" name="__codelineno-40-21" href="#__codelineno-40-21"></a><span class="w"> </span><span class="c1"># 若無待刪除節點,則直接返回</span>
<a id="__codelineno-40-22" name="__codelineno-40-22" href="#__codelineno-40-22"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">cur</span><span class="o">.</span><span class="n">nil?</span>
<a id="__codelineno-40-23" name="__codelineno-40-23" href="#__codelineno-40-23"></a>
<a id="__codelineno-40-24" name="__codelineno-40-24" href="#__codelineno-40-24"></a><span class="w"> </span><span class="c1"># 子節點數量 = 0 or 1</span>
<a id="__codelineno-40-25" name="__codelineno-40-25" href="#__codelineno-40-25"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">cur</span><span class="o">.</span><span class="n">left</span><span class="o">.</span><span class="n">nil?</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">cur</span><span class="o">.</span><span class="n">right</span><span class="o">.</span><span class="n">nil?</span>
<a id="__codelineno-40-26" name="__codelineno-40-26" href="#__codelineno-40-26"></a><span class="w"> </span><span class="c1"># 當子節點數量 = 0 / 1 時, child = null / 該子節點</span>
<a id="__codelineno-40-27" name="__codelineno-40-27" href="#__codelineno-40-27"></a><span class="w"> </span><span class="n">child</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">.</span><span class="n">left</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">cur</span><span class="o">.</span><span class="n">right</span>
<a id="__codelineno-40-28" name="__codelineno-40-28" href="#__codelineno-40-28"></a><span class="w"> </span><span class="c1"># 刪除節點 cur</span>
<a id="__codelineno-40-29" name="__codelineno-40-29" href="#__codelineno-40-29"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="vi">@root</span>
<a id="__codelineno-40-30" name="__codelineno-40-30" href="#__codelineno-40-30"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">pre</span><span class="o">.</span><span class="n">left</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">cur</span>
<a id="__codelineno-40-31" name="__codelineno-40-31" href="#__codelineno-40-31"></a><span class="w"> </span><span class="n">pre</span><span class="o">.</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span>
<a id="__codelineno-40-32" name="__codelineno-40-32" href="#__codelineno-40-32"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-40-33" name="__codelineno-40-33" href="#__codelineno-40-33"></a><span class="w"> </span><span class="n">pre</span><span class="o">.</span><span class="n">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span>
<a id="__codelineno-40-34" name="__codelineno-40-34" href="#__codelineno-40-34"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-40-35" name="__codelineno-40-35" href="#__codelineno-40-35"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-40-36" name="__codelineno-40-36" href="#__codelineno-40-36"></a><span class="w"> </span><span class="c1"># 若刪除節點為根節點,則重新指定根節點</span>
<a id="__codelineno-40-37" name="__codelineno-40-37" href="#__codelineno-40-37"></a><span class="w"> </span><span class="vi">@root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span>
<a id="__codelineno-40-38" name="__codelineno-40-38" href="#__codelineno-40-38"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-40-39" name="__codelineno-40-39" href="#__codelineno-40-39"></a><span class="w"> </span><span class="c1"># 子節點數量 = 2</span>
<a id="__codelineno-40-40" name="__codelineno-40-40" href="#__codelineno-40-40"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-40-41" name="__codelineno-40-41" href="#__codelineno-40-41"></a><span class="w"> </span><span class="c1"># 獲取中序走訪中 cur 的下一個節點</span>
<a id="__codelineno-40-42" name="__codelineno-40-42" href="#__codelineno-40-42"></a><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">.</span><span class="n">right</span>
