hello-algo/chapter_computational_complexity/time_complexity/index.html
2023-06-02 01:35:09 +08:00

4963 lines
No EOL
606 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="zh" class="no-js">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<meta name="description" content="一本动画图解、能运行、可提问的数据结构与算法入门书">
<meta name="author" content="Krahets">
<link rel="canonical" href="https://www.hello-algo.com/chapter_computational_complexity/time_complexity/">
<link rel="prev" href="../performance_evaluation/">
<link rel="next" href="../space_complexity/">
<link rel="icon" href="../../assets/images/favicon.png">
<meta name="generator" content="mkdocs-1.4.2, mkdocs-material-9.1.11">
<title>2.2.   时间复杂度 - Hello 算法</title>
<link rel="stylesheet" href="../../assets/stylesheets/main.85bb2934.min.css">
<link rel="stylesheet" href="../../assets/stylesheets/palette.a6bdf11c.min.css">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Noto+Sans+SC:300,300i,400,400i,700,700i%7CFira+Code:400,400i,700,700i&display=fallback">
<style>:root{--md-text-font:"Noto Sans SC";--md-code-font:"Fira Code"}</style>
<link rel="stylesheet" href="../../stylesheets/extra.css">
<script>__md_scope=new URL("../..",location),__md_hash=e=>[...e].reduce((e,_)=>(e<<5)-e+_.charCodeAt(0),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script>
</head>
<body dir="ltr" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="indigo">
<script>var palette=__md_get("__palette");if(palette&&"object"==typeof palette.color)for(var key of Object.keys(palette.color))document.body.setAttribute("data-md-color-"+key,palette.color[key])</script>
<input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
<input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
<label class="md-overlay" for="__drawer"></label>
<div data-md-component="skip">
<a href="#22" class="md-skip">
跳转至
</a>
</div>
<div data-md-component="announce">
</div>
<header class="md-header md-header--shadow" data-md-component="header">
<nav class="md-header__inner md-grid" aria-label="页眉">
<a href="../.." title="Hello 算法" class="md-header__button md-logo" aria-label="Hello 算法" data-md-component="logo">
<img src="../../assets/images/logo.png" alt="logo">
</a>
<label class="md-header__button md-icon" for="__drawer">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z"/></svg>
</label>
<div class="md-header__title" data-md-component="header-title">
<div class="md-header__ellipsis">
<div class="md-header__topic">
<span class="md-ellipsis">
Hello 算法
</span>
</div>
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
2.2. &nbsp; 时间复杂度
</span>
</div>
</div>
</div>
<form class="md-header__option" data-md-component="palette">
<input class="md-option" data-md-color-media="" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="indigo" aria-label="Switch to dark mode" type="radio" name="__palette" id="__palette_1">
<label class="md-header__button md-icon" title="Switch to dark mode" for="__palette_2" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 7a5 5 0 0 1 5 5 5 5 0 0 1-5 5 5 5 0 0 1-5-5 5 5 0 0 1 5-5m0 2a3 3 0 0 0-3 3 3 3 0 0 0 3 3 3 3 0 0 0 3-3 3 3 0 0 0-3-3m0-7 2.39 3.42C13.65 5.15 12.84 5 12 5c-.84 0-1.65.15-2.39.42L12 2M3.34 7l4.16-.35A7.2 7.2 0 0 0 5.94 8.5c-.44.74-.69 1.5-.83 2.29L3.34 7m.02 10 1.76-3.77a7.131 7.131 0 0 0 2.38 4.14L3.36 17M20.65 7l-1.77 3.79a7.023 7.023 0 0 0-2.38-4.15l4.15.36m-.01 10-4.14.36c.59-.51 1.12-1.14 1.54-1.86.42-.73.69-1.5.83-2.29L20.64 17M12 22l-2.41-3.44c.74.27 1.55.44 2.41.44.82 0 1.63-.17 2.37-.44L12 22Z"/></svg>
</label>
<input class="md-option" data-md-color-media="" data-md-color-scheme="slate" data-md-color-primary="indigo" data-md-color-accent="indigo" aria-label="Switch to light mode" type="radio" name="__palette" id="__palette_2">
<label class="md-header__button md-icon" title="Switch to light mode" for="__palette_1" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m17.75 4.09-2.53 1.94.91 3.06-2.63-1.81-2.63 1.81.91-3.06-2.53-1.94L12.44 4l1.06-3 1.06 3 3.19.09m3.5 6.91-1.64 1.25.59 1.98-1.7-1.17-1.7 1.17.59-1.98L15.75 11l2.06-.05L18.5 9l.69 1.95 2.06.05m-2.28 4.95c.83-.08 1.72 1.1 1.19 1.85-.32.45-.66.87-1.08 1.27C15.17 23 8.84 23 4.94 19.07c-3.91-3.9-3.91-10.24 0-14.14.4-.4.82-.76 1.27-1.08.75-.53 1.93.36 1.85 1.19-.27 2.86.69 5.83 2.89 8.02a9.96 9.96 0 0 0 8.02 2.89m-1.64 2.02a12.08 12.08 0 0 1-7.8-3.47c-2.17-2.19-3.33-5-3.49-7.82-2.81 3.14-2.7 7.96.31 10.98 3.02 3.01 7.84 3.12 10.98.31Z"/></svg>
</label>
</form>
<label class="md-header__button md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
</label>
<div class="md-search" data-md-component="search" role="dialog">
<label class="md-search__overlay" for="__search"></label>
<div class="md-search__inner" role="search">
<form class="md-search__form" name="search">
<input type="text" class="md-search__input" name="query" aria-label="搜索" placeholder="搜索" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required>
<label class="md-search__icon md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</label>
<nav class="md-search__options" aria-label="查找">
<a href="javascript:void(0)" class="md-search__icon md-icon" title="分享" aria-label="分享" data-clipboard data-clipboard-text="" data-md-component="search-share" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 16.08c-.76 0-1.44.3-1.96.77L8.91 12.7c.05-.23.09-.46.09-.7 0-.24-.04-.47-.09-.7l7.05-4.11c.54.5 1.25.81 2.04.81a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3c0 .24.04.47.09.7L8.04 9.81C7.5 9.31 6.79 9 6 9a3 3 0 0 0-3 3 3 3 0 0 0 3 3c.79 0 1.5-.31 2.04-.81l7.12 4.15c-.05.21-.08.43-.08.66 0 1.61 1.31 2.91 2.92 2.91 1.61 0 2.92-1.3 2.92-2.91A2.92 2.92 0 0 0 18 16.08Z"/></svg>
</a>
<button type="reset" class="md-search__icon md-icon" title="清空当前内容" aria-label="清空当前内容" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
</button>
</nav>
<div class="md-search__suggest" data-md-component="search-suggest"></div>
</form>
<div class="md-search__output">
<div class="md-search__scrollwrap" data-md-scrollfix>
<div class="md-search-result" data-md-component="search-result">
<div class="md-search-result__meta">
正在初始化搜索引擎
</div>
<ol class="md-search-result__list" role="presentation"></ol>
</div>
</div>
</div>
</div>
</div>
<div class="md-header__source">
<a href="https://github.com/krahets/hello-algo" title="前往仓库" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
</nav>
</header>
<div class="md-container" data-md-component="container">
<main class="md-main" data-md-component="main">
<div class="md-main__inner md-grid">
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--primary" aria-label="导航栏" data-md-level="0">
<label class="md-nav__title" for="__drawer">
<a href="../.." title="Hello 算法" class="md-nav__button md-logo" aria-label="Hello 算法" data-md-component="logo">
<img src="../../assets/images/logo.png" alt="logo">
</a>
Hello 算法
</label>
<div class="md-nav__source">
<a href="https://github.com/krahets/hello-algo" title="前往仓库" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_1" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_preface/">0. &nbsp; &nbsp; 写在前面</a>
<label for="__nav_1">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_1_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_1">
<span class="md-nav__icon md-icon"></span>
0. &nbsp; &nbsp; 写在前面
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_preface/about_the_book/" class="md-nav__link">
0.1. &nbsp; 关于本书
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/suggestions/" class="md-nav__link">
0.2. &nbsp; 如何使用本书
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/summary/" class="md-nav__link">
0.3. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_2" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_introduction/">1. &nbsp; &nbsp; 引言</a>
<label for="__nav_2">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_2_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_2">
<span class="md-nav__icon md-icon"></span>
1. &nbsp; &nbsp; 引言
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_introduction/algorithms_are_everywhere/" class="md-nav__link">
1.1. &nbsp; 算法无处不在
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/what_is_dsa/" class="md-nav__link">
1.2. &nbsp; 算法是什么
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/summary/" class="md-nav__link">
1.3. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--active md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_3" checked>
<div class="md-nav__link md-nav__link--index ">
<a href="../">2. &nbsp; &nbsp; 复杂度分析</a>
<label for="__nav_3">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
2. &nbsp; &nbsp; 复杂度分析
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../performance_evaluation/" class="md-nav__link">
2.1. &nbsp; 算法效率评估
</a>
</li>
<li class="md-nav__item md-nav__item--active">
<input class="md-nav__toggle md-toggle" type="checkbox" id="__toc">
<label class="md-nav__link md-nav__link--active" for="__toc">
2.2. &nbsp; 时间复杂度
<span class="md-nav__icon md-icon"></span>
</label>
<a href="./" class="md-nav__link md-nav__link--active">
2.2. &nbsp; 时间复杂度
</a>
<nav class="md-nav md-nav--secondary" aria-label="目录">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
目录
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#221" class="md-nav__link">
2.2.1. &nbsp; 统计算法运行时间
</a>
</li>
<li class="md-nav__item">
<a href="#222" class="md-nav__link">
2.2.2. &nbsp; 统计时间增长趋势
</a>
</li>
<li class="md-nav__item">
<a href="#223" class="md-nav__link">
2.2.3. &nbsp; 函数渐近上界
</a>
</li>
<li class="md-nav__item">
<a href="#224" class="md-nav__link">
2.2.4. &nbsp; 推算方法
</a>
<nav class="md-nav" aria-label="2.2.4. &nbsp; 推算方法">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#1" class="md-nav__link">
1) 统计操作数量
</a>
</li>
<li class="md-nav__item">
<a href="#2" class="md-nav__link">
2) 判断渐近上界
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#225" class="md-nav__link">
2.2.5. &nbsp; 常见类型
</a>
<nav class="md-nav" aria-label="2.2.5. &nbsp; 常见类型">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#o1" class="md-nav__link">
常数阶 \(O(1)\)
</a>
</li>
<li class="md-nav__item">
<a href="#on" class="md-nav__link">
线性阶 \(O(n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#on2" class="md-nav__link">
平方阶 \(O(n^2)\)
</a>
</li>
<li class="md-nav__item">
<a href="#o2n" class="md-nav__link">
指数阶 \(O(2^n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#olog-n" class="md-nav__link">
对数阶 \(O(\log n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#on-log-n" class="md-nav__link">
线性对数阶 \(O(n \log n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#on_1" class="md-nav__link">
阶乘阶 \(O(n!)\)
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#226" class="md-nav__link">
2.2.6. &nbsp; 最差、最佳、平均时间复杂度
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="../space_complexity/" class="md-nav__link">
2.3. &nbsp; 空间复杂度
</a>
</li>
<li class="md-nav__item">
<a href="../summary/" class="md-nav__link">
2.4. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_4" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_data_structure/">3. &nbsp; &nbsp; 数据结构简介</a>
<label for="__nav_4">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_4_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_4">
<span class="md-nav__icon md-icon"></span>
3. &nbsp; &nbsp; 数据结构简介
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_data_structure/classification_of_data_structure/" class="md-nav__link">
3.1. &nbsp; 数据结构分类
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/basic_data_types/" class="md-nav__link">
3.2. &nbsp; 基本数据类型
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/number_encoding/" class="md-nav__link">
3.3. &nbsp; 数字编码 *
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/character_encoding/" class="md-nav__link">
3.4. &nbsp; 字符编码 *
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/summary/" class="md-nav__link">
3.5. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_5" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_array_and_linkedlist/">4. &nbsp; &nbsp; 数组与链表</a>
<label for="__nav_5">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_5_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_5">
<span class="md-nav__icon md-icon"></span>
4. &nbsp; &nbsp; 数组与链表
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/array/" class="md-nav__link">
4.1. &nbsp; 数组
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/linked_list/" class="md-nav__link">
4.2. &nbsp; 链表
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/list/" class="md-nav__link">
4.3. &nbsp; 列表
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/summary/" class="md-nav__link">
4.4. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_6" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_stack_and_queue/">5. &nbsp; &nbsp; 栈与队列</a>
<label for="__nav_6">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_6_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_6">
<span class="md-nav__icon md-icon"></span>
5. &nbsp; &nbsp; 栈与队列
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/stack/" class="md-nav__link">
5.1. &nbsp;
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/queue/" class="md-nav__link">
5.2. &nbsp; 队列
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/deque/" class="md-nav__link">
5.3. &nbsp; 双向队列
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/summary/" class="md-nav__link">
5.4. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_7" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_hashing/">6. &nbsp; &nbsp; 散列表</a>
<label for="__nav_7">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
6. &nbsp; &nbsp; 散列表
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_map/" class="md-nav__link">
6.1. &nbsp; 哈希表
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_collision/" class="md-nav__link">
6.2. &nbsp; 哈希冲突处理
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/summary/" class="md-nav__link">
6.3. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_8" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_tree/">7. &nbsp; &nbsp;</a>
<label for="__nav_8">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_8_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_8">
<span class="md-nav__icon md-icon"></span>
7. &nbsp; &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree/" class="md-nav__link">
7.1. &nbsp; 二叉树
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree_traversal/" class="md-nav__link">
7.2. &nbsp; 二叉树遍历
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/array_representation_of_tree/" class="md-nav__link">
7.3. &nbsp; 二叉树数组表示
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_search_tree/" class="md-nav__link">
7.4. &nbsp; 二叉搜索树
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/avl_tree/" class="md-nav__link">
7.5. &nbsp; AVL 树 *
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/summary/" class="md-nav__link">
7.6. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_9" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_heap/">8. &nbsp; &nbsp;</a>
<label for="__nav_9">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_9_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_9">
<span class="md-nav__icon md-icon"></span>
8. &nbsp; &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_heap/heap/" class="md-nav__link">
8.1. &nbsp;
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/build_heap/" class="md-nav__link">
8.2. &nbsp; 建堆操作 *
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/summary/" class="md-nav__link">
8.3. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_10" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_graph/">9. &nbsp; &nbsp;</a>
<label for="__nav_10">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_10_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_10">
<span class="md-nav__icon md-icon"></span>
9. &nbsp; &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_graph/graph/" class="md-nav__link">
9.1. &nbsp;
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_operations/" class="md-nav__link">
9.2. &nbsp; 图基础操作
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_traversal/" class="md-nav__link">
9.3. &nbsp; 图的遍历
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/summary/" class="md-nav__link">
9.4. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_11" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_searching/">10. &nbsp; &nbsp; 搜索</a>
<label for="__nav_11">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_11_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_11">
<span class="md-nav__icon md-icon"></span>
10. &nbsp; &nbsp; 搜索
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search/" class="md-nav__link">
10.1. &nbsp; 二分查找New
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search_edge/" class="md-nav__link">
10.2. &nbsp; 二分查找边界New
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/replace_linear_by_hashing/" class="md-nav__link">
10.3. &nbsp; 哈希优化策略
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/searching_algorithm_revisited/" class="md-nav__link">
10.4. &nbsp; 重识搜索算法
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/summary/" class="md-nav__link">
10.5. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_12" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_sorting/">11. &nbsp; &nbsp; 排序</a>
<label for="__nav_12">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_12_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_12">
<span class="md-nav__icon md-icon"></span>
11. &nbsp; &nbsp; 排序
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_sorting/sorting_algorithm/" class="md-nav__link">
11.1. &nbsp; 排序算法
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/selection_sort/" class="md-nav__link">
11.2. &nbsp; 选择排序New
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bubble_sort/" class="md-nav__link">
11.3. &nbsp; 冒泡排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/insertion_sort/" class="md-nav__link">
11.4. &nbsp; 插入排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/quick_sort/" class="md-nav__link">
11.5. &nbsp; 快速排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/merge_sort/" class="md-nav__link">
11.6. &nbsp; 归并排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/heap_sort/" class="md-nav__link">
11.7. &nbsp; 堆排序New
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bucket_sort/" class="md-nav__link">
11.8. &nbsp; 桶排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/counting_sort/" class="md-nav__link">
11.9. &nbsp; 计数排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/radix_sort/" class="md-nav__link">
11.10. &nbsp; 基数排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/summary/" class="md-nav__link">
11.11. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_13" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_backtracking/">12. &nbsp; &nbsp; 回溯</a>
<label for="__nav_13">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_13_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_13">
<span class="md-nav__icon md-icon"></span>
12. &nbsp; &nbsp; 回溯
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_backtracking/backtracking_algorithm/" class="md-nav__link">
12.1. &nbsp; 回溯算法
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/permutations_problem/" class="md-nav__link">
12.2. &nbsp; 全排列问题
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/n_queens_problem/" class="md-nav__link">
12.3. &nbsp; N 皇后问题
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_14" >
<label class="md-nav__link" for="__nav_14" id="__nav_14_label" tabindex="0">
13. &nbsp; &nbsp; 附录
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_14_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_14">
<span class="md-nav__icon md-icon"></span>
13. &nbsp; &nbsp; 附录
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_appendix/installation/" class="md-nav__link">
13.1. &nbsp; 编程环境安装
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_appendix/contribution/" class="md-nav__link">
13.2. &nbsp; 一起参与创作
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_15" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_reference/">参考文献</a>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_15_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_15">
<span class="md-nav__icon md-icon"></span>
参考文献
</label>
<ul class="md-nav__list" data-md-scrollfix>
</ul>
</nav>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--secondary" aria-label="目录">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
目录
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#221" class="md-nav__link">
2.2.1. &nbsp; 统计算法运行时间
</a>
</li>
<li class="md-nav__item">
<a href="#222" class="md-nav__link">
2.2.2. &nbsp; 统计时间增长趋势
</a>
</li>
<li class="md-nav__item">
<a href="#223" class="md-nav__link">
2.2.3. &nbsp; 函数渐近上界
</a>
</li>
<li class="md-nav__item">
<a href="#224" class="md-nav__link">
2.2.4. &nbsp; 推算方法
</a>
<nav class="md-nav" aria-label="2.2.4. &nbsp; 推算方法">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#1" class="md-nav__link">
1) 统计操作数量
</a>
</li>
<li class="md-nav__item">
<a href="#2" class="md-nav__link">
2) 判断渐近上界
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#225" class="md-nav__link">
2.2.5. &nbsp; 常见类型
</a>
<nav class="md-nav" aria-label="2.2.5. &nbsp; 常见类型">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#o1" class="md-nav__link">
常数阶 \(O(1)\)
</a>
</li>
<li class="md-nav__item">
<a href="#on" class="md-nav__link">
线性阶 \(O(n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#on2" class="md-nav__link">
平方阶 \(O(n^2)\)
</a>
</li>
<li class="md-nav__item">
<a href="#o2n" class="md-nav__link">
指数阶 \(O(2^n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#olog-n" class="md-nav__link">
对数阶 \(O(\log n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#on-log-n" class="md-nav__link">
线性对数阶 \(O(n \log n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#on_1" class="md-nav__link">
阶乘阶 \(O(n!)\)
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#226" class="md-nav__link">
2.2.6. &nbsp; 最差、最佳、平均时间复杂度
</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-content" data-md-component="content">
<article class="md-content__inner md-typeset">
<a href="https://github.com/krahets/hello-algo/tree/main/docs/chapter_computational_complexity/time_complexity.md" title="编辑此页" class="md-content__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M10 20H6V4h7v5h5v3.1l2-2V8l-6-6H6c-1.1 0-2 .9-2 2v16c0 1.1.9 2 2 2h4v-2m10.2-7c.1 0 .3.1.4.2l1.3 1.3c.2.2.2.6 0 .8l-1 1-2.1-2.1 1-1c.1-.1.2-.2.4-.2m0 3.9L14.1 23H12v-2.1l6.1-6.1 2.1 2.1Z"/></svg>
</a>
<h1 id="22">2.2. &nbsp; 时间复杂度<a class="headerlink" href="#22" title="Permanent link">&para;</a></h1>
<h2 id="221">2.2.1. &nbsp; 统计算法运行时间<a class="headerlink" href="#221" title="Permanent link">&para;</a></h2>
<p>运行时间可以直观且准确地反映算法的效率。然而,如果我们想要准确预估一段代码的运行时间,应该如何操作呢?</p>
<ol>
<li><strong>确定运行平台</strong>,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。</li>
<li><strong>评估各种计算操作所需的运行时间</strong>,例如加法操作 <code>+</code> 需要 1 ns乘法操作 <code>*</code> 需要 10 ns打印操作需要 5 ns 等。</li>
<li><strong>统计代码中所有的计算操作</strong>,并将所有操作的执行时间求和,从而得到运行时间。</li>
</ol>
<p>例如以下代码,输入数据大小为 <span class="arithmatex">\(n\)</span> ,根据以上方法,可以得到算法运行时间为 <span class="arithmatex">\(6n + 12\)</span> ns 。</p>
<div class="arithmatex">\[
1 + 1 + 10 + (1 + 5) \times n = 6n + 12
\]</div>
<div class="tabbed-set tabbed-alternate" data-tabs="1:10"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><input id="__tabbed_1_5" name="__tabbed_1" type="radio" /><input id="__tabbed_1_6" name="__tabbed_1" type="radio" /><input id="__tabbed_1_7" name="__tabbed_1" type="radio" /><input id="__tabbed_1_8" name="__tabbed_1" type="radio" /><input id="__tabbed_1_9" name="__tabbed_1" type="radio" /><input id="__tabbed_1_10" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">Java</label><label for="__tabbed_1_2">C++</label><label for="__tabbed_1_3">Python</label><label for="__tabbed_1_4">Go</label><label for="__tabbed_1_5">JavaScript</label><label for="__tabbed_1_6">TypeScript</label><label for="__tabbed_1_7">C</label><label for="__tabbed_1_8">C#</label><label for="__tabbed_1_9">Swift</label><label for="__tabbed_1_10">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-0-1" name="__codelineno-0-1" href="#__codelineno-0-1"></a><span class="c1">// 在某运行平台下</span>
<a id="__codelineno-0-2" name="__codelineno-0-2" href="#__codelineno-0-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-3" name="__codelineno-0-3" href="#__codelineno-0-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-0-4" name="__codelineno-0-4" href="#__codelineno-0-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-0-5" name="__codelineno-0-5" href="#__codelineno-0-5"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
