mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-25 14:46:28 +08:00
2f8829d3f6
Make all table align center.
146 lines
4.8 KiB
Java
146 lines
4.8 KiB
Java
package chapter_tree;
|
|
|
|
import java.util.*;
|
|
import include.*;
|
|
|
|
class BinarySearchTree {
|
|
private TreeNode root;
|
|
|
|
public BinarySearchTree(int[] nums) {
|
|
Arrays.sort(nums); // 排序数组
|
|
root = buildTree(nums, 0, nums.length - 1); // 构建二叉搜索树
|
|
}
|
|
|
|
/* 获取二叉树根结点 */
|
|
public TreeNode getRoot() {
|
|
return root;
|
|
}
|
|
|
|
/* 构建二叉搜索树 */
|
|
public TreeNode buildTree(int[] nums, int i, int j) {
|
|
if (i > j) return null;
|
|
// 将数组中间结点作为根结点
|
|
int mid = (i + j) / 2;
|
|
TreeNode root = new TreeNode(nums[mid]);
|
|
// 递归建立左子树和右子树
|
|
root.left = buildTree(nums, i, mid - 1);
|
|
root.right = buildTree(nums, mid + 1, j);
|
|
return root;
|
|
}
|
|
|
|
/* 查找结点 */
|
|
public TreeNode search(int num) {
|
|
TreeNode cur = root;
|
|
// 循环查找,越过叶结点后跳出
|
|
while (cur != null) {
|
|
// 目标结点在 root 的右子树中
|
|
if (cur.val < num) cur = cur.right;
|
|
// 目标结点在 root 的左子树中
|
|
else if (cur.val > num) cur = cur.left;
|
|
// 找到目标结点,跳出循环
|
|
else break;
|
|
}
|
|
// 返回目标结点
|
|
return cur;
|
|
}
|
|
|
|
/* 插入结点 */
|
|
public TreeNode insert(int num) {
|
|
// 若树为空,直接提前返回
|
|
if (root == null) return null;
|
|
TreeNode cur = root, pre = null;
|
|
// 循环查找,越过叶结点后跳出
|
|
while (cur != null) {
|
|
// 找到重复结点,直接返回
|
|
if (cur.val == num) return null;
|
|
pre = cur;
|
|
// 插入位置在 root 的右子树中
|
|
if (cur.val < num) cur = cur.right;
|
|
// 插入位置在 root 的左子树中
|
|
else cur = cur.left;
|
|
}
|
|
// 插入结点 val
|
|
TreeNode node = new TreeNode(num);
|
|
if (pre.val < num) pre.right = node;
|
|
else pre.left = node;
|
|
return node;
|
|
}
|
|
|
|
/* 删除结点 */
|
|
public TreeNode remove(int num) {
|
|
// 若树为空,直接提前返回
|
|
if (root == null) return null;
|
|
TreeNode cur = root, pre = null;
|
|
// 循环查找,越过叶结点后跳出
|
|
while (cur != null) {
|
|
// 找到待删除结点,跳出循环
|
|
if (cur.val == num) break;
|
|
pre = cur;
|
|
// 待删除结点在 root 的右子树中
|
|
if (cur.val < num) cur = cur.right;
|
|
// 待删除结点在 root 的左子树中
|
|
else cur = cur.left;
|
|
}
|
|
// 若无待删除结点,则直接返回
|
|
if (cur == null) return null;
|
|
// 子结点数量 = 0 or 1
|
|
if (cur.left == null || cur.right == null) {
|
|
// 当子结点数量 = 0 / 1 时, child = null / 该子结点
|
|
TreeNode child = cur.left != null ? cur.left : cur.right;
|
|
// 删除结点 cur
|
|
if (pre.left == cur) pre.left = child;
|
|
else pre.right = child;
|
|
}
|
|
// 子结点数量 = 2
|
|
else {
|
|
// 获取中序遍历中 cur 的下一个结点
|
|
TreeNode nex = min(cur.right);
|
|
int tmp = nex.val;
|
|
// 递归删除结点 nex
|
|
remove(nex.val);
|
|
// 将 nex 的值复制给 cur
|
|
cur.val = tmp;
|
|
}
|
|
return cur;
|
|
}
|
|
|
|
/* 获取最小结点 */
|
|
public TreeNode min(TreeNode root) {
|
|
if (root == null) return root;
|
|
// 循环访问左子结点,直到叶结点时为最小结点,跳出
|
|
while (root.left != null) {
|
|
root = root.left;
|
|
}
|
|
return root;
|
|
}
|
|
}
|
|
|
|
public class binary_search_tree {
|
|
public static void main(String[] args) {
|
|
/* 初始化二叉搜索树 */
|
|
int[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
|
|
BinarySearchTree bst = new BinarySearchTree(nums);
|
|
System.out.println("\n初始化的二叉树为\n");
|
|
PrintUtil.printTree(bst.getRoot());
|
|
|
|
/* 查找结点 */
|
|
TreeNode node = bst.search(5);
|
|
System.out.println("\n查找到的结点对象为 " + node + ",结点值 = " + node.val);
|
|
|
|
/* 插入结点 */
|
|
node = bst.insert(16);
|
|
System.out.println("\n插入结点 16 后,二叉树为\n");
|
|
PrintUtil.printTree(bst.getRoot());
|
|
|
|
/* 删除结点 */
|
|
bst.remove(1);
|
|
System.out.println("\n删除结点 1 后,二叉树为\n");
|
|
PrintUtil.printTree(bst.getRoot());
|
|
bst.remove(2);
|
|
System.out.println("\n删除结点 2 后,二叉树为\n");
|
|
PrintUtil.printTree(bst.getRoot());
|
|
bst.remove(4);
|
|
System.out.println("\n删除结点 4 后,二叉树为\n");
|
|
PrintUtil.printTree(bst.getRoot());
|
|
}
|
|
}
|