<a id="__codelineno-40-43" name="__codelineno-40-43" href="#__codelineno-40-43"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="o">!</span><span class="n">tmp</span><span class="o">.</span><span class="n">left</span><span class="o">.</span><span class="n">nil?</span>
<a id="__codelineno-40-44" name="__codelineno-40-44" href="#__codelineno-40-44"></a><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="o">.</span><span class="n">left</span>
<a id="__codelineno-40-45" name="__codelineno-40-45" href="#__codelineno-40-45"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-40-46" name="__codelineno-40-46" href="#__codelineno-40-46"></a><span class="w"> </span><span class="c1"># 遞迴刪除節點 tmp</span>
<a id="__codelineno-40-47" name="__codelineno-40-47" href="#__codelineno-40-47"></a><span class="w"> </span><span class="n">remove</span><span class="p">(</span><span class="n">tmp</span><span class="o">.</span><span class="n">val</span><span class="p">)</span>
<a id="__codelineno-40-48" name="__codelineno-40-48" href="#__codelineno-40-48"></a><span class="w"> </span><span class="c1"># 用 tmp 覆蓋 cur</span>
<a id="__codelineno-40-49" name="__codelineno-40-49" href="#__codelineno-40-49"></a><span class="w"> </span><span class="n">cur</span><span class="o">.</span><span class="n">val</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="o">.</span><span class="n">val</span>
<a id="__codelineno-40-50" name="__codelineno-40-50" href="#__codelineno-40-50"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-40-51" name="__codelineno-40-51" href="#__codelineno-40-51"></a><span class="k">end</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.zig</span><pre><span></span><code><a id="__codelineno-41-1" name="__codelineno-41-1" href="#__codelineno-41-1"></a><span class="c1">// 刪除節點</span>
<a id="__codelineno-41-2" name="__codelineno-41-2" href="#__codelineno-41-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">remove</span><span class="p">(</span><span class="n">self</span><span class="o">:</span><span class="w"> </span><span class="o">*</span><span class="n">Self</span><span class="p">,</span><span class="w"> </span><span class="n">num</span><span class="o">:</span><span class="w"> </span><span class="n">T</span><span class="p">)</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-41-3" name="__codelineno-41-3" href="#__codelineno-41-3"></a><span class="w"> </span><span class="c1">// 若樹為空,直接提前返回</span>
<a id="__codelineno-41-4" name="__codelineno-41-4" href="#__codelineno-41-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">self</span><span class="p">.</span><span class="n">root</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-41-5" name="__codelineno-41-5" href="#__codelineno-41-5"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">self</span><span class="p">.</span><span class="n">root</span><span class="p">;</span>
<a id="__codelineno-41-6" name="__codelineno-41-6" href="#__codelineno-41-6"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">pre</span><span class="o">:</span><span class="w"> </span><span class="o">?*</span><span class="n">inc</span><span class="p">.</span><span class="n">TreeNode</span><span class="p">(</span><span class="n">T</span><span class="p">)</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">null</span><span class="p">;</span>
<a id="__codelineno-41-7" name="__codelineno-41-7" href="#__codelineno-41-7"></a><span class="w"> </span><span class="c1">// 迴圈查詢,越過葉節點後跳出</span>
<a id="__codelineno-41-8" name="__codelineno-41-8" href="#__codelineno-41-8"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-41-9" name="__codelineno-41-9" href="#__codelineno-41-9"></a><span class="w"> </span><span class="c1">// 找到待刪除節點,跳出迴圈</span>
<a id="__codelineno-41-10" name="__codelineno-41-10" href="#__codelineno-41-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-41-11" name="__codelineno-41-11" href="#__codelineno-41-11"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-41-12" name="__codelineno-41-12" href="#__codelineno-41-12"></a><span class="w"> </span><span class="c1">// 待刪除節點在 cur 的右子樹中</span>