<a id="__codelineno-0-6" name="__codelineno-0-6" href="#__codelineno-0-6"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-0-7" name="__codelineno-0-7" href="#__codelineno-0-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns ,每轮都要执行 i++</span>
<a id="__codelineno-0-8" name="__codelineno-0-8" href="#__codelineno-0-8"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// 5 ns</span>
<a id="__codelineno-0-9" name="__codelineno-0-9" href="#__codelineno-0-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-0-10" name="__codelineno-0-10" href="#__codelineno-0-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-1-1" name="__codelineno-1-1" href="#__codelineno-1-1"></a><span class="c1">// 在某运行平台下</span>
<a id="__codelineno-1-2" name="__codelineno-1-2" href="#__codelineno-1-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-3" name="__codelineno-1-3" href="#__codelineno-1-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-1-4" name="__codelineno-1-4" href="#__codelineno-1-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-1-5" name="__codelineno-1-5" href="#__codelineno-1-5"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
<a id="__codelineno-1-6" name="__codelineno-1-6" href="#__codelineno-1-6"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-1-7" name="__codelineno-1-7" href="#__codelineno-1-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns ,每轮都要执行 i++</span>
<a id="__codelineno-1-8" name="__codelineno-1-8" href="#__codelineno-1-8"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span><span class="w"> </span><span class="c1">// 5 ns</span>
<a id="__codelineno-1-9" name="__codelineno-1-9" href="#__codelineno-1-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-10" name="__codelineno-1-10" href="#__codelineno-1-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-2-1" name="__codelineno-2-1" href="#__codelineno-2-1"></a><span class="c1"># 在某运行平台下</span>
<a id="__codelineno-2-2" name="__codelineno-2-2" href="#__codelineno-2-2"></a><span class="k">def</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-2-3" name="__codelineno-2-3" href="#__codelineno-2-3"></a> <span class="n">a</span> <span class="o">=</span> <span class="mi">2</span> <span class="c1"># 1 ns</span>
<a id="__codelineno-2-4" name="__codelineno-2-4" href="#__codelineno-2-4"></a> <span class="n">a</span> <span class="o">=</span> <span class="n">a</span> <span class="o">+</span> <span class="mi">1</span> <span class="c1"># 1 ns</span>
<a id="__codelineno-2-5" name="__codelineno-2-5" href="#__codelineno-2-5"></a> <span class="n">a</span> <span class="o">=</span> <span class="n">a</span> <span class="o">*</span> <span class="mi">2</span> <span class="c1"># 10 ns</span>
<a id="__codelineno-2-6" name="__codelineno-2-6" href="#__codelineno-2-6"></a> <span class="c1"># 循环 n 次</span>
<a id="__codelineno-2-7" name="__codelineno-2-7" href="#__codelineno-2-7"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span> <span class="c1"># 1 ns</span>
<a id="__codelineno-2-8" name="__codelineno-2-8" href="#__codelineno-2-8"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="c1"># 5 ns</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-3-1" name="__codelineno-3-1" href="#__codelineno-3-1"></a><span class="c1">// 在某运行平台下</span>
<a id="__codelineno-3-2" name="__codelineno-3-2" href="#__codelineno-3-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-3" name="__codelineno-3-3" href="#__codelineno-3-3"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-3-4" name="__codelineno-3-4" href="#__codelineno-3-4"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-3-5" name="__codelineno-3-5" href="#__codelineno-3-5"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="c1">// 10 ns</span>
<a id="__codelineno-3-6" name="__codelineno-3-6" href="#__codelineno-3-6"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-3-7" name="__codelineno-3-7" href="#__codelineno-3-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-3-8" name="__codelineno-3-8" href="#__codelineno-3-8"></a><span class="w"> </span><span class="nx">fmt</span><span class="p">.</span><span class="nx">Println</span><span class="p">(</span><span class="nx">a</span><span class="p">)</span><span class="w"> </span><span class="c1">// 5 ns</span>
<a id="__codelineno-3-9" name="__codelineno-3-9" href="#__codelineno-3-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-10" name="__codelineno-3-10" href="#__codelineno-3-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="c1">// 在某运行平台下</span>
<a id="__codelineno-4-2" name="__codelineno-4-2" href="#__codelineno-4-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-3" name="__codelineno-4-3" href="#__codelineno-4-3"></a><span class="w"> </span><span class="kd">var</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-4-4" name="__codelineno-4-4" href="#__codelineno-4-4"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-4-5" name="__codelineno-4-5" href="#__codelineno-4-5"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
<a id="__codelineno-4-6" name="__codelineno-4-6" href="#__codelineno-4-6"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-4-7" name="__codelineno-4-7" href="#__codelineno-4-7"></a><span class="w"> </span><span class="k">for</span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns ,每轮都要执行 i++</span>
<a id="__codelineno-4-8" name="__codelineno-4-8" href="#__codelineno-4-8"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// 5 ns</span>
<a id="__codelineno-4-9" name="__codelineno-4-9" href="#__codelineno-4-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-10" name="__codelineno-4-10" href="#__codelineno-4-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="c1">// 在某运行平台下</span>
<a id="__codelineno-5-2" name="__codelineno-5-2" href="#__codelineno-5-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-3" name="__codelineno-5-3" href="#__codelineno-5-3"></a><span class="w"> </span><span class="kd">var</span><span class="w"> </span><span class="nx">a</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-5-4" name="__codelineno-5-4" href="#__codelineno-5-4"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-5-5" name="__codelineno-5-5" href="#__codelineno-5-5"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
<a id="__codelineno-5-6" name="__codelineno-5-6" href="#__codelineno-5-6"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-5-7" name="__codelineno-5-7" href="#__codelineno-5-7"></a><span class="w"> </span><span class="k">for</span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns ,每轮都要执行 i++</span>
<a id="__codelineno-5-8" name="__codelineno-5-8" href="#__codelineno-5-8"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// 5 ns</span>
<a id="__codelineno-5-9" name="__codelineno-5-9" href="#__codelineno-5-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-5-10" name="__codelineno-5-10" href="#__codelineno-5-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-6-1" name="__codelineno-6-1" href="#__codelineno-6-1"></a><span class="c1">// 在某运行平台下</span>
<a id="__codelineno-6-2" name="__codelineno-6-2" href="#__codelineno-6-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-3" name="__codelineno-6-3" href="#__codelineno-6-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-6-4" name="__codelineno-6-4" href="#__codelineno-6-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-6-5" name="__codelineno-6-5" href="#__codelineno-6-5"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
<a id="__codelineno-6-6" name="__codelineno-6-6" href="#__codelineno-6-6"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-6-7" name="__codelineno-6-7" href="#__codelineno-6-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns ,每轮都要执行 i++</span>
<a id="__codelineno-6-8" name="__codelineno-6-8" href="#__codelineno-6-8"></a><span class="w"> </span><span class="n">printf</span><span class="p">(</span><span class="s">&quot;%d&quot;</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// 5 ns</span>
<a id="__codelineno-6-9" name="__codelineno-6-9" href="#__codelineno-6-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-6-10" name="__codelineno-6-10" href="#__codelineno-6-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-7-1" name="__codelineno-7-1" href="#__codelineno-7-1"></a><span class="c1">// 在某运行平台下</span>
<a id="__codelineno-7-2" name="__codelineno-7-2" href="#__codelineno-7-2"></a><span class="k">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span>
<a id="__codelineno-7-3" name="__codelineno-7-3" href="#__codelineno-7-3"></a><span class="p">{</span>
<a id="__codelineno-7-4" name="__codelineno-7-4" href="#__codelineno-7-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-7-5" name="__codelineno-7-5" href="#__codelineno-7-5"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-7-6" name="__codelineno-7-6" href="#__codelineno-7-6"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="m">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
<a id="__codelineno-7-7" name="__codelineno-7-7" href="#__codelineno-7-7"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-7-8" name="__codelineno-7-8" href="#__codelineno-7-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span>
<a id="__codelineno-7-9" name="__codelineno-7-9" href="#__codelineno-7-9"></a><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns ,每轮都要执行 i++</span>
<a id="__codelineno-7-10" name="__codelineno-7-10" href="#__codelineno-7-10"></a><span class="w"> </span><span class="n">Console</span><span class="p">.</span><span class="n">WriteLine</span><span class="p">(</span><span class="m">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// 5 ns</span>
<a id="__codelineno-7-11" name="__codelineno-7-11" href="#__codelineno-7-11"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-12" name="__codelineno-7-12" href="#__codelineno-7-12"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-8-1" name="__codelineno-8-1" href="#__codelineno-8-1"></a><span class="c1">// 在某运行平台下</span>
<a id="__codelineno-8-2" name="__codelineno-8-2" href="#__codelineno-8-2"></a><span class="kd">func</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-8-3" name="__codelineno-8-3" href="#__codelineno-8-3"></a> <span class="kd">var</span> <span class="nv">a</span> <span class="p">=</span> <span class="mi">2</span> <span class="c1">// 1 ns</span>
<a id="__codelineno-8-4" name="__codelineno-8-4" href="#__codelineno-8-4"></a> <span class="n">a</span> <span class="p">=</span> <span class="n">a</span> <span class="o">+</span> <span class="mi">1</span> <span class="c1">// 1 ns</span>
<a id="__codelineno-8-5" name="__codelineno-8-5" href="#__codelineno-8-5"></a> <span class="n">a</span> <span class="p">=</span> <span class="n">a</span> <span class="o">*</span> <span class="mi">2</span> <span class="c1">// 10 ns</span>
<a id="__codelineno-8-6" name="__codelineno-8-6" href="#__codelineno-8-6"></a> <span class="c1">// 循环 n 次</span>
<a id="__codelineno-8-7" name="__codelineno-8-7" href="#__codelineno-8-7"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">n</span> <span class="p">{</span> <span class="c1">// 1 ns</span>
<a id="__codelineno-8-8" name="__codelineno-8-8" href="#__codelineno-8-8"></a> <span class="bp">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="c1">// 5 ns</span>
<a id="__codelineno-8-9" name="__codelineno-8-9" href="#__codelineno-8-9"></a> <span class="p">}</span>
<a id="__codelineno-8-10" name="__codelineno-8-10" href="#__codelineno-8-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-9-1" name="__codelineno-9-1" href="#__codelineno-9-1"></a>
</code></pre></div>
</div>
</div>
</div>
<p>然而实际上,<strong>统计算法的运行时间既不合理也不现实</strong>。首先,我们不希望预估时间和运行平台绑定,因为算法需要在各种不同的平台上运行。其次,我们很难获知每种操作的运行时间,这给预估过程带来了极大的难度。</p>
<h2 id="222">2.2.2. &nbsp; 统计时间增长趋势<a class="headerlink" href="#222" title="Permanent link">&para;</a></h2>
<p>「时间复杂度分析」采取了一种不同的方法,其统计的不是算法运行时间,<strong>而是算法运行时间随着数据量变大时的增长趋势</strong></p>
<p>“时间增长趋势”这个概念较为抽象,我们通过一个例子来加以理解。假设输入数据大小为 <span class="arithmatex">\(n\)</span> ,给定三个算法 <code>A</code> , <code>B</code> , <code>C</code></p>
<ul>
<li>算法 <code>A</code> 只有 <span class="arithmatex">\(1\)</span> 个打印操作,算法运行时间不随着 <span class="arithmatex">\(n\)</span> 增大而增长。我们称此算法的时间复杂度为「常数阶」。</li>
<li>算法 <code>B</code> 中的打印操作需要循环 <span class="arithmatex">\(n\)</span> 次,算法运行时间随着 <span class="arithmatex">\(n\)</span> 增大呈线性增长。此算法的时间复杂度被称为「线性阶」。</li>
<li>算法 <code>C</code> 中的打印操作需要循环 <span class="arithmatex">\(1000000\)</span> 次,但运行时间仍与输入数据大小 <span class="arithmatex">\(n\)</span> 无关。因此 <code>C</code> 的时间复杂度和 <code>A</code> 相同,仍为「常数阶」。</li>
</ul>
<div class="tabbed-set tabbed-alternate" data-tabs="2:10"><input checked="checked" id="__tabbed_2_1" name="__tabbed_2" type="radio" /><input id="__tabbed_2_2" name="__tabbed_2" type="radio" /><input id="__tabbed_2_3" name="__tabbed_2" type="radio" /><input id="__tabbed_2_4" name="__tabbed_2" type="radio" /><input id="__tabbed_2_5" name="__tabbed_2" type="radio" /><input id="__tabbed_2_6" name="__tabbed_2" type="radio" /><input id="__tabbed_2_7" name="__tabbed_2" type="radio" /><input id="__tabbed_2_8" name="__tabbed_2" type="radio" /><input id="__tabbed_2_9" name="__tabbed_2" type="radio" /><input id="__tabbed_2_10" name="__tabbed_2" type="radio" /><div class="tabbed-labels"><label for="__tabbed_2_1">Java</label><label for="__tabbed_2_2">C++</label><label for="__tabbed_2_3">Python</label><label for="__tabbed_2_4">Go</label><label for="__tabbed_2_5">JavaScript</label><label for="__tabbed_2_6">TypeScript</label><label for="__tabbed_2_7">C</label><label for="__tabbed_2_8">C#</label><label for="__tabbed_2_9">Swift</label><label for="__tabbed_2_10">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-10-1" name="__codelineno-10-1" href="#__codelineno-10-1"></a><span class="c1">// 算法 A 时间复杂度:常数阶</span>
<a id="__codelineno-10-2" name="__codelineno-10-2" href="#__codelineno-10-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_A</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-3" name="__codelineno-10-3" href="#__codelineno-10-3"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-10-4" name="__codelineno-10-4" href="#__codelineno-10-4"></a><span class="p">}</span>
<a id="__codelineno-10-5" name="__codelineno-10-5" href="#__codelineno-10-5"></a><span class="c1">// 算法 B 时间复杂度:线性阶</span>
<a id="__codelineno-10-6" name="__codelineno-10-6" href="#__codelineno-10-6"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_B</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-7" name="__codelineno-10-7" href="#__codelineno-10-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-8" name="__codelineno-10-8" href="#__codelineno-10-8"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-10-9" name="__codelineno-10-9" href="#__codelineno-10-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-10" name="__codelineno-10-10" href="#__codelineno-10-10"></a><span class="p">}</span>
<a id="__codelineno-10-11" name="__codelineno-10-11" href="#__codelineno-10-11"></a><span class="c1">// 算法 C 时间复杂度:常数阶</span>
<a id="__codelineno-10-12" name="__codelineno-10-12" href="#__codelineno-10-12"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_C</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-13" name="__codelineno-10-13" href="#__codelineno-10-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">1000000</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-14" name="__codelineno-10-14" href="#__codelineno-10-14"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-10-15" name="__codelineno-10-15" href="#__codelineno-10-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-16" name="__codelineno-10-16" href="#__codelineno-10-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-11-1" name="__codelineno-11-1" href="#__codelineno-11-1"></a><span class="c1">// 算法 A 时间复杂度:常数阶</span>
<a id="__codelineno-11-2" name="__codelineno-11-2" href="#__codelineno-11-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_A</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-3" name="__codelineno-11-3" href="#__codelineno-11-3"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span>
<a id="__codelineno-11-4" name="__codelineno-11-4" href="#__codelineno-11-4"></a><span class="p">}</span>
<a id="__codelineno-11-5" name="__codelineno-11-5" href="#__codelineno-11-5"></a><span class="c1">// 算法 B 时间复杂度:线性阶</span>
<a id="__codelineno-11-6" name="__codelineno-11-6" href="#__codelineno-11-6"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_B</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-7" name="__codelineno-11-7" href="#__codelineno-11-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-8" name="__codelineno-11-8" href="#__codelineno-11-8"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span>
<a id="__codelineno-11-9" name="__codelineno-11-9" href="#__codelineno-11-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-10" name="__codelineno-11-10" href="#__codelineno-11-10"></a><span class="p">}</span>
<a id="__codelineno-11-11" name="__codelineno-11-11" href="#__codelineno-11-11"></a><span class="c1">// 算法 C 时间复杂度:常数阶</span>
<a id="__codelineno-11-12" name="__codelineno-11-12" href="#__codelineno-11-12"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_C</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-13" name="__codelineno-11-13" href="#__codelineno-11-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">1000000</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-14" name="__codelineno-11-14" href="#__codelineno-11-14"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span>
<a id="__codelineno-11-15" name="__codelineno-11-15" href="#__codelineno-11-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-16" name="__codelineno-11-16" href="#__codelineno-11-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-12-1" name="__codelineno-12-1" href="#__codelineno-12-1"></a><span class="c1"># 算法 A 时间复杂度:常数阶</span>
<a id="__codelineno-12-2" name="__codelineno-12-2" href="#__codelineno-12-2"></a><span class="k">def</span> <span class="nf">algorithm_A</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-12-3" name="__codelineno-12-3" href="#__codelineno-12-3"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-12-4" name="__codelineno-12-4" href="#__codelineno-12-4"></a><span class="c1"># 算法 B 时间复杂度:线性阶</span>
<a id="__codelineno-12-5" name="__codelineno-12-5" href="#__codelineno-12-5"></a><span class="k">def</span> <span class="nf">algorithm_B</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-12-6" name="__codelineno-12-6" href="#__codelineno-12-6"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-12-7" name="__codelineno-12-7" href="#__codelineno-12-7"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-12-8" name="__codelineno-12-8" href="#__codelineno-12-8"></a><span class="c1"># 算法 C 时间复杂度:常数阶</span>
<a id="__codelineno-12-9" name="__codelineno-12-9" href="#__codelineno-12-9"></a><span class="k">def</span> <span class="nf">algorithm_C</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-12-10" name="__codelineno-12-10" href="#__codelineno-12-10"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1000000</span><span class="p">):</span>
<a id="__codelineno-12-11" name="__codelineno-12-11" href="#__codelineno-12-11"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-13-1" name="__codelineno-13-1" href="#__codelineno-13-1"></a><span class="c1">// 算法 A 时间复杂度:常数阶</span>
<a id="__codelineno-13-2" name="__codelineno-13-2" href="#__codelineno-13-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">algorithm_A</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-13-3" name="__codelineno-13-3" href="#__codelineno-13-3"></a><span class="w"> </span><span class="nx">fmt</span><span class="p">.</span><span class="nx">Println</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-13-4" name="__codelineno-13-4" href="#__codelineno-13-4"></a><span class="p">}</span>
<a id="__codelineno-13-5" name="__codelineno-13-5" href="#__codelineno-13-5"></a><span class="c1">// 算法 B 时间复杂度:线性阶</span>
<a id="__codelineno-13-6" name="__codelineno-13-6" href="#__codelineno-13-6"></a><span class="kd">func</span><span class="w"> </span><span class="nx">algorithm_B</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-13-7" name="__codelineno-13-7" href="#__codelineno-13-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-13-8" name="__codelineno-13-8" href="#__codelineno-13-8"></a><span class="w"> </span><span class="nx">fmt</span><span class="p">.</span><span class="nx">Println</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-13-9" name="__codelineno-13-9" href="#__codelineno-13-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-13-10" name="__codelineno-13-10" href="#__codelineno-13-10"></a><span class="p">}</span>
<a id="__codelineno-13-11" name="__codelineno-13-11" href="#__codelineno-13-11"></a><span class="c1">// 算法 C 时间复杂度:常数阶</span>
<a id="__codelineno-13-12" name="__codelineno-13-12" href="#__codelineno-13-12"></a><span class="kd">func</span><span class="w"> </span><span class="nx">algorithm_C</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-13-13" name="__codelineno-13-13" href="#__codelineno-13-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="mi">1000000</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-13-14" name="__codelineno-13-14" href="#__codelineno-13-14"></a><span class="w"> </span><span class="nx">fmt</span><span class="p">.</span><span class="nx">Println</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-13-15" name="__codelineno-13-15" href="#__codelineno-13-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-13-16" name="__codelineno-13-16" href="#__codelineno-13-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-14-1" name="__codelineno-14-1" href="#__codelineno-14-1"></a><span class="c1">// 算法 A 时间复杂度:常数阶</span>
<a id="__codelineno-14-2" name="__codelineno-14-2" href="#__codelineno-14-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm_A</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-14-3" name="__codelineno-14-3" href="#__codelineno-14-3"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
<a id="__codelineno-14-4" name="__codelineno-14-4" href="#__codelineno-14-4"></a><span class="p">}</span>
<a id="__codelineno-14-5" name="__codelineno-14-5" href="#__codelineno-14-5"></a><span class="c1">// 算法 B 时间复杂度:线性阶</span>
<a id="__codelineno-14-6" name="__codelineno-14-6" href="#__codelineno-14-6"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm_B</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-14-7" name="__codelineno-14-7" href="#__codelineno-14-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-14-8" name="__codelineno-14-8" href="#__codelineno-14-8"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
<a id="__codelineno-14-9" name="__codelineno-14-9" href="#__codelineno-14-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-14-10" name="__codelineno-14-10" href="#__codelineno-14-10"></a><span class="p">}</span>
<a id="__codelineno-14-11" name="__codelineno-14-11" href="#__codelineno-14-11"></a><span class="c1">// 算法 C 时间复杂度:常数阶</span>
<a id="__codelineno-14-12" name="__codelineno-14-12" href="#__codelineno-14-12"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm_C</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-14-13" name="__codelineno-14-13" href="#__codelineno-14-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mf">1000000</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-14-14" name="__codelineno-14-14" href="#__codelineno-14-14"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
<a id="__codelineno-14-15" name="__codelineno-14-15" href="#__codelineno-14-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-14-16" name="__codelineno-14-16" href="#__codelineno-14-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-15-1" name="__codelineno-15-1" href="#__codelineno-15-1"></a><span class="c1">// 算法 A 时间复杂度:常数阶</span>
<a id="__codelineno-15-2" name="__codelineno-15-2" href="#__codelineno-15-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm_A</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-3" name="__codelineno-15-3" href="#__codelineno-15-3"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
<a id="__codelineno-15-4" name="__codelineno-15-4" href="#__codelineno-15-4"></a><span class="p">}</span>
<a id="__codelineno-15-5" name="__codelineno-15-5" href="#__codelineno-15-5"></a><span class="c1">// 算法 B 时间复杂度:线性阶</span>
<a id="__codelineno-15-6" name="__codelineno-15-6" href="#__codelineno-15-6"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm_B</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-7" name="__codelineno-15-7" href="#__codelineno-15-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-8" name="__codelineno-15-8" href="#__codelineno-15-8"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
