mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-26 11:36:29 +08:00
e720aa2d24
* Sync recent changes to the revised Word. * Revised the preface chapter * Revised the introduction chapter * Revised the computation complexity chapter * Revised the chapter data structure * Revised the chapter array and linked list * Revised the chapter stack and queue * Revised the chapter hashing * Revised the chapter tree * Revised the chapter heap * Revised the chapter graph * Revised the chapter searching * Reivised the sorting chapter * Revised the divide and conquer chapter * Revised the chapter backtacking * Revised the DP chapter * Revised the greedy chapter * Revised the appendix chapter * Revised the preface chapter doubly * Revised the figures
87 lines
2.4 KiB
Go
87 lines
2.4 KiB
Go
// File: knapsack.go
|
|
// Created Time: 2023-07-23
|
|
// Author: Reanon (793584285@qq.com)
|
|
|
|
package chapter_dynamic_programming
|
|
|
|
import "math"
|
|
|
|
/* 0-1 背包:暴力搜索 */
|
|
func knapsackDFS(wgt, val []int, i, c int) int {
|
|
// 若已选完所有物品或背包无剩余容量,则返回价值 0
|
|
if i == 0 || c == 0 {
|
|
return 0
|
|
}
|
|
// 若超过背包容量,则只能选择不放入背包
|
|
if wgt[i-1] > c {
|
|
return knapsackDFS(wgt, val, i-1, c)
|
|
}
|
|
// 计算不放入和放入物品 i 的最大价值
|
|
no := knapsackDFS(wgt, val, i-1, c)
|
|
yes := knapsackDFS(wgt, val, i-1, c-wgt[i-1]) + val[i-1]
|
|
// 返回两种方案中价值更大的那一个
|
|
return int(math.Max(float64(no), float64(yes)))
|
|
}
|
|
|
|
/* 0-1 背包:记忆化搜索 */
|
|
func knapsackDFSMem(wgt, val []int, mem [][]int, i, c int) int {
|
|
// 若已选完所有物品或背包无剩余容量,则返回价值 0
|
|
if i == 0 || c == 0 {
|
|
return 0
|
|
}
|
|
// 若已有记录,则直接返回
|
|
if mem[i][c] != -1 {
|
|
return mem[i][c]
|
|
}
|
|
// 若超过背包容量,则只能选择不放入背包
|
|
if wgt[i-1] > c {
|
|
return knapsackDFSMem(wgt, val, mem, i-1, c)
|
|
}
|
|
// 计算不放入和放入物品 i 的最大价值
|
|
no := knapsackDFSMem(wgt, val, mem, i-1, c)
|
|
yes := knapsackDFSMem(wgt, val, mem, i-1, c-wgt[i-1]) + val[i-1]
|
|
// 返回两种方案中价值更大的那一个
|
|
mem[i][c] = int(math.Max(float64(no), float64(yes)))
|
|
return mem[i][c]
|
|
}
|
|
|
|
/* 0-1 背包:动态规划 */
|
|
func knapsackDP(wgt, val []int, cap int) int {
|
|
n := len(wgt)
|
|
// 初始化 dp 表
|
|
dp := make([][]int, n+1)
|
|
for i := 0; i <= n; i++ {
|
|
dp[i] = make([]int, cap+1)
|
|
}
|
|
// 状态转移
|
|
for i := 1; i <= n; i++ {
|
|
for c := 1; c <= cap; c++ {
|
|
if wgt[i-1] > c {
|
|
// 若超过背包容量,则不选物品 i
|
|
dp[i][c] = dp[i-1][c]
|
|
} else {
|
|
// 不选和选物品 i 这两种方案的较大值
|
|
dp[i][c] = int(math.Max(float64(dp[i-1][c]), float64(dp[i-1][c-wgt[i-1]]+val[i-1])))
|
|
}
|
|
}
|
|
}
|
|
return dp[n][cap]
|
|
}
|
|
|
|
/* 0-1 背包:空间优化后的动态规划 */
|
|
func knapsackDPComp(wgt, val []int, cap int) int {
|
|
n := len(wgt)
|
|
// 初始化 dp 表
|
|
dp := make([]int, cap+1)
|
|
// 状态转移
|
|
for i := 1; i <= n; i++ {
|
|
// 倒序遍历
|
|
for c := cap; c >= 1; c-- {
|
|
if wgt[i-1] <= c {
|
|
// 不选和选物品 i 这两种方案的较大值
|
|
dp[c] = int(math.Max(float64(dp[c]), float64(dp[c-wgt[i-1]]+val[i-1])))
|
|
}
|
|
}
|
|
}
|
|
return dp[cap]
|
|
}
|