<a id="__codelineno-41-13" name="__codelineno-41-13" href="#__codelineno-41-13"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-41-14" name="__codelineno-41-14" href="#__codelineno-41-14"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-41-15" name="__codelineno-41-15" href="#__codelineno-41-15"></a><span class="w"> </span><span class="c1">// 待刪除節點在 cur 的左子樹中</span>
<a id="__codelineno-41-16" name="__codelineno-41-16" href="#__codelineno-41-16"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-41-17" name="__codelineno-41-17" href="#__codelineno-41-17"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-41-18" name="__codelineno-41-18" href="#__codelineno-41-18"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-41-19" name="__codelineno-41-19" href="#__codelineno-41-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-41-20" name="__codelineno-41-20" href="#__codelineno-41-20"></a><span class="w"> </span><span class="c1">// 若無待刪除節點,則直接返回</span>
<a id="__codelineno-41-21" name="__codelineno-41-21" href="#__codelineno-41-21"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-41-22" name="__codelineno-41-22" href="#__codelineno-41-22"></a><span class="w"> </span><span class="c1">// 子節點數量 = 0 or 1</span>
<a id="__codelineno-41-23" name="__codelineno-41-23" href="#__codelineno-41-23"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">left</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="w"> </span><span class="k">or</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">right</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-41-24" name="__codelineno-41-24" href="#__codelineno-41-24"></a><span class="w"> </span><span class="c1">// 當子節點數量 = 0 / 1 時, child = null / 該子節點</span>
<a id="__codelineno-41-25" name="__codelineno-41-25" href="#__codelineno-41-25"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">child</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">left</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">left</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-41-26" name="__codelineno-41-26" href="#__codelineno-41-26"></a><span class="w"> </span><span class="c1">// 刪除節點 cur</span>
<a id="__codelineno-41-27" name="__codelineno-41-27" href="#__codelineno-41-27"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">pre</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">left</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">cur</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-41-28" name="__codelineno-41-28" href="#__codelineno-41-28"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-41-29" name="__codelineno-41-29" href="#__codelineno-41-29"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-41-30" name="__codelineno-41-30" href="#__codelineno-41-30"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-41-31" name="__codelineno-41-31" href="#__codelineno-41-31"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-41-32" name="__codelineno-41-32" href="#__codelineno-41-32"></a><span class="w"> </span><span class="c1">// 子節點數量 = 2</span>
<a id="__codelineno-41-33" name="__codelineno-41-33" href="#__codelineno-41-33"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-41-34" name="__codelineno-41-34" href="#__codelineno-41-34"></a><span class="w"> </span><span class="c1">// 獲取中序走訪中 cur 的下一個節點</span>
<a id="__codelineno-41-35" name="__codelineno-41-35" href="#__codelineno-41-35"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-41-36" name="__codelineno-41-36" href="#__codelineno-41-36"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">tmp</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">left</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-41-37" name="__codelineno-41-37" href="#__codelineno-41-37"></a><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-41-38" name="__codelineno-41-38" href="#__codelineno-41-38"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-41-39" name="__codelineno-41-39" href="#__codelineno-41-39"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">tmp_val</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">val</span><span class="p">;</span>