<a id="__codelineno-15-9" name="__codelineno-15-9" href="#__codelineno-15-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-15-10" name="__codelineno-15-10" href="#__codelineno-15-10"></a><span class="p">}</span>
<a id="__codelineno-15-11" name="__codelineno-15-11" href="#__codelineno-15-11"></a><span class="c1">// 算法 C 时间复杂度:常数阶</span>
<a id="__codelineno-15-12" name="__codelineno-15-12" href="#__codelineno-15-12"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm_C</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-13" name="__codelineno-15-13" href="#__codelineno-15-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mf">1000000</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-14" name="__codelineno-15-14" href="#__codelineno-15-14"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
<a id="__codelineno-15-15" name="__codelineno-15-15" href="#__codelineno-15-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-15-16" name="__codelineno-15-16" href="#__codelineno-15-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="c1">// 算法 A 时间复杂度:常数阶</span>
<a id="__codelineno-16-2" name="__codelineno-16-2" href="#__codelineno-16-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_A</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-3" name="__codelineno-16-3" href="#__codelineno-16-3"></a><span class="w"> </span><span class="n">printf</span><span class="p">(</span><span class="s">&quot;%d&quot;</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-16-4" name="__codelineno-16-4" href="#__codelineno-16-4"></a><span class="p">}</span>
<a id="__codelineno-16-5" name="__codelineno-16-5" href="#__codelineno-16-5"></a><span class="c1">// 算法 B 时间复杂度:线性阶</span>
<a id="__codelineno-16-6" name="__codelineno-16-6" href="#__codelineno-16-6"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_B</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-7" name="__codelineno-16-7" href="#__codelineno-16-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-8" name="__codelineno-16-8" href="#__codelineno-16-8"></a><span class="w"> </span><span class="n">printf</span><span class="p">(</span><span class="s">&quot;%d&quot;</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-16-9" name="__codelineno-16-9" href="#__codelineno-16-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-16-10" name="__codelineno-16-10" href="#__codelineno-16-10"></a><span class="p">}</span>
<a id="__codelineno-16-11" name="__codelineno-16-11" href="#__codelineno-16-11"></a><span class="c1">// 算法 C 时间复杂度:常数阶</span>
<a id="__codelineno-16-12" name="__codelineno-16-12" href="#__codelineno-16-12"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_C</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-13" name="__codelineno-16-13" href="#__codelineno-16-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">1000000</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-14" name="__codelineno-16-14" href="#__codelineno-16-14"></a><span class="w"> </span><span class="n">printf</span><span class="p">(</span><span class="s">&quot;%d&quot;</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-16-15" name="__codelineno-16-15" href="#__codelineno-16-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-16-16" name="__codelineno-16-16" href="#__codelineno-16-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="c1">// 算法 A 时间复杂度:常数阶</span>
<a id="__codelineno-17-2" name="__codelineno-17-2" href="#__codelineno-17-2"></a><span class="k">void</span><span class="w"> </span><span class="nf">algorithm_A</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span>
<a id="__codelineno-17-3" name="__codelineno-17-3" href="#__codelineno-17-3"></a><span class="p">{</span>
<a id="__codelineno-17-4" name="__codelineno-17-4" href="#__codelineno-17-4"></a><span class="w"> </span><span class="n">Console</span><span class="p">.</span><span class="n">WriteLine</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
<a id="__codelineno-17-5" name="__codelineno-17-5" href="#__codelineno-17-5"></a><span class="p">}</span>
<a id="__codelineno-17-6" name="__codelineno-17-6" href="#__codelineno-17-6"></a><span class="c1">// 算法 B 时间复杂度:线性阶</span>
<a id="__codelineno-17-7" name="__codelineno-17-7" href="#__codelineno-17-7"></a><span class="k">void</span><span class="w"> </span><span class="nf">algorithm_B</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span>
<a id="__codelineno-17-8" name="__codelineno-17-8" href="#__codelineno-17-8"></a><span class="p">{</span>
<a id="__codelineno-17-9" name="__codelineno-17-9" href="#__codelineno-17-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span>
<a id="__codelineno-17-10" name="__codelineno-17-10" href="#__codelineno-17-10"></a><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-17-11" name="__codelineno-17-11" href="#__codelineno-17-11"></a><span class="w"> </span><span class="n">Console</span><span class="p">.</span><span class="n">WriteLine</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
<a id="__codelineno-17-12" name="__codelineno-17-12" href="#__codelineno-17-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-17-13" name="__codelineno-17-13" href="#__codelineno-17-13"></a><span class="p">}</span>
<a id="__codelineno-17-14" name="__codelineno-17-14" href="#__codelineno-17-14"></a><span class="c1">// 算法 C 时间复杂度:常数阶</span>
<a id="__codelineno-17-15" name="__codelineno-17-15" href="#__codelineno-17-15"></a><span class="k">void</span><span class="w"> </span><span class="nf">algorithm_C</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span>
<a id="__codelineno-17-16" name="__codelineno-17-16" href="#__codelineno-17-16"></a><span class="p">{</span>
<a id="__codelineno-17-17" name="__codelineno-17-17" href="#__codelineno-17-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="m">1000000</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span>
<a id="__codelineno-17-18" name="__codelineno-17-18" href="#__codelineno-17-18"></a><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-17-19" name="__codelineno-17-19" href="#__codelineno-17-19"></a><span class="w"> </span><span class="n">Console</span><span class="p">.</span><span class="n">WriteLine</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
<a id="__codelineno-17-20" name="__codelineno-17-20" href="#__codelineno-17-20"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-17-21" name="__codelineno-17-21" href="#__codelineno-17-21"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-18-1" name="__codelineno-18-1" href="#__codelineno-18-1"></a><span class="c1">// 算法 A 时间复杂度:常数阶</span>
<a id="__codelineno-18-2" name="__codelineno-18-2" href="#__codelineno-18-2"></a><span class="kd">func</span> <span class="nf">algorithmA</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-18-3" name="__codelineno-18-3" href="#__codelineno-18-3"></a> <span class="bp">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-18-4" name="__codelineno-18-4" href="#__codelineno-18-4"></a><span class="p">}</span>
<a id="__codelineno-18-5" name="__codelineno-18-5" href="#__codelineno-18-5"></a>
<a id="__codelineno-18-6" name="__codelineno-18-6" href="#__codelineno-18-6"></a><span class="c1">// 算法 B 时间复杂度:线性阶</span>
<a id="__codelineno-18-7" name="__codelineno-18-7" href="#__codelineno-18-7"></a><span class="kd">func</span> <span class="nf">algorithmB</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-18-8" name="__codelineno-18-8" href="#__codelineno-18-8"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">n</span> <span class="p">{</span>
<a id="__codelineno-18-9" name="__codelineno-18-9" href="#__codelineno-18-9"></a> <span class="bp">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-18-10" name="__codelineno-18-10" href="#__codelineno-18-10"></a> <span class="p">}</span>
<a id="__codelineno-18-11" name="__codelineno-18-11" href="#__codelineno-18-11"></a><span class="p">}</span>
<a id="__codelineno-18-12" name="__codelineno-18-12" href="#__codelineno-18-12"></a>
<a id="__codelineno-18-13" name="__codelineno-18-13" href="#__codelineno-18-13"></a><span class="c1">// 算法 C 时间复杂度:常数阶</span>
<a id="__codelineno-18-14" name="__codelineno-18-14" href="#__codelineno-18-14"></a><span class="kd">func</span> <span class="nf">algorithmC</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-18-15" name="__codelineno-18-15" href="#__codelineno-18-15"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="mi">1000000</span> <span class="p">{</span>
<a id="__codelineno-18-16" name="__codelineno-18-16" href="#__codelineno-18-16"></a> <span class="bp">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-18-17" name="__codelineno-18-17" href="#__codelineno-18-17"></a> <span class="p">}</span>
<a id="__codelineno-18-18" name="__codelineno-18-18" href="#__codelineno-18-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-19-1" name="__codelineno-19-1" href="#__codelineno-19-1"></a>
</code></pre></div>
</div>
</div>
</div>
<p><img alt="算法 A, B, C 的时间增长趋势" src="../time_complexity.assets/time_complexity_simple_example.png" /></p>
<p align="center"> Fig. 算法 A, B, C 的时间增长趋势 </p>
<p>相较于直接统计算法运行时间,时间复杂度分析有哪些优势和局限性呢?</p>
<p><strong>时间复杂度能够有效评估算法效率</strong>。例如,算法 <code>B</code> 的运行时间呈线性增长,在 <span class="arithmatex">\(n &gt; 1\)</span> 时比算法 <code>A</code> 慢,在 <span class="arithmatex">\(n &gt; 1000000\)</span> 时比算法 <code>C</code> 慢。事实上,只要输入数据大小 <span class="arithmatex">\(n\)</span> 足够大,复杂度为「常数阶」的算法一定优于「线性阶」的算法,这正是时间增长趋势所表达的含义。</p>
<p><strong>时间复杂度的推算方法更简便</strong>。显然,运行平台和计算操作类型都与算法运行时间的增长趋势无关。因此在时间复杂度分析中,我们可以简单地将所有计算操作的执行时间视为相同的“单位时间”,从而将“计算操作的运行时间的统计”简化为“计算操作的数量的统计”,这样的简化方法大大降低了估算难度。</p>
<p><strong>时间复杂度也存在一定的局限性</strong>。例如,尽管算法 <code>A</code><code>C</code> 的时间复杂度相同,但实际运行时间差别很大。同样,尽管算法 <code>B</code> 的时间复杂度比 <code>C</code> 高,但在输入数据大小 <span class="arithmatex">\(n\)</span> 较小时,算法 <code>B</code> 明显优于算法 <code>C</code> 。在这些情况下,我们很难仅凭时间复杂度判断算法效率高低。当然,尽管存在上述问题,复杂度分析仍然是评判算法效率最有效且常用的方法。</p>
<h2 id="223">2.2.3. &nbsp; 函数渐近上界<a class="headerlink" href="#223" title="Permanent link">&para;</a></h2>
<p>设算法的计算操作数量是一个关于输入数据大小 <span class="arithmatex">\(n\)</span> 的函数,记为 <span class="arithmatex">\(T(n)\)</span> ,则以下算法的操作数量为</p>
<div class="arithmatex">\[
T(n) = 3 + 2n
\]</div>
<div class="tabbed-set tabbed-alternate" data-tabs="3:10"><input checked="checked" id="__tabbed_3_1" name="__tabbed_3" type="radio" /><input id="__tabbed_3_2" name="__tabbed_3" type="radio" /><input id="__tabbed_3_3" name="__tabbed_3" type="radio" /><input id="__tabbed_3_4" name="__tabbed_3" type="radio" /><input id="__tabbed_3_5" name="__tabbed_3" type="radio" /><input id="__tabbed_3_6" name="__tabbed_3" type="radio" /><input id="__tabbed_3_7" name="__tabbed_3" type="radio" /><input id="__tabbed_3_8" name="__tabbed_3" type="radio" /><input id="__tabbed_3_9" name="__tabbed_3" type="radio" /><input id="__tabbed_3_10" name="__tabbed_3" type="radio" /><div class="tabbed-labels"><label for="__tabbed_3_1">Java</label><label for="__tabbed_3_2">C++</label><label for="__tabbed_3_3">Python</label><label for="__tabbed_3_4">Go</label><label for="__tabbed_3_5">JavaScript</label><label for="__tabbed_3_6">TypeScript</label><label for="__tabbed_3_7">C</label><label for="__tabbed_3_8">C#</label><label for="__tabbed_3_9">Swift</label><label for="__tabbed_3_10">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-20-1" name="__codelineno-20-1" href="#__codelineno-20-1"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-20-2" name="__codelineno-20-2" href="#__codelineno-20-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-20-3" name="__codelineno-20-3" href="#__codelineno-20-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-20-4" name="__codelineno-20-4" href="#__codelineno-20-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-20-5" name="__codelineno-20-5" href="#__codelineno-20-5"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-20-6" name="__codelineno-20-6" href="#__codelineno-20-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// +1每轮都执行 i ++</span>
<a id="__codelineno-20-7" name="__codelineno-20-7" href="#__codelineno-20-7"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-20-8" name="__codelineno-20-8" href="#__codelineno-20-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-20-9" name="__codelineno-20-9" href="#__codelineno-20-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-21-1" name="__codelineno-21-1" href="#__codelineno-21-1"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-21-2" name="__codelineno-21-2" href="#__codelineno-21-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-21-3" name="__codelineno-21-3" href="#__codelineno-21-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-21-4" name="__codelineno-21-4" href="#__codelineno-21-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-21-5" name="__codelineno-21-5" href="#__codelineno-21-5"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-21-6" name="__codelineno-21-6" href="#__codelineno-21-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// +1每轮都执行 i ++</span>
<a id="__codelineno-21-7" name="__codelineno-21-7" href="#__codelineno-21-7"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-21-8" name="__codelineno-21-8" href="#__codelineno-21-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-21-9" name="__codelineno-21-9" href="#__codelineno-21-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-22-1" name="__codelineno-22-1" href="#__codelineno-22-1"></a><span class="k">def</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-22-2" name="__codelineno-22-2" href="#__codelineno-22-2"></a> <span class="n">a</span> <span class="o">=</span> <span class="mi">1</span> <span class="c1"># +1</span>
<a id="__codelineno-22-3" name="__codelineno-22-3" href="#__codelineno-22-3"></a> <span class="n">a</span> <span class="o">=</span> <span class="n">a</span> <span class="o">+</span> <span class="mi">1</span> <span class="c1"># +1</span>
<a id="__codelineno-22-4" name="__codelineno-22-4" href="#__codelineno-22-4"></a> <span class="n">a</span> <span class="o">=</span> <span class="n">a</span> <span class="o">*</span> <span class="mi">2</span> <span class="c1"># +1</span>
<a id="__codelineno-22-5" name="__codelineno-22-5" href="#__codelineno-22-5"></a> <span class="c1"># 循环 n 次</span>
<a id="__codelineno-22-6" name="__codelineno-22-6" href="#__codelineno-22-6"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span> <span class="c1"># +1</span>
<a id="__codelineno-22-7" name="__codelineno-22-7" href="#__codelineno-22-7"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="c1"># +1</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-23-1" name="__codelineno-23-1" href="#__codelineno-23-1"></a><span class="kd">func</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-2" name="__codelineno-23-2" href="#__codelineno-23-2"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-23-3" name="__codelineno-23-3" href="#__codelineno-23-3"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-23-4" name="__codelineno-23-4" href="#__codelineno-23-4"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-23-5" name="__codelineno-23-5" href="#__codelineno-23-5"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-23-6" name="__codelineno-23-6" href="#__codelineno-23-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-23-7" name="__codelineno-23-7" href="#__codelineno-23-7"></a><span class="w"> </span><span class="nx">fmt</span><span class="p">.</span><span class="nx">Println</span><span class="p">(</span><span class="nx">a</span><span class="p">)</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-23-8" name="__codelineno-23-8" href="#__codelineno-23-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-23-9" name="__codelineno-23-9" href="#__codelineno-23-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-24-1" name="__codelineno-24-1" href="#__codelineno-24-1"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-24-2" name="__codelineno-24-2" href="#__codelineno-24-2"></a><span class="w"> </span><span class="kd">var</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-24-3" name="__codelineno-24-3" href="#__codelineno-24-3"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-24-4" name="__codelineno-24-4" href="#__codelineno-24-4"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-24-5" name="__codelineno-24-5" href="#__codelineno-24-5"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-24-6" name="__codelineno-24-6" href="#__codelineno-24-6"></a><span class="w"> </span><span class="k">for</span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">){</span><span class="w"> </span><span class="c1">// +1每轮都执行 i ++</span>
<a id="__codelineno-24-7" name="__codelineno-24-7" href="#__codelineno-24-7"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-24-8" name="__codelineno-24-8" href="#__codelineno-24-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-24-9" name="__codelineno-24-9" href="#__codelineno-24-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-25-1" name="__codelineno-25-1" href="#__codelineno-25-1"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="p">{</span>
<a id="__codelineno-25-2" name="__codelineno-25-2" href="#__codelineno-25-2"></a><span class="w"> </span><span class="kd">var</span><span class="w"> </span><span class="nx">a</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-25-3" name="__codelineno-25-3" href="#__codelineno-25-3"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-25-4" name="__codelineno-25-4" href="#__codelineno-25-4"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-25-5" name="__codelineno-25-5" href="#__codelineno-25-5"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-25-6" name="__codelineno-25-6" href="#__codelineno-25-6"></a><span class="w"> </span><span class="k">for</span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">){</span><span class="w"> </span><span class="c1">// +1每轮都执行 i ++</span>
<a id="__codelineno-25-7" name="__codelineno-25-7" href="#__codelineno-25-7"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-25-8" name="__codelineno-25-8" href="#__codelineno-25-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-25-9" name="__codelineno-25-9" href="#__codelineno-25-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-26-1" name="__codelineno-26-1" href="#__codelineno-26-1"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-26-2" name="__codelineno-26-2" href="#__codelineno-26-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-26-3" name="__codelineno-26-3" href="#__codelineno-26-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-26-4" name="__codelineno-26-4" href="#__codelineno-26-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-26-5" name="__codelineno-26-5" href="#__codelineno-26-5"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-26-6" name="__codelineno-26-6" href="#__codelineno-26-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// +1每轮都执行 i ++</span>
<a id="__codelineno-26-7" name="__codelineno-26-7" href="#__codelineno-26-7"></a><span class="w"> </span><span class="n">printf</span><span class="p">(</span><span class="s">&quot;%d&quot;</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-26-8" name="__codelineno-26-8" href="#__codelineno-26-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-26-9" name="__codelineno-26-9" href="#__codelineno-26-9"></a><span class="p">}</span><span class="w"> </span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-27-1" name="__codelineno-27-1" href="#__codelineno-27-1"></a><span class="k">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span>
<a id="__codelineno-27-2" name="__codelineno-27-2" href="#__codelineno-27-2"></a><span class="p">{</span>
<a id="__codelineno-27-3" name="__codelineno-27-3" href="#__codelineno-27-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-27-4" name="__codelineno-27-4" href="#__codelineno-27-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-27-5" name="__codelineno-27-5" href="#__codelineno-27-5"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="m">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-27-6" name="__codelineno-27-6" href="#__codelineno-27-6"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-27-7" name="__codelineno-27-7" href="#__codelineno-27-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="c1">// +1每轮都执行 i ++</span>
<a id="__codelineno-27-8" name="__codelineno-27-8" href="#__codelineno-27-8"></a><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-27-9" name="__codelineno-27-9" href="#__codelineno-27-9"></a><span class="w"> </span><span class="n">Console</span><span class="p">.</span><span class="n">WriteLine</span><span class="p">(</span><span class="m">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-27-10" name="__codelineno-27-10" href="#__codelineno-27-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-27-11" name="__codelineno-27-11" href="#__codelineno-27-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a><span class="kd">func</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-28-2" name="__codelineno-28-2" href="#__codelineno-28-2"></a> <span class="kd">var</span> <span class="nv">a</span> <span class="p">=</span> <span class="mi">1</span> <span class="c1">// +1</span>
<a id="__codelineno-28-3" name="__codelineno-28-3" href="#__codelineno-28-3"></a> <span class="n">a</span> <span class="p">=</span> <span class="n">a</span> <span class="o">+</span> <span class="mi">1</span> <span class="c1">// +1</span>
<a id="__codelineno-28-4" name="__codelineno-28-4" href="#__codelineno-28-4"></a> <span class="n">a</span> <span class="p">=</span> <span class="n">a</span> <span class="o">*</span> <span class="mi">2</span> <span class="c1">// +1</span>
<a id="__codelineno-28-5" name="__codelineno-28-5" href="#__codelineno-28-5"></a> <span class="c1">// 循环 n 次</span>
<a id="__codelineno-28-6" name="__codelineno-28-6" href="#__codelineno-28-6"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">n</span> <span class="p">{</span> <span class="c1">// +1</span>
<a id="__codelineno-28-7" name="__codelineno-28-7" href="#__codelineno-28-7"></a> <span class="bp">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="c1">// +1</span>
<a id="__codelineno-28-8" name="__codelineno-28-8" href="#__codelineno-28-8"></a> <span class="p">}</span>
<a id="__codelineno-28-9" name="__codelineno-28-9" href="#__codelineno-28-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a>
</code></pre></div>
</div>
</div>
</div>
<p><span class="arithmatex">\(T(n)\)</span> 是一次函数,说明时间增长趋势是线性的,因此可以得出时间复杂度是线性阶。</p>
<p>我们将线性阶的时间复杂度记为 <span class="arithmatex">\(O(n)\)</span> ,这个数学符号称为「大 <span class="arithmatex">\(O\)</span> 记号 Big-<span class="arithmatex">\(O\)</span> Notation」表示函数 <span class="arithmatex">\(T(n)\)</span> 的「渐近上界 Asymptotic Upper Bound」。</p>
<p>推算时间复杂度本质上是计算“操作数量函数 <span class="arithmatex">\(T(n)\)</span>”的渐近上界。接下来,我们来看函数渐近上界的数学定义。</p>
<div class="admonition abstract">
<p class="admonition-title">函数渐近上界</p>
<p>若存在正实数 <span class="arithmatex">\(c\)</span> 和实数 <span class="arithmatex">\(n_0\)</span> ,使得对于所有的 <span class="arithmatex">\(n &gt; n_0\)</span> ,均有
$$
T(n) \leq c \cdot f(n)
$$
则可认为 <span class="arithmatex">\(f(n)\)</span> 给出了 <span class="arithmatex">\(T(n)\)</span> 的一个渐近上界,记为
$$
T(n) = O(f(n))
$$</p>
</div>
<p><img alt="函数的渐近上界" src="../time_complexity.assets/asymptotic_upper_bound.png" /></p>
<p align="center"> Fig. 函数的渐近上界 </p>
<p>从本质上讲,计算渐近上界就是寻找一个函数 <span class="arithmatex">\(f(n)\)</span> ,使得当 <span class="arithmatex">\(n\)</span> 趋向于无穷大时,<span class="arithmatex">\(T(n)\)</span><span class="arithmatex">\(f(n)\)</span> 处于相同的增长级别,仅相差一个常数项 <span class="arithmatex">\(c\)</span> 的倍数。</p>
<h2 id="224">2.2.4. &nbsp; 推算方法<a class="headerlink" href="#224" title="Permanent link">&para;</a></h2>
<p>渐近上界的数学味儿有点重,如果你感觉没有完全理解,也无需担心。因为在实际使用中,我们只需要掌握推算方法,数学意义可以逐渐领悟。</p>
<p>根据定义,确定 <span class="arithmatex">\(f(n)\)</span> 之后,我们便可得到时间复杂度 <span class="arithmatex">\(O(f(n))\)</span> 。那么如何确定渐近上界 <span class="arithmatex">\(f(n)\)</span> 呢?总体分为两步:首先统计操作数量,然后判断渐近上界。</p>
<h3 id="1">1) 统计操作数量<a class="headerlink" href="#1" title="Permanent link">&para;</a></h3>
<p>针对代码,逐行从上到下计算即可。然而,由于上述 <span class="arithmatex">\(c \cdot f(n)\)</span> 中的常数项 <span class="arithmatex">\(c\)</span> 可以取任意大小,<strong>因此操作数量 <span class="arithmatex">\(T(n)\)</span> 中的各种系数、常数项都可以被忽略</strong>。根据此原则,可以总结出以下计数简化技巧:</p>
<ol>
<li><strong>忽略与 <span class="arithmatex">\(n\)</span> 无关的操作</strong>。因为它们都是 <span class="arithmatex">\(T(n)\)</span> 中的常数项,对时间复杂度不产生影响。</li>
<li><strong>省略所有系数</strong>。例如,循环 <span class="arithmatex">\(2n\)</span> 次、<span class="arithmatex">\(5n + 1\)</span> 次等,都可以简化记为 <span class="arithmatex">\(n\)</span> 次,因为 <span class="arithmatex">\(n\)</span> 前面的系数对时间复杂度没有影响。</li>