<a id="__codelineno-41-40" name="__codelineno-41-40" href="#__codelineno-41-40"></a><span class="w"> </span><span class="c1">// 遞迴刪除節點 tmp</span>
<a id="__codelineno-41-41" name="__codelineno-41-41" href="#__codelineno-41-41"></a><span class="w"> </span><span class="n">self</span><span class="p">.</span><span class="n">remove</span><span class="p">(</span><span class="n">tmp</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">val</span><span class="p">);</span>
<a id="__codelineno-41-42" name="__codelineno-41-42" href="#__codelineno-41-42"></a><span class="w"> </span><span class="c1">// 用 tmp 覆蓋 cur</span>
<a id="__codelineno-41-43" name="__codelineno-41-43" href="#__codelineno-41-43"></a><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="o">?</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp_val</span><span class="p">;</span>
<a id="__codelineno-41-44" name="__codelineno-41-44" href="#__codelineno-41-44"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-41-45" name="__codelineno-41-45" href="#__codelineno-41-45"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<details class="pythontutor">
<summary>視覺化執行</summary>
<p><div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=class%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%A8%B9%E7%AF%80%E9%BB%9E%E9%A1%9E%E5%88%A5%22%22%22%0A%20%20%20%20def%20__init__%28self%2C%20val%29%3A%0A%20%20%20%20%20%20%20%20self.val%20%3D%20val%0A%20%20%20%20%20%20%20%20self.left%20%3D%20None%0A%20%20%20%20%20%20%20%20self.right%20%3D%20None%0A%0Aclass%20BinarySearchTree%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%22%22%22%0A%0A%20%20%20%20def%20__init__%28self%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E5%BB%BA%E6%A7%8B%E5%AD%90%22%22%22%0A%20%20%20%20%20%20%20%20self._root%20%3D%20None%0A%0A%20%20%20%20def%20insert%28self%2C%20num%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%22%22%22%0A%20%20%20%20%20%20%20%20if%20self._root%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20self._root%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20cur%2C%20pre%20%3D%20self._root%2C%20None%0A%20%20%20%20%20%20%20%20while%20cur%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3D%3D%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%20%20%20%20pre%20%3D%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.left%0A%20%20%20%20%20%20%20%20node%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20if%20pre.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.right%20%3D%20node%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.left%20%3D%20node%0A%0A%20%20%20%20def%20remove%28self%2C%20num%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E5%88%AA%E9%99%A4%E7%AF%80%E9%BB%9E%22%22%22%0A%20%20%20%20%20%20%20%20if%20self._root%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%23%20%E6%9F%A5%E8%A9%A2%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20cur%2C%20pre%20%3D%20self._root%2C%20None%0A%20%20%20%20%20%20%20%20while%20cur%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3D%3D%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20break%0A%20%20%20%20%20%20%20%20%20%20%20%20pre%20%3D%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.left%0A%20%20%20%20%20%20%20%20if%20cur%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%0A%0A%20%20%20%20%20%20%20%20%23%20%E5%AD%90%E7%AF%80%E9%BB%9E%E6%95%B8%E9%87%8F%20%3D%200%20or%201%0A%20%20%20%20%20%20%20%20if%20cur.left%20is%20None%20or%20cur.right%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E7%95%B6%E5%AD%90%E7%AF%80%E9%BB%9E%E6%95%B8%E9%87%8F%20%3D%200%20/%201%20%E6%99%82%EF%BC%8C%20child%20%3D%20null%20/%20%E8%A9%B2%E5%AD%90%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20%20%20%20%20child%20%3D%20cur.left%20or%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%88%AA%E9%99%A4%E7%AF%80%E9%BB%9E%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur%20%21%3D%20self._root%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20if%20pre.left%20%3D%3D%20cur%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pre.left%20%3D%20child%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pre.right%20%3D%20child%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20self._root%20%3D%20child%0A%20%20%20%20%20%20%20%20%23%20%E5%AD%90%E7%AF%80%E9%BB%9E%E6%95%B8%E9%87%8F%20%3D%202%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E7%8D%B2%E5%8F%96%E4%B8%AD%E5%BA%8F%E8%B5%B0%E8%A8%AA%E4%B8%AD%20cur%20%E7%9A%84%E4%B8%8B%E4%B8%80%E5%80%8B%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20%20%20%20%20tmp%3A%20TreeNode%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20while%20tmp.left%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20tmp%20%3D%20tmp.left%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E9%81%9E%E8%BF%B4%E5%88%AA%E9%99%A4%E7%AF%80%E9%BB%9E%20tmp%0A%20%20%20%20%20%20%20%20%20%20%20%20self.remove%28tmp.val%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E7%94%A8%20tmp%20%E8%A6%86%E8%93%8B%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20cur.val%20%3D%20tmp.val%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%0A%20%20%20%20bst%20%3D%20BinarySearchTree%28%29%0A%20%20%20%20nums%20%3D%20%5B4%2C%202%2C%206%2C%201%2C%203%2C%205%2C%207%5D%0A%20%20%20%20for%20num%20in%20nums%3A%0A%20%20%20%20%20%20%20%20bst.insert%28num%29%0A%0A%20%20%20%20%23%20%E5%88%AA%E9%99%A4%E7%AF%80%E9%BB%9E%0A%20%20%20%20bst.remove%281%29%20%23%20%E5%BA%A6%E7%82%BA%200%0A%20%20%20%20bst.remove%282%29%20%23%20%E5%BA%A6%E7%82%BA%201%0A%20%20%20%20bst.remove%284%29%20%23%20%E5%BA%A6%E7%82%BA%202&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=162&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=class%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%A8%B9%E7%AF%80%E9%BB%9E%E9%A1%9E%E5%88%A5%22%22%22%0A%20%20%20%20def%20__init__%28self%2C%20val%29%3A%0A%20%20%20%20%20%20%20%20self.val%20%3D%20val%0A%20%20%20%20%20%20%20%20self.left%20%3D%20None%0A%20%20%20%20%20%20%20%20self.right%20%3D%20None%0A%0Aclass%20BinarySearchTree%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%22%22%22%0A%0A%20%20%20%20def%20__init__%28self%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E5%BB%BA%E6%A7%8B%E5%AD%90%22%22%22%0A%20%20%20%20%20%20%20%20self._root%20%3D%20None%0A%0A%20%20%20%20def%20insert%28self%2C%20num%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%22%22%22%0A%20%20%20%20%20%20%20%20if%20self._root%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20self._root%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20cur%2C%20pre%20%3D%20self._root%2C%20None%0A%20%20%20%20%20%20%20%20while%20cur%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3D%3D%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%20%20%20%20pre%20%3D%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.left%0A%20%20%20%20%20%20%20%20node%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20if%20pre.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.right%20%3D%20node%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.left%20%3D%20node%0A%0A%20%20%20%20def%20remove%28self%2C%20num%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E5%88%AA%E9%99%A4%E7%AF%80%E9%BB%9E%22%22%22%0A%20%20%20%20%20%20%20%20if%20self._root%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%23%20%E6%9F%A5%E8%A9%A2%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20cur%2C%20pre%20%3D%20self._root%2C%20None%0A%20%20%20%20%20%20%20%20while%20cur%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