<li><strong>循环嵌套时使用乘法</strong>。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别套用上述 <code>1.</code><code>2.</code> 技巧。</li>
</ol>
<p>以下示例展示了使用上述技巧前、后的统计结果。</p>
<div class="arithmatex">\[
\begin{aligned}
T(n) &amp; = 2n(n + 1) + (5n + 1) + 2 &amp; \text{完整统计 (-.-|||)} \newline
&amp; = 2n^2 + 7n + 3 \newline
T(n) &amp; = n^2 + n &amp; \text{偷懒统计 (o.O)}
\end{aligned}
\]</div>
<p>最终,两者都能推出相同的时间复杂度结果,即 <span class="arithmatex">\(O(n^2)\)</span></p>
<div class="tabbed-set tabbed-alternate" data-tabs="4:10"><input checked="checked" id="__tabbed_4_1" name="__tabbed_4" type="radio" /><input id="__tabbed_4_2" name="__tabbed_4" type="radio" /><input id="__tabbed_4_3" name="__tabbed_4" type="radio" /><input id="__tabbed_4_4" name="__tabbed_4" type="radio" /><input id="__tabbed_4_5" name="__tabbed_4" type="radio" /><input id="__tabbed_4_6" name="__tabbed_4" type="radio" /><input id="__tabbed_4_7" name="__tabbed_4" type="radio" /><input id="__tabbed_4_8" name="__tabbed_4" type="radio" /><input id="__tabbed_4_9" name="__tabbed_4" type="radio" /><input id="__tabbed_4_10" name="__tabbed_4" type="radio" /><div class="tabbed-labels"><label for="__tabbed_4_1">Java</label><label for="__tabbed_4_2">C++</label><label for="__tabbed_4_3">Python</label><label for="__tabbed_4_4">Go</label><label for="__tabbed_4_5">JavaScript</label><label for="__tabbed_4_6">TypeScript</label><label for="__tabbed_4_7">C</label><label for="__tabbed_4_8">C#</label><label for="__tabbed_4_9">Swift</label><label for="__tabbed_4_10">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-30-1" name="__codelineno-30-1" href="#__codelineno-30-1"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-2" name="__codelineno-30-2" href="#__codelineno-30-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-30-3" name="__codelineno-30-3" href="#__codelineno-30-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-30-4" name="__codelineno-30-4" href="#__codelineno-30-4"></a><span class="w"> </span><span class="c1">// +n技巧 2</span>
<a id="__codelineno-30-5" name="__codelineno-30-5" href="#__codelineno-30-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-6" name="__codelineno-30-6" href="#__codelineno-30-6"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-30-7" name="__codelineno-30-7" href="#__codelineno-30-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-30-8" name="__codelineno-30-8" href="#__codelineno-30-8"></a><span class="w"> </span><span class="c1">// +n*n技巧 3</span>
<a id="__codelineno-30-9" name="__codelineno-30-9" href="#__codelineno-30-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-10" name="__codelineno-30-10" href="#__codelineno-30-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-11" name="__codelineno-30-11" href="#__codelineno-30-11"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-30-12" name="__codelineno-30-12" href="#__codelineno-30-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-30-13" name="__codelineno-30-13" href="#__codelineno-30-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-30-14" name="__codelineno-30-14" href="#__codelineno-30-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-31-1" name="__codelineno-31-1" href="#__codelineno-31-1"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-31-2" name="__codelineno-31-2" href="#__codelineno-31-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-31-3" name="__codelineno-31-3" href="#__codelineno-31-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-31-4" name="__codelineno-31-4" href="#__codelineno-31-4"></a><span class="w"> </span><span class="c1">// +n技巧 2</span>
<a id="__codelineno-31-5" name="__codelineno-31-5" href="#__codelineno-31-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-31-6" name="__codelineno-31-6" href="#__codelineno-31-6"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span>
<a id="__codelineno-31-7" name="__codelineno-31-7" href="#__codelineno-31-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-31-8" name="__codelineno-31-8" href="#__codelineno-31-8"></a><span class="w"> </span><span class="c1">// +n*n技巧 3</span>
<a id="__codelineno-31-9" name="__codelineno-31-9" href="#__codelineno-31-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-31-10" name="__codelineno-31-10" href="#__codelineno-31-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-31-11" name="__codelineno-31-11" href="#__codelineno-31-11"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span>
<a id="__codelineno-31-12" name="__codelineno-31-12" href="#__codelineno-31-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-31-13" name="__codelineno-31-13" href="#__codelineno-31-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-31-14" name="__codelineno-31-14" href="#__codelineno-31-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-32-1" name="__codelineno-32-1" href="#__codelineno-32-1"></a><span class="k">def</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-32-2" name="__codelineno-32-2" href="#__codelineno-32-2"></a> <span class="n">a</span> <span class="o">=</span> <span class="mi">1</span> <span class="c1"># +0技巧 1</span>
<a id="__codelineno-32-3" name="__codelineno-32-3" href="#__codelineno-32-3"></a> <span class="n">a</span> <span class="o">=</span> <span class="n">a</span> <span class="o">+</span> <span class="n">n</span> <span class="c1"># +0技巧 1</span>
<a id="__codelineno-32-4" name="__codelineno-32-4" href="#__codelineno-32-4"></a> <span class="c1"># +n技巧 2</span>
<a id="__codelineno-32-5" name="__codelineno-32-5" href="#__codelineno-32-5"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">5</span> <span class="o">*</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
<a id="__codelineno-32-6" name="__codelineno-32-6" href="#__codelineno-32-6"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-32-7" name="__codelineno-32-7" href="#__codelineno-32-7"></a> <span class="c1"># +n*n技巧 3</span>
<a id="__codelineno-32-8" name="__codelineno-32-8" href="#__codelineno-32-8"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">n</span><span class="p">):</span>
<a id="__codelineno-32-9" name="__codelineno-32-9" href="#__codelineno-32-9"></a> <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
<a id="__codelineno-32-10" name="__codelineno-32-10" href="#__codelineno-32-10"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-33-1" name="__codelineno-33-1" href="#__codelineno-33-1"></a><span class="kd">func</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-33-2" name="__codelineno-33-2" href="#__codelineno-33-2"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-33-3" name="__codelineno-33-3" href="#__codelineno-33-3"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-33-4" name="__codelineno-33-4" href="#__codelineno-33-4"></a><span class="w"> </span><span class="c1">// +n技巧 2</span>
<a id="__codelineno-33-5" name="__codelineno-33-5" href="#__codelineno-33-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="mi">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-33-6" name="__codelineno-33-6" href="#__codelineno-33-6"></a><span class="w"> </span><span class="nx">fmt</span><span class="p">.</span><span class="nx">Println</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-33-7" name="__codelineno-33-7" href="#__codelineno-33-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-33-8" name="__codelineno-33-8" href="#__codelineno-33-8"></a><span class="w"> </span><span class="c1">// +n*n技巧 3</span>
<a id="__codelineno-33-9" name="__codelineno-33-9" href="#__codelineno-33-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-33-10" name="__codelineno-33-10" href="#__codelineno-33-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-33-11" name="__codelineno-33-11" href="#__codelineno-33-11"></a><span class="w"> </span><span class="nx">fmt</span><span class="p">.</span><span class="nx">Println</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-33-12" name="__codelineno-33-12" href="#__codelineno-33-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-33-13" name="__codelineno-33-13" href="#__codelineno-33-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-33-14" name="__codelineno-33-14" href="#__codelineno-33-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-34-1" name="__codelineno-34-1" href="#__codelineno-34-1"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-2" name="__codelineno-34-2" href="#__codelineno-34-2"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-34-3" name="__codelineno-34-3" href="#__codelineno-34-3"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-34-4" name="__codelineno-34-4" href="#__codelineno-34-4"></a><span class="w"> </span><span class="c1">// +n技巧 2</span>
<a id="__codelineno-34-5" name="__codelineno-34-5" href="#__codelineno-34-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mf">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-6" name="__codelineno-34-6" href="#__codelineno-34-6"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
<a id="__codelineno-34-7" name="__codelineno-34-7" href="#__codelineno-34-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-34-8" name="__codelineno-34-8" href="#__codelineno-34-8"></a><span class="w"> </span><span class="c1">// +n*n技巧 3</span>
<a id="__codelineno-34-9" name="__codelineno-34-9" href="#__codelineno-34-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-10" name="__codelineno-34-10" href="#__codelineno-34-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-11" name="__codelineno-34-11" href="#__codelineno-34-11"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
<a id="__codelineno-34-12" name="__codelineno-34-12" href="#__codelineno-34-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-34-13" name="__codelineno-34-13" href="#__codelineno-34-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-34-14" name="__codelineno-34-14" href="#__codelineno-34-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-35-1" name="__codelineno-35-1" href="#__codelineno-35-1"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-35-2" name="__codelineno-35-2" href="#__codelineno-35-2"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-35-3" name="__codelineno-35-3" href="#__codelineno-35-3"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-35-4" name="__codelineno-35-4" href="#__codelineno-35-4"></a><span class="w"> </span><span class="c1">// +n技巧 2</span>
<a id="__codelineno-35-5" name="__codelineno-35-5" href="#__codelineno-35-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mf">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-35-6" name="__codelineno-35-6" href="#__codelineno-35-6"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
<a id="__codelineno-35-7" name="__codelineno-35-7" href="#__codelineno-35-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-35-8" name="__codelineno-35-8" href="#__codelineno-35-8"></a><span class="w"> </span><span class="c1">// +n*n技巧 3</span>
<a id="__codelineno-35-9" name="__codelineno-35-9" href="#__codelineno-35-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-35-10" name="__codelineno-35-10" href="#__codelineno-35-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-35-11" name="__codelineno-35-11" href="#__codelineno-35-11"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
<a id="__codelineno-35-12" name="__codelineno-35-12" href="#__codelineno-35-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-35-13" name="__codelineno-35-13" href="#__codelineno-35-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-35-14" name="__codelineno-35-14" href="#__codelineno-35-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-36-1" name="__codelineno-36-1" href="#__codelineno-36-1"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-36-2" name="__codelineno-36-2" href="#__codelineno-36-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-36-3" name="__codelineno-36-3" href="#__codelineno-36-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-36-4" name="__codelineno-36-4" href="#__codelineno-36-4"></a><span class="w"> </span><span class="c1">// +n技巧 2</span>
<a id="__codelineno-36-5" name="__codelineno-36-5" href="#__codelineno-36-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-36-6" name="__codelineno-36-6" href="#__codelineno-36-6"></a><span class="w"> </span><span class="n">printf</span><span class="p">(</span><span class="s">&quot;%d&quot;</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-36-7" name="__codelineno-36-7" href="#__codelineno-36-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-36-8" name="__codelineno-36-8" href="#__codelineno-36-8"></a><span class="w"> </span><span class="c1">// +n*n技巧 3</span>
<a id="__codelineno-36-9" name="__codelineno-36-9" href="#__codelineno-36-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-36-10" name="__codelineno-36-10" href="#__codelineno-36-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-36-11" name="__codelineno-36-11" href="#__codelineno-36-11"></a><span class="w"> </span><span class="n">printf</span><span class="p">(</span><span class="s">&quot;%d&quot;</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-36-12" name="__codelineno-36-12" href="#__codelineno-36-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-36-13" name="__codelineno-36-13" href="#__codelineno-36-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-36-14" name="__codelineno-36-14" href="#__codelineno-36-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-37-1" name="__codelineno-37-1" href="#__codelineno-37-1"></a><span class="k">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span>
<a id="__codelineno-37-2" name="__codelineno-37-2" href="#__codelineno-37-2"></a><span class="p">{</span>
<a id="__codelineno-37-3" name="__codelineno-37-3" href="#__codelineno-37-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-37-4" name="__codelineno-37-4" href="#__codelineno-37-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-37-5" name="__codelineno-37-5" href="#__codelineno-37-5"></a><span class="w"> </span><span class="c1">// +n技巧 2</span>
<a id="__codelineno-37-6" name="__codelineno-37-6" href="#__codelineno-37-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="m">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span>
<a id="__codelineno-37-7" name="__codelineno-37-7" href="#__codelineno-37-7"></a><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-8" name="__codelineno-37-8" href="#__codelineno-37-8"></a><span class="w"> </span><span class="n">Console</span><span class="p">.</span><span class="n">WriteLine</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
<a id="__codelineno-37-9" name="__codelineno-37-9" href="#__codelineno-37-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-37-10" name="__codelineno-37-10" href="#__codelineno-37-10"></a><span class="w"> </span><span class="c1">// +n*n技巧 3</span>
<a id="__codelineno-37-11" name="__codelineno-37-11" href="#__codelineno-37-11"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="m">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span>
<a id="__codelineno-37-12" name="__codelineno-37-12" href="#__codelineno-37-12"></a><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-13" name="__codelineno-37-13" href="#__codelineno-37-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span>
<a id="__codelineno-37-14" name="__codelineno-37-14" href="#__codelineno-37-14"></a><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-15" name="__codelineno-37-15" href="#__codelineno-37-15"></a><span class="w"> </span><span class="n">Console</span><span class="p">.</span><span class="n">WriteLine</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
<a id="__codelineno-37-16" name="__codelineno-37-16" href="#__codelineno-37-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-37-17" name="__codelineno-37-17" href="#__codelineno-37-17"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-37-18" name="__codelineno-37-18" href="#__codelineno-37-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-38-1" name="__codelineno-38-1" href="#__codelineno-38-1"></a><span class="kd">func</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-38-2" name="__codelineno-38-2" href="#__codelineno-38-2"></a> <span class="kd">var</span> <span class="nv">a</span> <span class="p">=</span> <span class="mi">1</span> <span class="c1">// +0技巧 1</span>
<a id="__codelineno-38-3" name="__codelineno-38-3" href="#__codelineno-38-3"></a> <span class="n">a</span> <span class="p">=</span> <span class="n">a</span> <span class="o">+</span> <span class="n">n</span> <span class="c1">// +0技巧 1</span>
<a id="__codelineno-38-4" name="__codelineno-38-4" href="#__codelineno-38-4"></a> <span class="c1">// +n技巧 2</span>
<a id="__codelineno-38-5" name="__codelineno-38-5" href="#__codelineno-38-5"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="p">(</span><span class="mi">5</span> <span class="o">*</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-38-6" name="__codelineno-38-6" href="#__codelineno-38-6"></a> <span class="bp">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-38-7" name="__codelineno-38-7" href="#__codelineno-38-7"></a> <span class="p">}</span>
<a id="__codelineno-38-8" name="__codelineno-38-8" href="#__codelineno-38-8"></a> <span class="c1">// +n*n技巧 3</span>
<a id="__codelineno-38-9" name="__codelineno-38-9" href="#__codelineno-38-9"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">n</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-38-10" name="__codelineno-38-10" href="#__codelineno-38-10"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="p">(</span><span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-38-11" name="__codelineno-38-11" href="#__codelineno-38-11"></a> <span class="bp">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-38-12" name="__codelineno-38-12" href="#__codelineno-38-12"></a> <span class="p">}</span>
<a id="__codelineno-38-13" name="__codelineno-38-13" href="#__codelineno-38-13"></a> <span class="p">}</span>
<a id="__codelineno-38-14" name="__codelineno-38-14" href="#__codelineno-38-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-39-1" name="__codelineno-39-1" href="#__codelineno-39-1"></a>
</code></pre></div>
</div>
</div>
</div>
<h3 id="2">2) 判断渐近上界<a class="headerlink" href="#2" title="Permanent link">&para;</a></h3>
<p><strong>时间复杂度由多项式 <span class="arithmatex">\(T(n)\)</span> 中最高阶的项来决定</strong>。这是因为在 <span class="arithmatex">\(n\)</span> 趋于无穷大时,最高阶的项将发挥主导作用,其他项的影响都可以被忽略。</p>
<p>以下表格展示了一些例子,其中一些夸张的值是为了强调“系数无法撼动阶数”这一结论。当 <span class="arithmatex">\(n\)</span> 趋于无穷大时,这些常数变得无足轻重。</p>
<div class="center-table">
<table>
<thead>
<tr>
<th>操作数量 <span class="arithmatex">\(T(n)\)</span></th>
<th>时间复杂度 <span class="arithmatex">\(O(f(n))\)</span></th>
</tr>
</thead>
<tbody>
<tr>
<td><span class="arithmatex">\(100000\)</span></td>
<td><span class="arithmatex">\(O(1)\)</span></td>
</tr>
<tr>
<td><span class="arithmatex">\(3n + 2\)</span></td>
<td><span class="arithmatex">\(O(n)\)</span></td>
</tr>
<tr>
<td><span class="arithmatex">\(2n^2 + 3n + 2\)</span></td>
<td><span class="arithmatex">\(O(n^2)\)</span></td>
</tr>
<tr>
<td><span class="arithmatex">\(n^3 + 10000n^2\)</span></td>
<td><span class="arithmatex">\(O(n^3)\)</span></td>
</tr>
<tr>
<td><span class="arithmatex">\(2^n + 10000n^{10000}\)</span></td>
<td><span class="arithmatex">\(O(2^n)\)</span></td>
</tr>
</tbody>
</table>
</div>
<h2 id="225">2.2.5. &nbsp; 常见类型<a class="headerlink" href="#225" title="Permanent link">&para;</a></h2>
<p>设输入数据大小为 <span class="arithmatex">\(n\)</span> ,常见的时间复杂度类型包括(按照从低到高的顺序排列):</p>
<div class="arithmatex">\[
\begin{aligned}
O(1) &lt; O(\log n) &lt; O(n) &lt; O(n \log n) &lt; O(n^2) &lt; O(2^n) &lt; O(n!) \newline
\text{常数阶} &lt; \text{对数阶} &lt; \text{线性阶} &lt; \text{线性对数阶} &lt; \text{平方阶} &lt; \text{指数阶} &lt; \text{阶乘阶}
\end{aligned}
\]</div>
<p><img alt="时间复杂度的常见类型" src="../time_complexity.assets/time_complexity_common_types.png" /></p>
<p align="center"> Fig. 时间复杂度的常见类型 </p>
<div class="admonition tip">
<p class="admonition-title">Tip</p>
<p>部分示例代码需要一些预备知识,包括数组、递归算法等。如果遇到不理解的部分,请不要担心,可以在学习完后面章节后再回顾。现阶段,请先专注于理解时间复杂度的含义和推算方法。</p>
</div>
<h3 id="o1">常数阶 <span class="arithmatex">\(O(1)\)</span><a class="headerlink" href="#o1" title="Permanent link">&para;</a></h3>
<p>常数阶的操作数量与输入数据大小 <span class="arithmatex">\(n\)</span> 无关,即不随着 <span class="arithmatex">\(n\)</span> 的变化而变化。</p>
<p>对于以下算法,尽管操作数量 <code>size</code> 可能很大,但由于其与数据大小 <span class="arithmatex">\(n\)</span> 无关,因此时间复杂度仍为 <span class="arithmatex">\(O(1)\)</span></p>
<div class="tabbed-set tabbed-alternate" data-tabs="5:10"><input checked="checked" id="__tabbed_5_1" name="__tabbed_5" type="radio" /><input id="__tabbed_5_2" name="__tabbed_5" type="radio" /><input id="__tabbed_5_3" name="__tabbed_5" type="radio" /><input id="__tabbed_5_4" name="__tabbed_5" type="radio" /><input id="__tabbed_5_5" name="__tabbed_5" type="radio" /><input id="__tabbed_5_6" name="__tabbed_5" type="radio" /><input id="__tabbed_5_7" name="__tabbed_5" type="radio" /><input id="__tabbed_5_8" name="__tabbed_5" type="radio" /><input id="__tabbed_5_9" name="__tabbed_5" type="radio" /><input id="__tabbed_5_10" name="__tabbed_5" type="radio" /><div class="tabbed-labels"><label for="__tabbed_5_1">Java</label><label for="__tabbed_5_2">C++</label><label for="__tabbed_5_3">Python</label><label for="__tabbed_5_4">Go</label><label for="__tabbed_5_5">JavaScript</label><label for="__tabbed_5_6">TypeScript</label><label for="__tabbed_5_7">C</label><label for="__tabbed_5_8">C#</label><label for="__tabbed_5_9">Swift</label><label for="__tabbed_5_10">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-40-1" name="__codelineno-40-1" href="#__codelineno-40-1"></a><span class="cm">/* 常数阶 */</span>
<a id="__codelineno-40-2" name="__codelineno-40-2" href="#__codelineno-40-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">constant</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-40-3" name="__codelineno-40-3" href="#__codelineno-40-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-40-4" name="__codelineno-40-4" href="#__codelineno-40-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">100000</span><span class="p">;</span>
<a id="__codelineno-40-5" name="__codelineno-40-5" href="#__codelineno-40-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">size</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span>
<a id="__codelineno-40-6" name="__codelineno-40-6" href="#__codelineno-40-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-40-7" name="__codelineno-40-7" href="#__codelineno-40-7"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-40-8" name="__codelineno-40-8" href="#__codelineno-40-8"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-41-1" name="__codelineno-41-1" href="#__codelineno-41-1"></a><span class="cm">/* 常数阶 */</span>
<a id="__codelineno-41-2" name="__codelineno-41-2" href="#__codelineno-41-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">constant</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-41-3" name="__codelineno-41-3" href="#__codelineno-41-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-41-4" name="__codelineno-41-4" href="#__codelineno-41-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">100000</span><span class="p">;</span>
<a id="__codelineno-41-5" name="__codelineno-41-5" href="#__codelineno-41-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">size</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span>
<a id="__codelineno-41-6" name="__codelineno-41-6" href="#__codelineno-41-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-41-7" name="__codelineno-41-7" href="#__codelineno-41-7"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-41-8" name="__codelineno-41-8" href="#__codelineno-41-8"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-42-1" name="__codelineno-42-1" href="#__codelineno-42-1"></a><span class="k">def</span> <span class="nf">constant</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-42-2" name="__codelineno-42-2" href="#__codelineno-42-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;常数阶&quot;&quot;&quot;</span>
<a id="__codelineno-42-3" name="__codelineno-42-3" href="#__codelineno-42-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
<a id="__codelineno-42-4" name="__codelineno-42-4" href="#__codelineno-42-4"></a> <span class="n">size</span> <span class="o">=</span> <span class="mi">100000</span>
<a id="__codelineno-42-5" name="__codelineno-42-5" href="#__codelineno-42-5"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">size</span><span class="p">):</span>
<a id="__codelineno-42-6" name="__codelineno-42-6" href="#__codelineno-42-6"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-42-7" name="__codelineno-42-7" href="#__codelineno-42-7"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-43-1" name="__codelineno-43-1" href="#__codelineno-43-1"></a><span class="cm">/* 常数阶 */</span>