3D%3D%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20break%0A%20%20%20%20%20%20%20%20%20%20%20%20pre%20%3D%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.left%0A%20%20%20%20%20%20%20%20if%20cur%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%0A%0A%20%20%20%20%20%20%20%20%23%20%E5%AD%90%E7%AF%80%E9%BB%9E%E6%95%B8%E9%87%8F%20%3D%200%20or%201%0A%20%20%20%20%20%20%20%20if%20cur.left%20is%20None%20or%20cur.right%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E7%95%B6%E5%AD%90%E7%AF%80%E9%BB%9E%E6%95%B8%E9%87%8F%20%3D%200%20/%201%20%E6%99%82%EF%BC%8C%20child%20%3D%20null%20/%20%E8%A9%B2%E5%AD%90%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20%20%20%20%20child%20%3D%20cur.left%20or%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%88%AA%E9%99%A4%E7%AF%80%E9%BB%9E%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur%20%21%3D%20self._root%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20if%20pre.left%20%3D%3D%20cur%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pre.left%20%3D%20child%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pre.right%20%3D%20child%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20self._root%20%3D%20child%0A%20%20%20%20%20%20%20%20%23%20%E5%AD%90%E7%AF%80%E9%BB%9E%E6%95%B8%E9%87%8F%20%3D%202%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E7%8D%B2%E5%8F%96%E4%B8%AD%E5%BA%8F%E8%B5%B0%E8%A8%AA%E4%B8%AD%20cur%20%E7%9A%84%E4%B8%8B%E4%B8%80%E5%80%8B%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20%20%20%20%20tmp%3A%20TreeNode%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20while%20tmp.left%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20tmp%20%3D%20tmp.left%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E9%81%9E%E8%BF%B4%E5%88%AA%E9%99%A4%E7%AF%80%E9%BB%9E%20tmp%0A%20%20%20%20%20%20%20%20%20%20%20%20self.remove%28tmp.val%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E7%94%A8%20tmp%20%E8%A6%86%E8%93%8B%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20cur.val%20%3D%20tmp.val%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%0A%20%20%20%20bst%20%3D%20BinarySearchTree%28%29%0A%20%20%20%20nums%20%3D%20%5B4%2C%202%2C%206%2C%201%2C%203%2C%205%2C%207%5D%0A%20%20%20%20for%20num%20in%20nums%3A%0A%20%20%20%20%20%20%20%20bst.insert%28num%29%0A%0A%20%20%20%20%23%20%E5%88%AA%E9%99%A4%E7%AF%80%E9%BB%9E%0A%20%20%20%20bst.remove%281%29%20%23%20%E5%BA%A6%E7%82%BA%200%0A%20%20%20%20bst.remove%282%29%20%23%20%E5%BA%A6%E7%82%BA%201%0A%20%20%20%20bst.remove%284%29%20%23%20%E5%BA%A6%E7%82%BA%202&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=162&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 &gt;</a></div></p>
</details>
<h3 id="4">4. &nbsp; 中序走訪有序<a class="headerlink" href="#4" title="Permanent link">&para;</a></h3>
<p>如圖 7-22 所示,二元樹的中序走訪遵循“左 <span class="arithmatex">\(\rightarrow\)</span><span class="arithmatex">\(\rightarrow\)</span> 右”的走訪順序,而二元搜尋樹滿足“左子節點 <span class="arithmatex">\(&lt;\)</span> 根節點 <span class="arithmatex">\(&lt;\)</span> 右子節點”的大小關係。</p>
<p>這意味著在二元搜尋樹中進行中序走訪時,總是會優先走訪下一個最小節點,從而得出一個重要性質:<strong>二元搜尋樹的中序走訪序列是升序的</strong></p>
<p>利用中序走訪升序的性質,我們在二元搜尋樹中獲取有序資料僅需 <span class="arithmatex">\(O(n)\)</span> 時間,無須進行額外的排序操作,非常高效。</p>
<p><a class="glightbox" href="../binary_search_tree.assets/bst_inorder_traversal.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="二元搜尋樹的中序走訪序列" class="animation-figure" src="../binary_search_tree.assets/bst_inorder_traversal.png" /></a></p>
<p align="center"> 圖 7-22 &nbsp; 二元搜尋樹的中序走訪序列 </p>
<h2 id="742">7.4.2 &nbsp; 二元搜尋樹的效率<a class="headerlink" href="#742" title="Permanent link">&para;</a></h2>
<p>給定一組資料,我們考慮使用陣列或二元搜尋樹儲存。觀察表 7-2 ,二元搜尋樹的各項操作的時間複雜度都是對數階,具有穩定且高效的效能。只有在高頻新增、低頻查詢刪除資料的場景下,陣列比二元搜尋樹的效率更高。</p>
<p align="center"> 表 7-2 &nbsp; 陣列與搜尋樹的效率對比 </p>
<div class="center-table">
<table>
<thead>
<tr>
<th></th>
<th>無序陣列</th>
<th>二元搜尋樹</th>
</tr>
</thead>
<tbody>
<tr>
<td>查詢元素</td>
<td><span class="arithmatex">\(O(n)\)</span></td>
<td><span class="arithmatex">\(O(\log n)\)</span></td>
</tr>
<tr>
<td>插入元素</td>
<td><span class="arithmatex">\(O(1)\)</span></td>
<td><span class="arithmatex">\(O(\log n)\)</span></td>
</tr>
<tr>
<td>刪除元素</td>
<td><span class="arithmatex">\(O(n)\)</span></td>
<td><span class="arithmatex">\(O(\log n)\)</span></td>
</tr>
</tbody>
</table>
</div>
<p>在理想情況下,二元搜尋樹是“平衡”的,這樣就可以在 <span class="arithmatex">\(\log n\)</span> 輪迴圈內查詢任意節點。</p>
<p>然而,如果我們在二元搜尋樹中不斷地插入和刪除節點,可能導致二元樹退化為圖 7-23 所示的鏈結串列,這時各種操作的時間複雜度也會退化為 <span class="arithmatex">\(O(n)\)</span></p>
<p><a class="glightbox" href="../binary_search_tree.assets/bst_degradation.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="二元搜尋樹退化" class="animation-figure" src="../binary_search_tree.assets/bst_degradation.png" /></a></p>
<p align="center"> 圖 7-23 &nbsp; 二元搜尋樹退化 </p>
<h2 id="743">7.4.3 &nbsp; 二元搜尋樹常見應用<a class="headerlink" href="#743" title="Permanent link">&para;</a></h2>
<ul>
<li>用作系統中的多級索引,實現高效的查詢、插入、刪除操作。</li>
<li>作為某些搜尋演算法的底層資料結構。</li>
<li>用於儲存資料流,以保持其有序狀態。</li>
</ul>
<!-- Source file information -->
<!-- Was this page helpful? -->
<!-- Previous and next pages link -->
<nav
class="md-footer__inner md-grid"
aria-label="頁脚"
>
<!-- Link to previous page -->
<a
href="../array_representation_of_tree/"
class="md-footer__link md-footer__link--prev"
aria-label="上一頁: 7.3 &amp;nbsp; 二元樹陣列表示"
rel="prev"
>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</div>
<div class="md-footer__title">
<span class="md-footer__direction">
上一頁
</span>
<div class="md-ellipsis">
7.3 &nbsp; 二元樹陣列表示
</div>
</div>
</a>
<!-- Link to next page -->
<a
href="../avl_tree/"
class="md-footer__link md-footer__link--next"
aria-label="下一頁: 7.5 &amp;nbsp; AVL *"
rel="next"
>
<div class="md-footer__title">
<span class="md-footer__direction">
下一頁
</span>
<div class="md-ellipsis">
7.5 &nbsp; AVL *
</div>
</div>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
</div>
</a>
</nav>
<!-- Comment system -->
<h5 align="center" id="__comments"></h5>
<!-- Insert generated snippet here -->
<script
src="https://giscus.app/client.js"
data-repo="krahets/hello-algo"
data-repo-id="R_kgDOIXtSqw"
data-category="Announcements"
data-category-id="DIC_kwDOIXtSq84CSZk_"
data-mapping="pathname"
data-strict="1"
data-reactions-enabled="1"
data-emit-metadata="0"
data-input-position="top"
data-theme="light"
data-lang="
"
crossorigin="anonymous"
async
>
</script>
<!-- Synchronize Giscus theme with palette -->
<script>
var giscus = document.querySelector("script[src*=giscus]")
/* Set palette on initial load */
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark_dimmed" : "light"
giscus.setAttribute("data-theme", theme)
}
/* Register event handlers after documented loaded */
document.addEventListener("DOMContentLoaded", function() {
var ref = document.querySelector("[data-md-component=palette]")
ref.addEventListener("change", function() {
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark_dimmed" : "light"
/* Instruct Giscus to change theme */
var frame = document.querySelector(".giscus-frame")
frame.contentWindow.postMessage(
{ giscus: { setConfig: { theme } } },
"https://giscus.app"
)
}
})
})
</script>
</article>
</div>
<script>var tabs=__md_get("__tabs");if(Array.isArray(tabs))e:for(var set of document.querySelectorAll(".tabbed-set")){var tab,labels=set.querySelector(".tabbed-labels");for(tab of tabs)for(var label of labels.getElementsByTagName("label"))if(label.innerText.trim()===tab){var input=document.getElementById(label.htmlFor);input.checked=!0;continue e}}</script>
<script>var target=document.getElementById(location.hash.slice(1));target&&target.name&&(target.checked=target.name.startsWith("__tabbed_"))</script>
</div>
<button type="button" class="md-top md-icon" data-md-component="top" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8v12Z"/></svg>
回到頂部
</button>
</main>
<footer class="md-footer">