<a id="__codelineno-43-2" name="__codelineno-43-2" href="#__codelineno-43-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">constant</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-43-3" name="__codelineno-43-3" href="#__codelineno-43-3"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span>
<a id="__codelineno-43-4" name="__codelineno-43-4" href="#__codelineno-43-4"></a><span class="w"> </span><span class="nx">size</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">100000</span>
<a id="__codelineno-43-5" name="__codelineno-43-5" href="#__codelineno-43-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">size</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-43-6" name="__codelineno-43-6" href="#__codelineno-43-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span>
<a id="__codelineno-43-7" name="__codelineno-43-7" href="#__codelineno-43-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-43-8" name="__codelineno-43-8" href="#__codelineno-43-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
<a id="__codelineno-43-9" name="__codelineno-43-9" href="#__codelineno-43-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-44-1" name="__codelineno-44-1" href="#__codelineno-44-1"></a><span class="cm">/* 常数阶 */</span>
<a id="__codelineno-44-2" name="__codelineno-44-2" href="#__codelineno-44-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">constant</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-44-3" name="__codelineno-44-3" href="#__codelineno-44-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-44-4" name="__codelineno-44-4" href="#__codelineno-44-4"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">100000</span><span class="p">;</span>
<a id="__codelineno-44-5" name="__codelineno-44-5" href="#__codelineno-44-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">size</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-44-6" name="__codelineno-44-6" href="#__codelineno-44-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-44-7" name="__codelineno-44-7" href="#__codelineno-44-7"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-45-1" name="__codelineno-45-1" href="#__codelineno-45-1"></a><span class="cm">/* 常数阶 */</span>
<a id="__codelineno-45-2" name="__codelineno-45-2" href="#__codelineno-45-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">constant</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-45-3" name="__codelineno-45-3" href="#__codelineno-45-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-45-4" name="__codelineno-45-4" href="#__codelineno-45-4"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">100000</span><span class="p">;</span>
<a id="__codelineno-45-5" name="__codelineno-45-5" href="#__codelineno-45-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">size</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-45-6" name="__codelineno-45-6" href="#__codelineno-45-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-45-7" name="__codelineno-45-7" href="#__codelineno-45-7"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-46-1" name="__codelineno-46-1" href="#__codelineno-46-1"></a><span class="cm">/* 常数阶 */</span>
<a id="__codelineno-46-2" name="__codelineno-46-2" href="#__codelineno-46-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">constant</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-46-3" name="__codelineno-46-3" href="#__codelineno-46-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-46-4" name="__codelineno-46-4" href="#__codelineno-46-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">100000</span><span class="p">;</span>
<a id="__codelineno-46-5" name="__codelineno-46-5" href="#__codelineno-46-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-46-6" name="__codelineno-46-6" href="#__codelineno-46-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">size</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-46-7" name="__codelineno-46-7" href="#__codelineno-46-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-46-8" name="__codelineno-46-8" href="#__codelineno-46-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-46-9" name="__codelineno-46-9" href="#__codelineno-46-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-46-10" name="__codelineno-46-10" href="#__codelineno-46-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-47-1" name="__codelineno-47-1" href="#__codelineno-47-1"></a><span class="cm">/* 常数阶 */</span>
<a id="__codelineno-47-2" name="__codelineno-47-2" href="#__codelineno-47-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">constant</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-47-3" name="__codelineno-47-3" href="#__codelineno-47-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-47-4" name="__codelineno-47-4" href="#__codelineno-47-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">100000</span><span class="p">;</span>
<a id="__codelineno-47-5" name="__codelineno-47-5" href="#__codelineno-47-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">size</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span>
<a id="__codelineno-47-6" name="__codelineno-47-6" href="#__codelineno-47-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-47-7" name="__codelineno-47-7" href="#__codelineno-47-7"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-47-8" name="__codelineno-47-8" href="#__codelineno-47-8"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-48-1" name="__codelineno-48-1" href="#__codelineno-48-1"></a><span class="cm">/* 常数阶 */</span>
<a id="__codelineno-48-2" name="__codelineno-48-2" href="#__codelineno-48-2"></a><span class="kd">func</span> <span class="nf">constant</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-48-3" name="__codelineno-48-3" href="#__codelineno-48-3"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span>
<a id="__codelineno-48-4" name="__codelineno-48-4" href="#__codelineno-48-4"></a> <span class="kd">let</span> <span class="nv">size</span> <span class="p">=</span> <span class="mi">100_000</span>
<a id="__codelineno-48-5" name="__codelineno-48-5" href="#__codelineno-48-5"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">size</span> <span class="p">{</span>
<a id="__codelineno-48-6" name="__codelineno-48-6" href="#__codelineno-48-6"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-48-7" name="__codelineno-48-7" href="#__codelineno-48-7"></a> <span class="p">}</span>
<a id="__codelineno-48-8" name="__codelineno-48-8" href="#__codelineno-48-8"></a> <span class="k">return</span> <span class="bp">count</span>
<a id="__codelineno-48-9" name="__codelineno-48-9" href="#__codelineno-48-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-49-1" name="__codelineno-49-1" href="#__codelineno-49-1"></a><span class="c1">// 常数阶</span>
<a id="__codelineno-49-2" name="__codelineno-49-2" href="#__codelineno-49-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">constant</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-49-3" name="__codelineno-49-3" href="#__codelineno-49-3"></a><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
<a id="__codelineno-49-4" name="__codelineno-49-4" href="#__codelineno-49-4"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-49-5" name="__codelineno-49-5" href="#__codelineno-49-5"></a><span class="w"> </span><span class="kr">const</span><span class="w"> </span><span class="n">size</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">100</span><span class="n">_000</span><span class="p">;</span>
<a id="__codelineno-49-6" name="__codelineno-49-6" href="#__codelineno-49-6"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">i</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-49-7" name="__codelineno-49-7" href="#__codelineno-49-7"></a><span class="w"> </span><span class="k">while</span><span class="p">(</span><span class="n">i</span><span class="o">&lt;</span><span class="n">size</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-49-8" name="__codelineno-49-8" href="#__codelineno-49-8"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-49-9" name="__codelineno-49-9" href="#__codelineno-49-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-49-10" name="__codelineno-49-10" href="#__codelineno-49-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-49-11" name="__codelineno-49-11" href="#__codelineno-49-11"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<h3 id="on">线性阶 <span class="arithmatex">\(O(n)\)</span><a class="headerlink" href="#on" title="Permanent link">&para;</a></h3>
<p>线性阶的操作数量相对于输入数据大小以线性级别增长。线性阶通常出现在单层循环中。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="6:10"><input checked="checked" id="__tabbed_6_1" name="__tabbed_6" type="radio" /><input id="__tabbed_6_2" name="__tabbed_6" type="radio" /><input id="__tabbed_6_3" name="__tabbed_6" type="radio" /><input id="__tabbed_6_4" name="__tabbed_6" type="radio" /><input id="__tabbed_6_5" name="__tabbed_6" type="radio" /><input id="__tabbed_6_6" name="__tabbed_6" type="radio" /><input id="__tabbed_6_7" name="__tabbed_6" type="radio" /><input id="__tabbed_6_8" name="__tabbed_6" type="radio" /><input id="__tabbed_6_9" name="__tabbed_6" type="radio" /><input id="__tabbed_6_10" name="__tabbed_6" type="radio" /><div class="tabbed-labels"><label for="__tabbed_6_1">Java</label><label for="__tabbed_6_2">C++</label><label for="__tabbed_6_3">Python</label><label for="__tabbed_6_4">Go</label><label for="__tabbed_6_5">JavaScript</label><label for="__tabbed_6_6">TypeScript</label><label for="__tabbed_6_7">C</label><label for="__tabbed_6_8">C#</label><label for="__tabbed_6_9">Swift</label><label for="__tabbed_6_10">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-50-1" name="__codelineno-50-1" href="#__codelineno-50-1"></a><span class="cm">/* 线性阶 */</span>
<a id="__codelineno-50-2" name="__codelineno-50-2" href="#__codelineno-50-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linear</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-50-3" name="__codelineno-50-3" href="#__codelineno-50-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-50-4" name="__codelineno-50-4" href="#__codelineno-50-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span>
<a id="__codelineno-50-5" name="__codelineno-50-5" href="#__codelineno-50-5"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-50-6" name="__codelineno-50-6" href="#__codelineno-50-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-50-7" name="__codelineno-50-7" href="#__codelineno-50-7"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-51-1" name="__codelineno-51-1" href="#__codelineno-51-1"></a><span class="cm">/* 线性阶 */</span>
<a id="__codelineno-51-2" name="__codelineno-51-2" href="#__codelineno-51-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linear</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-51-3" name="__codelineno-51-3" href="#__codelineno-51-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-51-4" name="__codelineno-51-4" href="#__codelineno-51-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span>
<a id="__codelineno-51-5" name="__codelineno-51-5" href="#__codelineno-51-5"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-51-6" name="__codelineno-51-6" href="#__codelineno-51-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-51-7" name="__codelineno-51-7" href="#__codelineno-51-7"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-52-1" name="__codelineno-52-1" href="#__codelineno-52-1"></a><span class="k">def</span> <span class="nf">linear</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-52-2" name="__codelineno-52-2" href="#__codelineno-52-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;线性阶&quot;&quot;&quot;</span>
<a id="__codelineno-52-3" name="__codelineno-52-3" href="#__codelineno-52-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
<a id="__codelineno-52-4" name="__codelineno-52-4" href="#__codelineno-52-4"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-52-5" name="__codelineno-52-5" href="#__codelineno-52-5"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-52-6" name="__codelineno-52-6" href="#__codelineno-52-6"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-53-1" name="__codelineno-53-1" href="#__codelineno-53-1"></a><span class="cm">/* 线性阶 */</span>
<a id="__codelineno-53-2" name="__codelineno-53-2" href="#__codelineno-53-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">linear</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-53-3" name="__codelineno-53-3" href="#__codelineno-53-3"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span>
<a id="__codelineno-53-4" name="__codelineno-53-4" href="#__codelineno-53-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-53-5" name="__codelineno-53-5" href="#__codelineno-53-5"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span>
<a id="__codelineno-53-6" name="__codelineno-53-6" href="#__codelineno-53-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-53-7" name="__codelineno-53-7" href="#__codelineno-53-7"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
<a id="__codelineno-53-8" name="__codelineno-53-8" href="#__codelineno-53-8"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-54-1" name="__codelineno-54-1" href="#__codelineno-54-1"></a><span class="cm">/* 线性阶 */</span>
<a id="__codelineno-54-2" name="__codelineno-54-2" href="#__codelineno-54-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">linear</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-54-3" name="__codelineno-54-3" href="#__codelineno-54-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-54-4" name="__codelineno-54-4" href="#__codelineno-54-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-54-5" name="__codelineno-54-5" href="#__codelineno-54-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-54-6" name="__codelineno-54-6" href="#__codelineno-54-6"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-55-1" name="__codelineno-55-1" href="#__codelineno-55-1"></a><span class="cm">/* 线性阶 */</span>
<a id="__codelineno-55-2" name="__codelineno-55-2" href="#__codelineno-55-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">linear</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-55-3" name="__codelineno-55-3" href="#__codelineno-55-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-55-4" name="__codelineno-55-4" href="#__codelineno-55-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-55-5" name="__codelineno-55-5" href="#__codelineno-55-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-55-6" name="__codelineno-55-6" href="#__codelineno-55-6"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-56-1" name="__codelineno-56-1" href="#__codelineno-56-1"></a><span class="cm">/* 线性阶 */</span>
<a id="__codelineno-56-2" name="__codelineno-56-2" href="#__codelineno-56-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linear</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-56-3" name="__codelineno-56-3" href="#__codelineno-56-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-56-4" name="__codelineno-56-4" href="#__codelineno-56-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-56-5" name="__codelineno-56-5" href="#__codelineno-56-5"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-56-6" name="__codelineno-56-6" href="#__codelineno-56-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-56-7" name="__codelineno-56-7" href="#__codelineno-56-7"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-56-8" name="__codelineno-56-8" href="#__codelineno-56-8"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-57-1" name="__codelineno-57-1" href="#__codelineno-57-1"></a><span class="cm">/* 线性阶 */</span>
<a id="__codelineno-57-2" name="__codelineno-57-2" href="#__codelineno-57-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linear</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-57-3" name="__codelineno-57-3" href="#__codelineno-57-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-57-4" name="__codelineno-57-4" href="#__codelineno-57-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span>
<a id="__codelineno-57-5" name="__codelineno-57-5" href="#__codelineno-57-5"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-57-6" name="__codelineno-57-6" href="#__codelineno-57-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-57-7" name="__codelineno-57-7" href="#__codelineno-57-7"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-58-1" name="__codelineno-58-1" href="#__codelineno-58-1"></a><span class="cm">/* 线性阶 */</span>
<a id="__codelineno-58-2" name="__codelineno-58-2" href="#__codelineno-58-2"></a><span class="kd">func</span> <span class="nf">linear</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-58-3" name="__codelineno-58-3" href="#__codelineno-58-3"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span>
<a id="__codelineno-58-4" name="__codelineno-58-4" href="#__codelineno-58-4"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">n</span> <span class="p">{</span>
<a id="__codelineno-58-5" name="__codelineno-58-5" href="#__codelineno-58-5"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-58-6" name="__codelineno-58-6" href="#__codelineno-58-6"></a> <span class="p">}</span>
<a id="__codelineno-58-7" name="__codelineno-58-7" href="#__codelineno-58-7"></a> <span class="k">return</span> <span class="bp">count</span>
<a id="__codelineno-58-8" name="__codelineno-58-8" href="#__codelineno-58-8"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-59-1" name="__codelineno-59-1" href="#__codelineno-59-1"></a><span class="c1">// 线性阶</span>
<a id="__codelineno-59-2" name="__codelineno-59-2" href="#__codelineno-59-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">linear</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-59-3" name="__codelineno-59-3" href="#__codelineno-59-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-59-4" name="__codelineno-59-4" href="#__codelineno-59-4"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">i</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-59-5" name="__codelineno-59-5" href="#__codelineno-59-5"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-59-6" name="__codelineno-59-6" href="#__codelineno-59-6"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-59-7" name="__codelineno-59-7" href="#__codelineno-59-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-59-8" name="__codelineno-59-8" href="#__codelineno-59-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-59-9" name="__codelineno-59-9" href="#__codelineno-59-9"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p>遍历数组和遍历链表等操作的时间复杂度均为 <span class="arithmatex">\(O(n)\)</span> ,其中 <span class="arithmatex">\(n\)</span> 为数组或链表的长度。</p>
<div class="admonition question">
<p class="admonition-title">如何确定输入数据大小 <span class="arithmatex">\(n\)</span> </p>
<p><strong>数据大小 <span class="arithmatex">\(n\)</span> 需根据输入数据的类型来具体确定</strong>。例如,在上述示例中,我们直接将 <span class="arithmatex">\(n\)</span> 视为输入数据大小;在下面遍历数组的示例中,数据大小 <span class="arithmatex">\(n\)</span> 为数组的长度。</p>
</div>
<div class="tabbed-set tabbed-alternate" data-tabs="7:10"><input checked="checked" id="__tabbed_7_1" name="__tabbed_7" type="radio" /><input id="__tabbed_7_2" name="__tabbed_7" type="radio" /><input id="__tabbed_7_3" name="__tabbed_7" type="radio" /><input id="__tabbed_7_4" name="__tabbed_7" type="radio" /><input id="__tabbed_7_5" name="__tabbed_7" type="radio" /><input id="__tabbed_7_6" name="__tabbed_7" type="radio" /><input id="__tabbed_7_7" name="__tabbed_7" type="radio" /><input id="__tabbed_7_8" name="__tabbed_7" type="radio" /><input id="__tabbed_7_9" name="__tabbed_7" type="radio" /><input id="__tabbed_7_10" name="__tabbed_7" type="radio" /><div class="tabbed-labels"><label for="__tabbed_7_1">Java</label><label for="__tabbed_7_2">C++</label><label for="__tabbed_7_3">Python</label><label for="__tabbed_7_4">Go</label><label for="__tabbed_7_5">JavaScript</label><label for="__tabbed_7_6">TypeScript</label><label for="__tabbed_7_7">C</label><label for="__tabbed_7_8">C#</label><label for="__tabbed_7_9">Swift</label><label for="__tabbed_7_10">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-60-1" name="__codelineno-60-1" href="#__codelineno-60-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
<a id="__codelineno-60-2" name="__codelineno-60-2" href="#__codelineno-60-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">arrayTraversal</span><span class="p">(</span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-60-3" name="__codelineno-60-3" href="#__codelineno-60-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-60-4" name="__codelineno-60-4" href="#__codelineno-60-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
<a id="__codelineno-60-5" name="__codelineno-60-5" href="#__codelineno-60-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="w"> </span><span class="p">:</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-60-6" name="__codelineno-60-6" href="#__codelineno-60-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-60-7" name="__codelineno-60-7" href="#__codelineno-60-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-60-8" name="__codelineno-60-8" href="#__codelineno-60-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-60-9" name="__codelineno-60-9" href="#__codelineno-60-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-61-1" name="__codelineno-61-1" href="#__codelineno-61-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
<a id="__codelineno-61-2" name="__codelineno-61-2" href="#__codelineno-61-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">arrayTraversal</span><span class="p">(</span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-61-3" name="__codelineno-61-3" href="#__codelineno-61-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-61-4" name="__codelineno-61-4" href="#__codelineno-61-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
<a id="__codelineno-61-5" name="__codelineno-61-5" href="#__codelineno-61-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-61-6" name="__codelineno-61-6" href="#__codelineno-61-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-61-7" name="__codelineno-61-7" href="#__codelineno-61-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-61-8" name="__codelineno-61-8" href="#__codelineno-61-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-61-9" name="__codelineno-61-9" href="#__codelineno-61-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-62-1" name="__codelineno-62-1" href="#__codelineno-62-1"></a><span class="k">def</span> <span class="nf">array_traversal</span><span class="p">(</span><span class="n">nums</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-62-2" name="__codelineno-62-2" href="#__codelineno-62-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;线性阶(遍历数组)&quot;&quot;&quot;</span>
<a id="__codelineno-62-3" name="__codelineno-62-3" href="#__codelineno-62-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
<a id="__codelineno-62-4" name="__codelineno-62-4" href="#__codelineno-62-4"></a> <span class="c1"># 循环次数与数组长度成正比</span>
<a id="__codelineno-62-5" name="__codelineno-62-5" href="#__codelineno-62-5"></a> <span class="k">for</span> <span class="n">num</span> <span class="ow">in</span> <span class="n">nums</span><span class="p">:</span>
<a id="__codelineno-62-6" name="__codelineno-62-6" href="#__codelineno-62-6"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-62-7" name="__codelineno-62-7" href="#__codelineno-62-7"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-63-1" name="__codelineno-63-1" href="#__codelineno-63-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
<a id="__codelineno-63-2" name="__codelineno-63-2" href="#__codelineno-63-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">arrayTraversal</span><span class="p">(</span><span class="nx">nums</span><span class="w"> </span><span class="p">[]</span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-63-3" name="__codelineno-63-3" href="#__codelineno-63-3"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span>
<a id="__codelineno-63-4" name="__codelineno-63-4" href="#__codelineno-63-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
<a id="__codelineno-63-5" name="__codelineno-63-5" href="#__codelineno-63-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="k">range</span><span class="w"> </span><span class="nx">nums</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-63-6" name="__codelineno-63-6" href="#__codelineno-63-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span>