<nav class="md-footer__inner md-grid" aria-label="頁脚" >
<a href="../array_representation_of_tree/" class="md-footer__link md-footer__link--prev" aria-label="上一頁: 7.3 &amp;nbsp; 二元樹陣列表示">
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</div>
<div class="md-footer__title">
<span class="md-footer__direction">
上一頁
</span>
<div class="md-ellipsis">
7.3 &nbsp; 二元樹陣列表示
</div>
</div>
</a>
<a href="../avl_tree/" class="md-footer__link md-footer__link--next" aria-label="下一頁: 7.5 &amp;nbsp; AVL *">
<div class="md-footer__title">
<span class="md-footer__direction">
下一頁
</span>
<div class="md-ellipsis">
7.5 &nbsp; AVL *
</div>
</div>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
</div>
</a>
</nav>
<div class="md-footer-meta md-typeset">
<div class="md-footer-meta__inner md-grid">
<div class="md-copyright">
<div class="md-copyright__highlight">
Copyright &copy; 2022-2024 krahets<br>The website content is licensed under <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">CC BY-NC-SA 4.0</a>
</div>
</div>
<div class="md-social">
<a href="https://github.com/krahets" target="_blank" rel="noopener" title="github.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</a>
<a href="https://twitter.com/krahets" target="_blank" rel="noopener" title="twitter.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M389.2 48h70.6L305.6 224.2 487 464H345L233.7 318.6 106.5 464H35.8l164.9-188.5L26.8 48h145.6l100.5 132.9L389.2 48zm-24.8 373.8h39.1L151.1 88h-42l255.3 333.8z"/></svg>
</a>
<a href="https://leetcode.cn/u/jyd/" target="_blank" rel="noopener" title="leetcode.cn" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 640 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M392.8 1.2c-17-4.9-34.7 5-39.6 22l-128 448c-4.9 17 5 34.7 22 39.6s34.7-5 39.6-22l128-448c4.9-17-5-34.7-22-39.6zm80.6 120.1c-12.5 12.5-12.5 32.8 0 45.3l89.3 89.4-89.4 89.4c-12.5 12.5-12.5 32.8 0 45.3s32.8 12.5 45.3 0l112-112c12.5-12.5 12.5-32.8 0-45.3l-112-112c-12.5-12.5-32.8-12.5-45.3 0zm-306.7 0c-12.5-12.5-32.8-12.5-45.3 0l-112 112c-12.5 12.5-12.5 32.8 0 45.3l112 112c12.5 12.5 32.8 12.5 45.3 0s12.5-32.8 0-45.3L77.3 256l89.4-89.4c12.5-12.5 12.5-32.8 0-45.3z"/></svg>
</a>
</div>
</div>
</div>
</footer>
</div>
<div class="md-dialog" data-md-component="dialog">
<div class="md-dialog__inner md-typeset"></div>
</div>
<script id="__config" type="application/json">{"base": "../..", "features": ["announce.dismiss", "content.action.edit", "content.code.annotate", "content.code.copy", "content.tabs.link", "content.tooltips", "navigation.indexes", "navigation.top", "navigation.footer", "navigation.tracking", "search.highlight", "search.share", "search.suggest", "toc.follow"], "search": "../../assets/javascripts/workers/search.b8dbb3d2.min.js", "translations": {"clipboard.copied": "\u5df2\u62f7\u8c9d", "clipboard.copy": "\u62f7\u8c9d", "search.result.more.one": "\u6b64\u9801\u5c1a\u6709 1 \u500b\u7b26\u5408\u7684\u9805\u76ee", "search.result.more.other": "\u6b64\u9801\u5c1a\u6709 # \u500b\u7b26\u5408\u7684\u9805\u76ee", "search.result.none": "\u6c92\u6709\u627e\u5230\u7b26\u5408\u689d\u4ef6\u7684\u7d50\u679c", "search.result.one": "\u627e\u5230 1 \u4e2a\u7b26\u5408\u689d\u4ef6\u7684\u7d50\u679c", "search.result.other": "\u627e\u5230 # \u500b\u7b26\u5408\u689d\u4ef6\u7684\u7d50\u679c", "search.result.placeholder": "\u9375\u5165\u4ee5\u958b\u59cb\u6aa2\u7d22", "search.result.term.missing": "\u7f3a\u5931", "select.version": "\u9078\u64c7\u7248\u672c"}}</script>
<script src="../../assets/javascripts/bundle.c18c5fb9.min.js"></script>
<script src="../../javascripts/mathjax.js"></script>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/3.2.2/es5/tex-mml-chtml.min.js"></script>
<script>document$.subscribe(() => {const lightbox = GLightbox({"touchNavigation": true, "loop": false, "zoomable": true, "draggable": false, "openEffect": "zoom", "closeEffect": "zoom", "slideEffect": "none"});})</script></body>
</html>