<a id="__codelineno-63-7" name="__codelineno-63-7" href="#__codelineno-63-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-63-8" name="__codelineno-63-8" href="#__codelineno-63-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
<a id="__codelineno-63-9" name="__codelineno-63-9" href="#__codelineno-63-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-64-1" name="__codelineno-64-1" href="#__codelineno-64-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
<a id="__codelineno-64-2" name="__codelineno-64-2" href="#__codelineno-64-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">arrayTraversal</span><span class="p">(</span><span class="nx">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-64-3" name="__codelineno-64-3" href="#__codelineno-64-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-64-4" name="__codelineno-64-4" href="#__codelineno-64-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
<a id="__codelineno-64-5" name="__codelineno-64-5" href="#__codelineno-64-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">nums</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-64-6" name="__codelineno-64-6" href="#__codelineno-64-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-64-7" name="__codelineno-64-7" href="#__codelineno-64-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-64-8" name="__codelineno-64-8" href="#__codelineno-64-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-64-9" name="__codelineno-64-9" href="#__codelineno-64-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-65-1" name="__codelineno-65-1" href="#__codelineno-65-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
<a id="__codelineno-65-2" name="__codelineno-65-2" href="#__codelineno-65-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">arrayTraversal</span><span class="p">(</span><span class="nx">nums</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">[])</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-65-3" name="__codelineno-65-3" href="#__codelineno-65-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-65-4" name="__codelineno-65-4" href="#__codelineno-65-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
<a id="__codelineno-65-5" name="__codelineno-65-5" href="#__codelineno-65-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">nums</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-65-6" name="__codelineno-65-6" href="#__codelineno-65-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-65-7" name="__codelineno-65-7" href="#__codelineno-65-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-65-8" name="__codelineno-65-8" href="#__codelineno-65-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-65-9" name="__codelineno-65-9" href="#__codelineno-65-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-66-1" name="__codelineno-66-1" href="#__codelineno-66-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
<a id="__codelineno-66-2" name="__codelineno-66-2" href="#__codelineno-66-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">arrayTraversal</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="n">nums</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-66-3" name="__codelineno-66-3" href="#__codelineno-66-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-66-4" name="__codelineno-66-4" href="#__codelineno-66-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
<a id="__codelineno-66-5" name="__codelineno-66-5" href="#__codelineno-66-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-66-6" name="__codelineno-66-6" href="#__codelineno-66-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-66-7" name="__codelineno-66-7" href="#__codelineno-66-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-66-8" name="__codelineno-66-8" href="#__codelineno-66-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-66-9" name="__codelineno-66-9" href="#__codelineno-66-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-67-1" name="__codelineno-67-1" href="#__codelineno-67-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
<a id="__codelineno-67-2" name="__codelineno-67-2" href="#__codelineno-67-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">arrayTraversal</span><span class="p">(</span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-67-3" name="__codelineno-67-3" href="#__codelineno-67-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-67-4" name="__codelineno-67-4" href="#__codelineno-67-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
<a id="__codelineno-67-5" name="__codelineno-67-5" href="#__codelineno-67-5"></a><span class="w"> </span><span class="k">foreach</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-67-6" name="__codelineno-67-6" href="#__codelineno-67-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-67-7" name="__codelineno-67-7" href="#__codelineno-67-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-67-8" name="__codelineno-67-8" href="#__codelineno-67-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-67-9" name="__codelineno-67-9" href="#__codelineno-67-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-68-1" name="__codelineno-68-1" href="#__codelineno-68-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
<a id="__codelineno-68-2" name="__codelineno-68-2" href="#__codelineno-68-2"></a><span class="kd">func</span> <span class="nf">arrayTraversal</span><span class="p">(</span><span class="n">nums</span><span class="p">:</span> <span class="p">[</span><span class="nb">Int</span><span class="p">])</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-68-3" name="__codelineno-68-3" href="#__codelineno-68-3"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span>
<a id="__codelineno-68-4" name="__codelineno-68-4" href="#__codelineno-68-4"></a> <span class="c1">// 循环次数与数组长度成正比</span>
<a id="__codelineno-68-5" name="__codelineno-68-5" href="#__codelineno-68-5"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="n">nums</span> <span class="p">{</span>
<a id="__codelineno-68-6" name="__codelineno-68-6" href="#__codelineno-68-6"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-68-7" name="__codelineno-68-7" href="#__codelineno-68-7"></a> <span class="p">}</span>
<a id="__codelineno-68-8" name="__codelineno-68-8" href="#__codelineno-68-8"></a> <span class="k">return</span> <span class="bp">count</span>
<a id="__codelineno-68-9" name="__codelineno-68-9" href="#__codelineno-68-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-69-1" name="__codelineno-69-1" href="#__codelineno-69-1"></a><span class="c1">// 线性阶(遍历数组)</span>
<a id="__codelineno-69-2" name="__codelineno-69-2" href="#__codelineno-69-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">arrayTraversal</span><span class="p">(</span><span class="n">nums</span><span class="o">:</span><span class="w"> </span><span class="p">[]</span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-69-3" name="__codelineno-69-3" href="#__codelineno-69-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-69-4" name="__codelineno-69-4" href="#__codelineno-69-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
<a id="__codelineno-69-5" name="__codelineno-69-5" href="#__codelineno-69-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="o">|</span><span class="n">_</span><span class="o">|</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-69-6" name="__codelineno-69-6" href="#__codelineno-69-6"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-69-7" name="__codelineno-69-7" href="#__codelineno-69-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-69-8" name="__codelineno-69-8" href="#__codelineno-69-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-69-9" name="__codelineno-69-9" href="#__codelineno-69-9"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<h3 id="on2">平方阶 <span class="arithmatex">\(O(n^2)\)</span><a class="headerlink" href="#on2" title="Permanent link">&para;</a></h3>
<p>平方阶的操作数量相对于输入数据大小以平方级别增长。平方阶通常出现在嵌套循环中,外层循环和内层循环都为 <span class="arithmatex">\(O(n)\)</span> ,因此总体为 <span class="arithmatex">\(O(n^2)\)</span></p>
<div class="tabbed-set tabbed-alternate" data-tabs="8:10"><input checked="checked" id="__tabbed_8_1" name="__tabbed_8" type="radio" /><input id="__tabbed_8_2" name="__tabbed_8" type="radio" /><input id="__tabbed_8_3" name="__tabbed_8" type="radio" /><input id="__tabbed_8_4" name="__tabbed_8" type="radio" /><input id="__tabbed_8_5" name="__tabbed_8" type="radio" /><input id="__tabbed_8_6" name="__tabbed_8" type="radio" /><input id="__tabbed_8_7" name="__tabbed_8" type="radio" /><input id="__tabbed_8_8" name="__tabbed_8" type="radio" /><input id="__tabbed_8_9" name="__tabbed_8" type="radio" /><input id="__tabbed_8_10" name="__tabbed_8" type="radio" /><div class="tabbed-labels"><label for="__tabbed_8_1">Java</label><label for="__tabbed_8_2">C++</label><label for="__tabbed_8_3">Python</label><label for="__tabbed_8_4">Go</label><label for="__tabbed_8_5">JavaScript</label><label for="__tabbed_8_6">TypeScript</label><label for="__tabbed_8_7">C</label><label for="__tabbed_8_8">C#</label><label for="__tabbed_8_9">Swift</label><label for="__tabbed_8_10">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-70-1" name="__codelineno-70-1" href="#__codelineno-70-1"></a><span class="cm">/* 平方阶 */</span>
<a id="__codelineno-70-2" name="__codelineno-70-2" href="#__codelineno-70-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">quadratic</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-70-3" name="__codelineno-70-3" href="#__codelineno-70-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-70-4" name="__codelineno-70-4" href="#__codelineno-70-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
<a id="__codelineno-70-5" name="__codelineno-70-5" href="#__codelineno-70-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-70-6" name="__codelineno-70-6" href="#__codelineno-70-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-70-7" name="__codelineno-70-7" href="#__codelineno-70-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-70-8" name="__codelineno-70-8" href="#__codelineno-70-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-70-9" name="__codelineno-70-9" href="#__codelineno-70-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-70-10" name="__codelineno-70-10" href="#__codelineno-70-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-70-11" name="__codelineno-70-11" href="#__codelineno-70-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-71-1" name="__codelineno-71-1" href="#__codelineno-71-1"></a><span class="cm">/* 平方阶 */</span>
<a id="__codelineno-71-2" name="__codelineno-71-2" href="#__codelineno-71-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">quadratic</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-71-3" name="__codelineno-71-3" href="#__codelineno-71-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-71-4" name="__codelineno-71-4" href="#__codelineno-71-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
<a id="__codelineno-71-5" name="__codelineno-71-5" href="#__codelineno-71-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-71-6" name="__codelineno-71-6" href="#__codelineno-71-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-71-7" name="__codelineno-71-7" href="#__codelineno-71-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-71-8" name="__codelineno-71-8" href="#__codelineno-71-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-71-9" name="__codelineno-71-9" href="#__codelineno-71-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-71-10" name="__codelineno-71-10" href="#__codelineno-71-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-71-11" name="__codelineno-71-11" href="#__codelineno-71-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-72-1" name="__codelineno-72-1" href="#__codelineno-72-1"></a><span class="k">def</span> <span class="nf">quadratic</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-72-2" name="__codelineno-72-2" href="#__codelineno-72-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;平方阶&quot;&quot;&quot;</span>
<a id="__codelineno-72-3" name="__codelineno-72-3" href="#__codelineno-72-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
<a id="__codelineno-72-4" name="__codelineno-72-4" href="#__codelineno-72-4"></a> <span class="c1"># 循环次数与数组长度成平方关系</span>
<a id="__codelineno-72-5" name="__codelineno-72-5" href="#__codelineno-72-5"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-72-6" name="__codelineno-72-6" href="#__codelineno-72-6"></a> <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-72-7" name="__codelineno-72-7" href="#__codelineno-72-7"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-72-8" name="__codelineno-72-8" href="#__codelineno-72-8"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-73-1" name="__codelineno-73-1" href="#__codelineno-73-1"></a><span class="cm">/* 平方阶 */</span>
<a id="__codelineno-73-2" name="__codelineno-73-2" href="#__codelineno-73-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">quadratic</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-73-3" name="__codelineno-73-3" href="#__codelineno-73-3"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span>
<a id="__codelineno-73-4" name="__codelineno-73-4" href="#__codelineno-73-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
<a id="__codelineno-73-5" name="__codelineno-73-5" href="#__codelineno-73-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-73-6" name="__codelineno-73-6" href="#__codelineno-73-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-73-7" name="__codelineno-73-7" href="#__codelineno-73-7"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span>
<a id="__codelineno-73-8" name="__codelineno-73-8" href="#__codelineno-73-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-73-9" name="__codelineno-73-9" href="#__codelineno-73-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-73-10" name="__codelineno-73-10" href="#__codelineno-73-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
<a id="__codelineno-73-11" name="__codelineno-73-11" href="#__codelineno-73-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-74-1" name="__codelineno-74-1" href="#__codelineno-74-1"></a><span class="cm">/* 平方阶 */</span>
<a id="__codelineno-74-2" name="__codelineno-74-2" href="#__codelineno-74-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">quadratic</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-74-3" name="__codelineno-74-3" href="#__codelineno-74-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-74-4" name="__codelineno-74-4" href="#__codelineno-74-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
<a id="__codelineno-74-5" name="__codelineno-74-5" href="#__codelineno-74-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-74-6" name="__codelineno-74-6" href="#__codelineno-74-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-74-7" name="__codelineno-74-7" href="#__codelineno-74-7"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-74-8" name="__codelineno-74-8" href="#__codelineno-74-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-74-9" name="__codelineno-74-9" href="#__codelineno-74-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-74-10" name="__codelineno-74-10" href="#__codelineno-74-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-74-11" name="__codelineno-74-11" href="#__codelineno-74-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-75-1" name="__codelineno-75-1" href="#__codelineno-75-1"></a><span class="cm">/* 平方阶 */</span>
<a id="__codelineno-75-2" name="__codelineno-75-2" href="#__codelineno-75-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">quadratic</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-75-3" name="__codelineno-75-3" href="#__codelineno-75-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-75-4" name="__codelineno-75-4" href="#__codelineno-75-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
<a id="__codelineno-75-5" name="__codelineno-75-5" href="#__codelineno-75-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-75-6" name="__codelineno-75-6" href="#__codelineno-75-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-75-7" name="__codelineno-75-7" href="#__codelineno-75-7"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-75-8" name="__codelineno-75-8" href="#__codelineno-75-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-75-9" name="__codelineno-75-9" href="#__codelineno-75-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-75-10" name="__codelineno-75-10" href="#__codelineno-75-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-75-11" name="__codelineno-75-11" href="#__codelineno-75-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-76-1" name="__codelineno-76-1" href="#__codelineno-76-1"></a><span class="cm">/* 平方阶 */</span>
<a id="__codelineno-76-2" name="__codelineno-76-2" href="#__codelineno-76-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">quadratic</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-76-3" name="__codelineno-76-3" href="#__codelineno-76-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-76-4" name="__codelineno-76-4" href="#__codelineno-76-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
<a id="__codelineno-76-5" name="__codelineno-76-5" href="#__codelineno-76-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-76-6" name="__codelineno-76-6" href="#__codelineno-76-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-76-7" name="__codelineno-76-7" href="#__codelineno-76-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-76-8" name="__codelineno-76-8" href="#__codelineno-76-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-76-9" name="__codelineno-76-9" href="#__codelineno-76-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-76-10" name="__codelineno-76-10" href="#__codelineno-76-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-76-11" name="__codelineno-76-11" href="#__codelineno-76-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-77-1" name="__codelineno-77-1" href="#__codelineno-77-1"></a><span class="cm">/* 平方阶 */</span>
<a id="__codelineno-77-2" name="__codelineno-77-2" href="#__codelineno-77-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">quadratic</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-77-3" name="__codelineno-77-3" href="#__codelineno-77-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-77-4" name="__codelineno-77-4" href="#__codelineno-77-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
<a id="__codelineno-77-5" name="__codelineno-77-5" href="#__codelineno-77-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-77-6" name="__codelineno-77-6" href="#__codelineno-77-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-77-7" name="__codelineno-77-7" href="#__codelineno-77-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-77-8" name="__codelineno-77-8" href="#__codelineno-77-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-77-9" name="__codelineno-77-9" href="#__codelineno-77-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-77-10" name="__codelineno-77-10" href="#__codelineno-77-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-77-11" name="__codelineno-77-11" href="#__codelineno-77-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-78-1" name="__codelineno-78-1" href="#__codelineno-78-1"></a><span class="cm">/* 平方阶 */</span>
<a id="__codelineno-78-2" name="__codelineno-78-2" href="#__codelineno-78-2"></a><span class="kd">func</span> <span class="nf">quadratic</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-78-3" name="__codelineno-78-3" href="#__codelineno-78-3"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span>
<a id="__codelineno-78-4" name="__codelineno-78-4" href="#__codelineno-78-4"></a> <span class="c1">// 循环次数与数组长度成平方关系</span>
<a id="__codelineno-78-5" name="__codelineno-78-5" href="#__codelineno-78-5"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">n</span> <span class="p">{</span>
<a id="__codelineno-78-6" name="__codelineno-78-6" href="#__codelineno-78-6"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">n</span> <span class="p">{</span>
<a id="__codelineno-78-7" name="__codelineno-78-7" href="#__codelineno-78-7"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-78-8" name="__codelineno-78-8" href="#__codelineno-78-8"></a> <span class="p">}</span>
<a id="__codelineno-78-9" name="__codelineno-78-9" href="#__codelineno-78-9"></a> <span class="p">}</span>
<a id="__codelineno-78-10" name="__codelineno-78-10" href="#__codelineno-78-10"></a> <span class="k">return</span> <span class="bp">count</span>
<a id="__codelineno-78-11" name="__codelineno-78-11" href="#__codelineno-78-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-79-1" name="__codelineno-79-1" href="#__codelineno-79-1"></a><span class="c1">// 平方阶</span>
<a id="__codelineno-79-2" name="__codelineno-79-2" href="#__codelineno-79-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">quadratic</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-79-3" name="__codelineno-79-3" href="#__codelineno-79-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-79-4" name="__codelineno-79-4" href="#__codelineno-79-4"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">i</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-79-5" name="__codelineno-79-5" href="#__codelineno-79-5"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
<a id="__codelineno-79-6" name="__codelineno-79-6" href="#__codelineno-79-6"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-79-7" name="__codelineno-79-7" href="#__codelineno-79-7"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">j</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-79-8" name="__codelineno-79-8" href="#__codelineno-79-8"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">j</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-79-9" name="__codelineno-79-9" href="#__codelineno-79-9"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-79-10" name="__codelineno-79-10" href="#__codelineno-79-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-79-11" name="__codelineno-79-11" href="#__codelineno-79-11"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-79-12" name="__codelineno-79-12" href="#__codelineno-79-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-79-13" name="__codelineno-79-13" href="#__codelineno-79-13"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p><img alt="常数阶、线性阶、平方阶的时间复杂度" src="../time_complexity.assets/time_complexity_constant_linear_quadratic.png" /></p>
<p align="center"> Fig. 常数阶、线性阶、平方阶的时间复杂度 </p>
<p>以「冒泡排序」为例,外层循环执行 <span class="arithmatex">\(n - 1\)</span> 次,内层循环执行 <span class="arithmatex">\(n-1, n-2, \cdots, 2, 1\)</span> 次,平均为 <span class="arithmatex">\(\frac{n}{2}\)</span> 次,因此时间复杂度为 <span class="arithmatex">\(O(n^2)\)</span></p>
<div class="arithmatex">\[
O((n - 1) \frac{n}{2}) = O(n^2)
\]</div>
<div class="tabbed-set tabbed-alternate" data-tabs="9:10"><input checked="checked" id="__tabbed_9_1" name="__tabbed_9" type="radio" /><input id="__tabbed_9_2" name="__tabbed_9" type="radio" /><input id="__tabbed_9_3" name="__tabbed_9" type="radio" /><input id="__tabbed_9_4" name="__tabbed_9" type="radio" /><input id="__tabbed_9_5" name="__tabbed_9" type="radio" /><input id="__tabbed_9_6" name="__tabbed_9" type="radio" /><input id="__tabbed_9_7" name="__tabbed_9" type="radio" /><input id="__tabbed_9_8" name="__tabbed_9" type="radio" /><input id="__tabbed_9_9" name="__tabbed_9" type="radio" /><input id="__tabbed_9_10" name="__tabbed_9" type="radio" /><div class="tabbed-labels"><label for="__tabbed_9_1">Java</label><label for="__tabbed_9_2">C++</label><label for="__tabbed_9_3">Python</label><label for="__tabbed_9_4">Go</label><label for="__tabbed_9_5">JavaScript</label><label for="__tabbed_9_6">TypeScript</label><label for="__tabbed_9_7">C</label><label for="__tabbed_9_8">C#</label><label for="__tabbed_9_9">Swift</label><label for="__tabbed_9_10">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-80-1" name="__codelineno-80-1" href="#__codelineno-80-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
<a id="__codelineno-80-2" name="__codelineno-80-2" href="#__codelineno-80-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">bubbleSort</span><span class="p">(</span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-80-3" name="__codelineno-80-3" href="#__codelineno-80-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span>
<a id="__codelineno-80-4" name="__codelineno-80-4" href="#__codelineno-80-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
<a id="__codelineno-80-5" name="__codelineno-80-5" href="#__codelineno-80-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="na">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-80-6" name="__codelineno-80-6" href="#__codelineno-80-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 </span>
<a id="__codelineno-80-7" name="__codelineno-80-7" href="#__codelineno-80-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">i</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-80-8" name="__codelineno-80-8" href="#__codelineno-80-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="o">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-80-9" name="__codelineno-80-9" href="#__codelineno-80-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-80-10" name="__codelineno-80-10" href="#__codelineno-80-10"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-80-11" name="__codelineno-80-11" href="#__codelineno-80-11"></a><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-80-12" name="__codelineno-80-12" href="#__codelineno-80-12"></a><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
<a id="__codelineno-80-13" name="__codelineno-80-13" href="#__codelineno-80-13"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
<a id="__codelineno-80-14" name="__codelineno-80-14" href="#__codelineno-80-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-80-15" name="__codelineno-80-15" href="#__codelineno-80-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-80-16" name="__codelineno-80-16" href="#__codelineno-80-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-80-17" name="__codelineno-80-17" href="#__codelineno-80-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-80-18" name="__codelineno-80-18" href="#__codelineno-80-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-81-1" name="__codelineno-81-1" href="#__codelineno-81-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
<a id="__codelineno-81-2" name="__codelineno-81-2" href="#__codelineno-81-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">bubbleSort</span><span class="p">(</span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-81-3" name="__codelineno-81-3" href="#__codelineno-81-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span>
<a id="__codelineno-81-4" name="__codelineno-81-4" href="#__codelineno-81-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
<a id="__codelineno-81-5" name="__codelineno-81-5" href="#__codelineno-81-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">size</span><span class="p">()</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-81-6" name="__codelineno-81-6" href="#__codelineno-81-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 </span>
<a id="__codelineno-81-7" name="__codelineno-81-7" href="#__codelineno-81-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">i</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-81-8" name="__codelineno-81-8" href="#__codelineno-81-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-81-9" name="__codelineno-81-9" href="#__codelineno-81-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-81-10" name="__codelineno-81-10" href="#__codelineno-81-10"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-81-11" name="__codelineno-81-11" href="#__codelineno-81-11"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
<a id="__codelineno-81-12" name="__codelineno-81-12" href="#__codelineno-81-12"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
<a id="__codelineno-81-13" name="__codelineno-81-13" href="#__codelineno-81-13"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
<a id="__codelineno-81-14" name="__codelineno-81-14" href="#__codelineno-81-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-81-15" name="__codelineno-81-15" href="#__codelineno-81-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-81-16" name="__codelineno-81-16" href="#__codelineno-81-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-81-17" name="__codelineno-81-17" href="#__codelineno-81-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-81-18" name="__codelineno-81-18" href="#__codelineno-81-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-82-1" name="__codelineno-82-1" href="#__codelineno-82-1"></a><span class="k">def</span> <span class="nf">bubble_sort</span><span class="p">(</span><span class="n">nums</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-82-2" name="__codelineno-82-2" href="#__codelineno-82-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;平方阶(冒泡排序)&quot;&quot;&quot;</span>
<a id="__codelineno-82-3" name="__codelineno-82-3" href="#__codelineno-82-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span> <span class="c1"># 计数器</span>
<a id="__codelineno-82-4" name="__codelineno-82-4" href="#__codelineno-82-4"></a> <span class="c1"># 外循环:未排序区间为 [0, i]</span>
<a id="__codelineno-82-5" name="__codelineno-82-5" href="#__codelineno-82-5"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">nums</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">):</span>
<a id="__codelineno-82-6" name="__codelineno-82-6" href="#__codelineno-82-6"></a> <span class="c1"># 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 </span>
<a id="__codelineno-82-7" name="__codelineno-82-7" href="#__codelineno-82-7"></a> <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">i</span><span class="p">):</span>
<a id="__codelineno-82-8" name="__codelineno-82-8" href="#__codelineno-82-8"></a> <span class="k">if</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span> <span class="o">&gt;</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]:</span>
<a id="__codelineno-82-9" name="__codelineno-82-9" href="#__codelineno-82-9"></a> <span class="c1"># 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-82-10" name="__codelineno-82-10" href="#__codelineno-82-10"></a> <span class="n">tmp</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span>
<a id="__codelineno-82-11" name="__codelineno-82-11" href="#__codelineno-82-11"></a> <span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span>
<a id="__codelineno-82-12" name="__codelineno-82-12" href="#__codelineno-82-12"></a> <span class="n">nums</span><span class="p">[</span><span class="n">j</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">tmp</span>
<a id="__codelineno-82-13" name="__codelineno-82-13" href="#__codelineno-82-13"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">3</span> <span class="c1"># 元素交换包含 3 个单元操作</span>
<a id="__codelineno-82-14" name="__codelineno-82-14" href="#__codelineno-82-14"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-83-1" name="__codelineno-83-1" href="#__codelineno-83-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
<a id="__codelineno-83-2" name="__codelineno-83-2" href="#__codelineno-83-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">bubbleSort</span><span class="p">(</span><span class="nx">nums</span><span class="w"> </span><span class="p">[]</span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-83-3" name="__codelineno-83-3" href="#__codelineno-83-3"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="c1">// 计数器</span>
<a id="__codelineno-83-4" name="__codelineno-83-4" href="#__codelineno-83-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
<a id="__codelineno-83-5" name="__codelineno-83-5" href="#__codelineno-83-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">len</span><span class="p">(</span><span class="nx">nums</span><span class="p">)</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&gt;</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">--</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-83-6" name="__codelineno-83-6" href="#__codelineno-83-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端</span>
<a id="__codelineno-83-7" name="__codelineno-83-7" href="#__codelineno-83-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-83-8" name="__codelineno-83-8" href="#__codelineno-83-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="p">&gt;</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-83-9" name="__codelineno-83-9" href="#__codelineno-83-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-83-10" name="__codelineno-83-10" href="#__codelineno-83-10"></a><span class="w"> </span><span class="nx">tmp</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span>
<a id="__codelineno-83-11" name="__codelineno-83-11" href="#__codelineno-83-11"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span>
<a id="__codelineno-83-12" name="__codelineno-83-12" href="#__codelineno-83-12"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">tmp</span>
<a id="__codelineno-83-13" name="__codelineno-83-13" href="#__codelineno-83-13"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">3</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
<a id="__codelineno-83-14" name="__codelineno-83-14" href="#__codelineno-83-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-83-15" name="__codelineno-83-15" href="#__codelineno-83-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-83-16" name="__codelineno-83-16" href="#__codelineno-83-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-83-17" name="__codelineno-83-17" href="#__codelineno-83-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
<a id="__codelineno-83-18" name="__codelineno-83-18" href="#__codelineno-83-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-84-1" name="__codelineno-84-1" href="#__codelineno-84-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
<a id="__codelineno-84-2" name="__codelineno-84-2" href="#__codelineno-84-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">bubbleSort</span><span class="p">(</span><span class="nx">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-84-3" name="__codelineno-84-3" href="#__codelineno-84-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span>
<a id="__codelineno-84-4" name="__codelineno-84-4" href="#__codelineno-84-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
<a id="__codelineno-84-5" name="__codelineno-84-5" href="#__codelineno-84-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">.</span><span class="nx">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-84-6" name="__codelineno-84-6" href="#__codelineno-84-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 </span>
<a id="__codelineno-84-7" name="__codelineno-84-7" href="#__codelineno-84-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-84-8" name="__codelineno-84-8" href="#__codelineno-84-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-84-9" name="__codelineno-84-9" href="#__codelineno-84-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-84-10" name="__codelineno-84-10" href="#__codelineno-84-10"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">];</span>
<a id="__codelineno-84-11" name="__codelineno-84-11" href="#__codelineno-84-11"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">];</span>
<a id="__codelineno-84-12" name="__codelineno-84-12" href="#__codelineno-84-12"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">tmp</span><span class="p">;</span>
<a id="__codelineno-84-13" name="__codelineno-84-13" href="#__codelineno-84-13"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
<a id="__codelineno-84-14" name="__codelineno-84-14" href="#__codelineno-84-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-84-15" name="__codelineno-84-15" href="#__codelineno-84-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-84-16" name="__codelineno-84-16" href="#__codelineno-84-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-84-17" name="__codelineno-84-17" href="#__codelineno-84-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-84-18" name="__codelineno-84-18" href="#__codelineno-84-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-85-1" name="__codelineno-85-1" href="#__codelineno-85-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
<a id="__codelineno-85-2" name="__codelineno-85-2" href="#__codelineno-85-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">bubbleSort</span><span class="p">(</span><span class="nx">nums</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">[])</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-85-3" name="__codelineno-85-3" href="#__codelineno-85-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span>
<a id="__codelineno-85-4" name="__codelineno-85-4" href="#__codelineno-85-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
<a id="__codelineno-85-5" name="__codelineno-85-5" href="#__codelineno-85-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">.</span><span class="nx">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-85-6" name="__codelineno-85-6" href="#__codelineno-85-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 </span>
<a id="__codelineno-85-7" name="__codelineno-85-7" href="#__codelineno-85-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-85-8" name="__codelineno-85-8" href="#__codelineno-85-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-85-9" name="__codelineno-85-9" href="#__codelineno-85-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-85-10" name="__codelineno-85-10" href="#__codelineno-85-10"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">];</span>
<a id="__codelineno-85-11" name="__codelineno-85-11" href="#__codelineno-85-11"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">];</span>
<a id="__codelineno-85-12" name="__codelineno-85-12" href="#__codelineno-85-12"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">tmp</span><span class="p">;</span>
<a id="__codelineno-85-13" name="__codelineno-85-13" href="#__codelineno-85-13"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
<a id="__codelineno-85-14" name="__codelineno-85-14" href="#__codelineno-85-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-85-15" name="__codelineno-85-15" href="#__codelineno-85-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-85-16" name="__codelineno-85-16" href="#__codelineno-85-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-85-17" name="__codelineno-85-17" href="#__codelineno-85-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-85-18" name="__codelineno-85-18" href="#__codelineno-85-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-86-1" name="__codelineno-86-1" href="#__codelineno-86-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
<a id="__codelineno-86-2" name="__codelineno-86-2" href="#__codelineno-86-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">bubbleSort</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="n">nums</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-86-3" name="__codelineno-86-3" href="#__codelineno-86-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span>
<a id="__codelineno-86-4" name="__codelineno-86-4" href="#__codelineno-86-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
<a id="__codelineno-86-5" name="__codelineno-86-5" href="#__codelineno-86-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-86-6" name="__codelineno-86-6" href="#__codelineno-86-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 </span>
<a id="__codelineno-86-7" name="__codelineno-86-7" href="#__codelineno-86-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">i</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-86-8" name="__codelineno-86-8" href="#__codelineno-86-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-86-9" name="__codelineno-86-9" href="#__codelineno-86-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-86-10" name="__codelineno-86-10" href="#__codelineno-86-10"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-86-11" name="__codelineno-86-11" href="#__codelineno-86-11"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
<a id="__codelineno-86-12" name="__codelineno-86-12" href="#__codelineno-86-12"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
<a id="__codelineno-86-13" name="__codelineno-86-13" href="#__codelineno-86-13"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
<a id="__codelineno-86-14" name="__codelineno-86-14" href="#__codelineno-86-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-86-15" name="__codelineno-86-15" href="#__codelineno-86-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-86-16" name="__codelineno-86-16" href="#__codelineno-86-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-86-17" name="__codelineno-86-17" href="#__codelineno-86-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-86-18" name="__codelineno-86-18" href="#__codelineno-86-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-87-1" name="__codelineno-87-1" href="#__codelineno-87-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
<a id="__codelineno-87-2" name="__codelineno-87-2" href="#__codelineno-87-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">bubbleSort</span><span class="p">(</span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-87-3" name="__codelineno-87-3" href="#__codelineno-87-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span>
<a id="__codelineno-87-4" name="__codelineno-87-4" href="#__codelineno-87-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
<a id="__codelineno-87-5" name="__codelineno-87-5" href="#__codelineno-87-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">Length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-87-6" name="__codelineno-87-6" href="#__codelineno-87-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 </span>
<a id="__codelineno-87-7" name="__codelineno-87-7" href="#__codelineno-87-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">i</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-87-8" name="__codelineno-87-8" href="#__codelineno-87-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-87-9" name="__codelineno-87-9" href="#__codelineno-87-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-87-10" name="__codelineno-87-10" href="#__codelineno-87-10"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-87-11" name="__codelineno-87-11" href="#__codelineno-87-11"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">];</span>
<a id="__codelineno-87-12" name="__codelineno-87-12" href="#__codelineno-87-12"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
<a id="__codelineno-87-13" name="__codelineno-87-13" href="#__codelineno-87-13"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="m">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
<a id="__codelineno-87-14" name="__codelineno-87-14" href="#__codelineno-87-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-87-15" name="__codelineno-87-15" href="#__codelineno-87-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-87-16" name="__codelineno-87-16" href="#__codelineno-87-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-87-17" name="__codelineno-87-17" href="#__codelineno-87-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-87-18" name="__codelineno-87-18" href="#__codelineno-87-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-88-1" name="__codelineno-88-1" href="#__codelineno-88-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
<a id="__codelineno-88-2" name="__codelineno-88-2" href="#__codelineno-88-2"></a><span class="kd">func</span> <span class="nf">bubbleSort</span><span class="p">(</span><span class="n">nums</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[</span><span class="nb">Int</span><span class="p">])</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-88-3" name="__codelineno-88-3" href="#__codelineno-88-3"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span> <span class="c1">// 计数器</span>
<a id="__codelineno-88-4" name="__codelineno-88-4" href="#__codelineno-88-4"></a> <span class="c1">// 外循环:未排序区间为 [0, i]</span>
<a id="__codelineno-88-5" name="__codelineno-88-5" href="#__codelineno-88-5"></a> <span class="k">for</span> <span class="n">i</span> <span class="k">in</span> <span class="bp">stride</span><span class="p">(</span><span class="n">from</span><span class="p">:</span> <span class="n">nums</span><span class="p">.</span><span class="bp">count</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">to</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span> <span class="n">by</span><span class="p">:</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-88-6" name="__codelineno-88-6" href="#__codelineno-88-6"></a> <span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 </span>
<a id="__codelineno-88-7" name="__codelineno-88-7" href="#__codelineno-88-7"></a> <span class="k">for</span> <span class="n">j</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">i</span> <span class="p">{</span>
<a id="__codelineno-88-8" name="__codelineno-88-8" href="#__codelineno-88-8"></a> <span class="k">if</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span> <span class="o">&gt;</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span> <span class="p">{</span>
<a id="__codelineno-88-9" name="__codelineno-88-9" href="#__codelineno-88-9"></a> <span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-88-10" name="__codelineno-88-10" href="#__codelineno-88-10"></a> <span class="kd">let</span> <span class="nv">tmp</span> <span class="p">=</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span>
<a id="__codelineno-88-11" name="__codelineno-88-11" href="#__codelineno-88-11"></a> <span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span> <span class="p">=</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span>
<a id="__codelineno-88-12" name="__codelineno-88-12" href="#__codelineno-88-12"></a> <span class="n">nums</span><span class="p">[</span><span class="n">j</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span> <span class="p">=</span> <span class="n">tmp</span>
<a id="__codelineno-88-13" name="__codelineno-88-13" href="#__codelineno-88-13"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">3</span> <span class="c1">// 元素交换包含 3 个单元操作</span>
<a id="__codelineno-88-14" name="__codelineno-88-14" href="#__codelineno-88-14"></a> <span class="p">}</span>
<a id="__codelineno-88-15" name="__codelineno-88-15" href="#__codelineno-88-15"></a> <span class="p">}</span>
<a id="__codelineno-88-16" name="__codelineno-88-16" href="#__codelineno-88-16"></a> <span class="p">}</span>
<a id="__codelineno-88-17" name="__codelineno-88-17" href="#__codelineno-88-17"></a> <span class="k">return</span> <span class="bp">count</span>
<a id="__codelineno-88-18" name="__codelineno-88-18" href="#__codelineno-88-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-89-1" name="__codelineno-89-1" href="#__codelineno-89-1"></a><span class="c1">// 平方阶(冒泡排序)</span>
<a id="__codelineno-89-2" name="__codelineno-89-2" href="#__codelineno-89-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">bubbleSort</span><span class="p">(</span><span class="n">nums</span><span class="o">:</span><span class="w"> </span><span class="p">[]</span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-89-3" name="__codelineno-89-3" href="#__codelineno-89-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器 </span>
<a id="__codelineno-89-4" name="__codelineno-89-4" href="#__codelineno-89-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
<a id="__codelineno-89-5" name="__codelineno-89-5" href="#__codelineno-89-5"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">i</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">@intCast</span><span class="p">(</span><span class="kt">i32</span><span class="p">,</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">len</span><span class="w"> </span><span class="p">)</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-89-6" name="__codelineno-89-6" href="#__codelineno-89-6"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">-=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-89-7" name="__codelineno-89-7" href="#__codelineno-89-7"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">j</span><span class="o">:</span><span class="w"> </span><span class="kt">usize</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-89-8" name="__codelineno-89-8" href="#__codelineno-89-8"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 </span>
<a id="__codelineno-89-9" name="__codelineno-89-9" href="#__codelineno-89-9"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">i</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">j</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-89-10" name="__codelineno-89-10" href="#__codelineno-89-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-89-11" name="__codelineno-89-11" href="#__codelineno-89-11"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-89-12" name="__codelineno-89-12" href="#__codelineno-89-12"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-89-13" name="__codelineno-89-13" href="#__codelineno-89-13"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
<a id="__codelineno-89-14" name="__codelineno-89-14" href="#__codelineno-89-14"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
<a id="__codelineno-89-15" name="__codelineno-89-15" href="#__codelineno-89-15"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
<a id="__codelineno-89-16" name="__codelineno-89-16" href="#__codelineno-89-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-89-17" name="__codelineno-89-17" href="#__codelineno-89-17"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-89-18" name="__codelineno-89-18" href="#__codelineno-89-18"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-89-19" name="__codelineno-89-19" href="#__codelineno-89-19"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-89-20" name="__codelineno-89-20" href="#__codelineno-89-20"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<h3 id="o2n">指数阶 <span class="arithmatex">\(O(2^n)\)</span><a class="headerlink" href="#o2n" title="Permanent link">&para;</a></h3>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>生物学的“细胞分裂”是指数阶增长的典型例子:初始状态为 <span class="arithmatex">\(1\)</span> 个细胞,分裂一轮后变为 <span class="arithmatex">\(2\)</span> 个,分裂两轮后变为 <span class="arithmatex">\(4\)</span> 个,以此类推,分裂 <span class="arithmatex">\(n\)</span> 轮后有 <span class="arithmatex">\(2^n\)</span> 个细胞。</p>
</div>
<p>指数阶增长非常迅速,在实际应用中通常是不可接受的。若一个问题使用「暴力枚举」求解的时间复杂度为 <span class="arithmatex">\(O(2^n)\)</span> ,那么通常需要使用「动态规划」或「贪心算法」等方法来解决。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="10:10"><input checked="checked" id="__tabbed_10_1" name="__tabbed_10" type="radio" /><input id="__tabbed_10_2" name="__tabbed_10" type="radio" /><input id="__tabbed_10_3" name="__tabbed_10" type="radio" /><input id="__tabbed_10_4" name="__tabbed_10" type="radio" /><input id="__tabbed_10_5" name="__tabbed_10" type="radio" /><input id="__tabbed_10_6" name="__tabbed_10" type="radio" /><input id="__tabbed_10_7" name="__tabbed_10" type="radio" /><input id="__tabbed_10_8" name="__tabbed_10" type="radio" /><input id="__tabbed_10_9" name="__tabbed_10" type="radio" /><input id="__tabbed_10_10" name="__tabbed_10" type="radio" /><div class="tabbed-labels"><label for="__tabbed_10_1">Java</label><label for="__tabbed_10_2">C++</label><label for="__tabbed_10_3">Python</label><label for="__tabbed_10_4">Go</label><label for="__tabbed_10_5">JavaScript</label><label for="__tabbed_10_6">TypeScript</label><label for="__tabbed_10_7">C</label><label for="__tabbed_10_8">C#</label><label for="__tabbed_10_9">Swift</label><label for="__tabbed_10_10">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-90-1" name="__codelineno-90-1" href="#__codelineno-90-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
<a id="__codelineno-90-2" name="__codelineno-90-2" href="#__codelineno-90-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">exponential</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-90-3" name="__codelineno-90-3" href="#__codelineno-90-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-90-4" name="__codelineno-90-4" href="#__codelineno-90-4"></a><span class="w"> </span><span class="c1">// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-90-5" name="__codelineno-90-5" href="#__codelineno-90-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-90-6" name="__codelineno-90-6" href="#__codelineno-90-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">base</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-90-7" name="__codelineno-90-7" href="#__codelineno-90-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-90-8" name="__codelineno-90-8" href="#__codelineno-90-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-90-9" name="__codelineno-90-9" href="#__codelineno-90-9"></a><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<a id="__codelineno-90-10" name="__codelineno-90-10" href="#__codelineno-90-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-90-11" name="__codelineno-90-11" href="#__codelineno-90-11"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-90-12" name="__codelineno-90-12" href="#__codelineno-90-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-90-13" name="__codelineno-90-13" href="#__codelineno-90-13"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-91-1" name="__codelineno-91-1" href="#__codelineno-91-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
<a id="__codelineno-91-2" name="__codelineno-91-2" href="#__codelineno-91-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">exponential</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-91-3" name="__codelineno-91-3" href="#__codelineno-91-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-91-4" name="__codelineno-91-4" href="#__codelineno-91-4"></a><span class="w"> </span><span class="c1">// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-91-5" name="__codelineno-91-5" href="#__codelineno-91-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-91-6" name="__codelineno-91-6" href="#__codelineno-91-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">base</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-91-7" name="__codelineno-91-7" href="#__codelineno-91-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-91-8" name="__codelineno-91-8" href="#__codelineno-91-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-91-9" name="__codelineno-91-9" href="#__codelineno-91-9"></a><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<a id="__codelineno-91-10" name="__codelineno-91-10" href="#__codelineno-91-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-91-11" name="__codelineno-91-11" href="#__codelineno-91-11"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-91-12" name="__codelineno-91-12" href="#__codelineno-91-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-91-13" name="__codelineno-91-13" href="#__codelineno-91-13"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-92-1" name="__codelineno-92-1" href="#__codelineno-92-1"></a><span class="k">def</span> <span class="nf">exponential</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-92-2" name="__codelineno-92-2" href="#__codelineno-92-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;指数阶(循环实现)&quot;&quot;&quot;</span>
<a id="__codelineno-92-3" name="__codelineno-92-3" href="#__codelineno-92-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
<a id="__codelineno-92-4" name="__codelineno-92-4" href="#__codelineno-92-4"></a> <span class="n">base</span> <span class="o">=</span> <span class="mi">1</span>
<a id="__codelineno-92-5" name="__codelineno-92-5" href="#__codelineno-92-5"></a> <span class="c1"># cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-92-6" name="__codelineno-92-6" href="#__codelineno-92-6"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-92-7" name="__codelineno-92-7" href="#__codelineno-92-7"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">base</span><span class="p">):</span>
<a id="__codelineno-92-8" name="__codelineno-92-8" href="#__codelineno-92-8"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-92-9" name="__codelineno-92-9" href="#__codelineno-92-9"></a> <span class="n">base</span> <span class="o">*=</span> <span class="mi">2</span>
<a id="__codelineno-92-10" name="__codelineno-92-10" href="#__codelineno-92-10"></a> <span class="c1"># count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-92-11" name="__codelineno-92-11" href="#__codelineno-92-11"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-93-1" name="__codelineno-93-1" href="#__codelineno-93-1"></a><span class="cm">/* 指数阶(循环实现)*/</span>
<a id="__codelineno-93-2" name="__codelineno-93-2" href="#__codelineno-93-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">exponential</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-93-3" name="__codelineno-93-3" href="#__codelineno-93-3"></a><span class="w"> </span><span class="nx">count</span><span class="p">,</span><span class="w"> </span><span class="nx">base</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-93-4" name="__codelineno-93-4" href="#__codelineno-93-4"></a><span class="w"> </span><span class="c1">// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-93-5" name="__codelineno-93-5" href="#__codelineno-93-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-93-6" name="__codelineno-93-6" href="#__codelineno-93-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">base</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-93-7" name="__codelineno-93-7" href="#__codelineno-93-7"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span>
<a id="__codelineno-93-8" name="__codelineno-93-8" href="#__codelineno-93-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-93-9" name="__codelineno-93-9" href="#__codelineno-93-9"></a><span class="w"> </span><span class="nx">base</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mi">2</span>
<a id="__codelineno-93-10" name="__codelineno-93-10" href="#__codelineno-93-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-93-11" name="__codelineno-93-11" href="#__codelineno-93-11"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-93-12" name="__codelineno-93-12" href="#__codelineno-93-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
<a id="__codelineno-93-13" name="__codelineno-93-13" href="#__codelineno-93-13"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-94-1" name="__codelineno-94-1" href="#__codelineno-94-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
<a id="__codelineno-94-2" name="__codelineno-94-2" href="#__codelineno-94-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">exponential</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-94-3" name="__codelineno-94-3" href="#__codelineno-94-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">,</span>
<a id="__codelineno-94-4" name="__codelineno-94-4" href="#__codelineno-94-4"></a><span class="w"> </span><span class="nx">base</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-94-5" name="__codelineno-94-5" href="#__codelineno-94-5"></a><span class="w"> </span><span class="c1">// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-94-6" name="__codelineno-94-6" href="#__codelineno-94-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-94-7" name="__codelineno-94-7" href="#__codelineno-94-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">base</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-94-8" name="__codelineno-94-8" href="#__codelineno-94-8"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-94-9" name="__codelineno-94-9" href="#__codelineno-94-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-94-10" name="__codelineno-94-10" href="#__codelineno-94-10"></a><span class="w"> </span><span class="nx">base</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span>
<a id="__codelineno-94-11" name="__codelineno-94-11" href="#__codelineno-94-11"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-94-12" name="__codelineno-94-12" href="#__codelineno-94-12"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-94-13" name="__codelineno-94-13" href="#__codelineno-94-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-94-14" name="__codelineno-94-14" href="#__codelineno-94-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-95-1" name="__codelineno-95-1" href="#__codelineno-95-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
<a id="__codelineno-95-2" name="__codelineno-95-2" href="#__codelineno-95-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">exponential</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-95-3" name="__codelineno-95-3" href="#__codelineno-95-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">,</span>
<a id="__codelineno-95-4" name="__codelineno-95-4" href="#__codelineno-95-4"></a><span class="w"> </span><span class="nx">base</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-95-5" name="__codelineno-95-5" href="#__codelineno-95-5"></a><span class="w"> </span><span class="c1">// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-95-6" name="__codelineno-95-6" href="#__codelineno-95-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-95-7" name="__codelineno-95-7" href="#__codelineno-95-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">base</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-95-8" name="__codelineno-95-8" href="#__codelineno-95-8"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-95-9" name="__codelineno-95-9" href="#__codelineno-95-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-95-10" name="__codelineno-95-10" href="#__codelineno-95-10"></a><span class="w"> </span><span class="nx">base</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span>
<a id="__codelineno-95-11" name="__codelineno-95-11" href="#__codelineno-95-11"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-95-12" name="__codelineno-95-12" href="#__codelineno-95-12"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-95-13" name="__codelineno-95-13" href="#__codelineno-95-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-95-14" name="__codelineno-95-14" href="#__codelineno-95-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-96-1" name="__codelineno-96-1" href="#__codelineno-96-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
<a id="__codelineno-96-2" name="__codelineno-96-2" href="#__codelineno-96-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">exponential</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-96-3" name="__codelineno-96-3" href="#__codelineno-96-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-96-4" name="__codelineno-96-4" href="#__codelineno-96-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">bas</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-96-5" name="__codelineno-96-5" href="#__codelineno-96-5"></a><span class="w"> </span><span class="c1">// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-96-6" name="__codelineno-96-6" href="#__codelineno-96-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-96-7" name="__codelineno-96-7" href="#__codelineno-96-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">bas</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-96-8" name="__codelineno-96-8" href="#__codelineno-96-8"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-96-9" name="__codelineno-96-9" href="#__codelineno-96-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-96-10" name="__codelineno-96-10" href="#__codelineno-96-10"></a><span class="w"> </span><span class="n">bas</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<a id="__codelineno-96-11" name="__codelineno-96-11" href="#__codelineno-96-11"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-96-12" name="__codelineno-96-12" href="#__codelineno-96-12"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-96-13" name="__codelineno-96-13" href="#__codelineno-96-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-96-14" name="__codelineno-96-14" href="#__codelineno-96-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-97-1" name="__codelineno-97-1" href="#__codelineno-97-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
<a id="__codelineno-97-2" name="__codelineno-97-2" href="#__codelineno-97-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">exponential</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-97-3" name="__codelineno-97-3" href="#__codelineno-97-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">,</span><span class="w"> </span><span class="n">bas</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-97-4" name="__codelineno-97-4" href="#__codelineno-97-4"></a><span class="w"> </span><span class="c1">// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-97-5" name="__codelineno-97-5" href="#__codelineno-97-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-97-6" name="__codelineno-97-6" href="#__codelineno-97-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">bas</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-97-7" name="__codelineno-97-7" href="#__codelineno-97-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-97-8" name="__codelineno-97-8" href="#__codelineno-97-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-97-9" name="__codelineno-97-9" href="#__codelineno-97-9"></a><span class="w"> </span><span class="n">bas</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="m">2</span><span class="p">;</span>
<a id="__codelineno-97-10" name="__codelineno-97-10" href="#__codelineno-97-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-97-11" name="__codelineno-97-11" href="#__codelineno-97-11"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-97-12" name="__codelineno-97-12" href="#__codelineno-97-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-97-13" name="__codelineno-97-13" href="#__codelineno-97-13"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-98-1" name="__codelineno-98-1" href="#__codelineno-98-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
<a id="__codelineno-98-2" name="__codelineno-98-2" href="#__codelineno-98-2"></a><span class="kd">func</span> <span class="nf">exponential</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-98-3" name="__codelineno-98-3" href="#__codelineno-98-3"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span>
<a id="__codelineno-98-4" name="__codelineno-98-4" href="#__codelineno-98-4"></a> <span class="kd">var</span> <span class="nv">base</span> <span class="p">=</span> <span class="mi">1</span>
<a id="__codelineno-98-5" name="__codelineno-98-5" href="#__codelineno-98-5"></a> <span class="c1">// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-98-6" name="__codelineno-98-6" href="#__codelineno-98-6"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">n</span> <span class="p">{</span>
<a id="__codelineno-98-7" name="__codelineno-98-7" href="#__codelineno-98-7"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">base</span> <span class="p">{</span>
<a id="__codelineno-98-8" name="__codelineno-98-8" href="#__codelineno-98-8"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-98-9" name="__codelineno-98-9" href="#__codelineno-98-9"></a> <span class="p">}</span>
<a id="__codelineno-98-10" name="__codelineno-98-10" href="#__codelineno-98-10"></a> <span class="n">base</span> <span class="o">*=</span> <span class="mi">2</span>
<a id="__codelineno-98-11" name="__codelineno-98-11" href="#__codelineno-98-11"></a> <span class="p">}</span>
<a id="__codelineno-98-12" name="__codelineno-98-12" href="#__codelineno-98-12"></a> <span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-98-13" name="__codelineno-98-13" href="#__codelineno-98-13"></a> <span class="k">return</span> <span class="bp">count</span>
<a id="__codelineno-98-14" name="__codelineno-98-14" href="#__codelineno-98-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-99-1" name="__codelineno-99-1" href="#__codelineno-99-1"></a><span class="c1">// 指数阶(循环实现)</span>
<a id="__codelineno-99-2" name="__codelineno-99-2" href="#__codelineno-99-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">exponential</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-99-3" name="__codelineno-99-3" href="#__codelineno-99-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-99-4" name="__codelineno-99-4" href="#__codelineno-99-4"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">bas</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-99-5" name="__codelineno-99-5" href="#__codelineno-99-5"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">i</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-99-6" name="__codelineno-99-6" href="#__codelineno-99-6"></a><span class="w"> </span><span class="c1">// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-99-7" name="__codelineno-99-7" href="#__codelineno-99-7"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-99-8" name="__codelineno-99-8" href="#__codelineno-99-8"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">j</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-99-9" name="__codelineno-99-9" href="#__codelineno-99-9"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">bas</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">j</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-99-10" name="__codelineno-99-10" href="#__codelineno-99-10"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-99-11" name="__codelineno-99-11" href="#__codelineno-99-11"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-99-12" name="__codelineno-99-12" href="#__codelineno-99-12"></a><span class="w"> </span><span class="n">bas</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<a id="__codelineno-99-13" name="__codelineno-99-13" href="#__codelineno-99-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-99-14" name="__codelineno-99-14" href="#__codelineno-99-14"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-99-15" name="__codelineno-99-15" href="#__codelineno-99-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-99-16" name="__codelineno-99-16" href="#__codelineno-99-16"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p><img alt="指数阶的时间复杂度" src="../time_complexity.assets/time_complexity_exponential.png" /></p>
<p align="center"> Fig. 指数阶的时间复杂度 </p>
<p>在实际算法中,指数阶常出现于递归函数。例如以下代码,不断地一分为二,经过 <span class="arithmatex">\(n\)</span> 次分裂后停止。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="11:10"><input checked="checked" id="__tabbed_11_1" name="__tabbed_11" type="radio" /><input id="__tabbed_11_2" name="__tabbed_11" type="radio" /><input id="__tabbed_11_3" name="__tabbed_11" type="radio" /><input id="__tabbed_11_4" name="__tabbed_11" type="radio" /><input id="__tabbed_11_5" name="__tabbed_11" type="radio" /><input id="__tabbed_11_6" name="__tabbed_11" type="radio" /><input id="__tabbed_11_7" name="__tabbed_11" type="radio" /><input id="__tabbed_11_8" name="__tabbed_11" type="radio" /><input id="__tabbed_11_9" name="__tabbed_11" type="radio" /><input id="__tabbed_11_10" name="__tabbed_11" type="radio" /><div class="tabbed-labels"><label for="__tabbed_11_1">Java</label><label for="__tabbed_11_2">C++</label><label for="__tabbed_11_3">Python</label><label for="__tabbed_11_4">Go</label><label for="__tabbed_11_5">JavaScript</label><label for="__tabbed_11_6">TypeScript</label><label for="__tabbed_11_7">C</label><label for="__tabbed_11_8">C#</label><label for="__tabbed_11_9">Swift</label><label for="__tabbed_11_10">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-100-1" name="__codelineno-100-1" href="#__codelineno-100-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
<a id="__codelineno-100-2" name="__codelineno-100-2" href="#__codelineno-100-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">expRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-100-3" name="__codelineno-100-3" href="#__codelineno-100-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-100-4" name="__codelineno-100-4" href="#__codelineno-100-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-100-5" name="__codelineno-100-5" href="#__codelineno-100-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-100-6" name="__codelineno-100-6" href="#__codelineno-100-6"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-101-1" name="__codelineno-101-1" href="#__codelineno-101-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
<a id="__codelineno-101-2" name="__codelineno-101-2" href="#__codelineno-101-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">expRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-101-3" name="__codelineno-101-3" href="#__codelineno-101-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-101-4" name="__codelineno-101-4" href="#__codelineno-101-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-101-5" name="__codelineno-101-5" href="#__codelineno-101-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-101-6" name="__codelineno-101-6" href="#__codelineno-101-6"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-102-1" name="__codelineno-102-1" href="#__codelineno-102-1"></a><span class="k">def</span> <span class="nf">exp_recur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-102-2" name="__codelineno-102-2" href="#__codelineno-102-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;指数阶(递归实现)&quot;&quot;&quot;</span>
<a id="__codelineno-102-3" name="__codelineno-102-3" href="#__codelineno-102-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<a id="__codelineno-102-4" name="__codelineno-102-4" href="#__codelineno-102-4"></a> <span class="k">return</span> <span class="mi">1</span>
<a id="__codelineno-102-5" name="__codelineno-102-5" href="#__codelineno-102-5"></a> <span class="k">return</span> <span class="n">exp_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="n">exp_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-103-1" name="__codelineno-103-1" href="#__codelineno-103-1"></a><span class="cm">/* 指数阶(递归实现)*/</span>
<a id="__codelineno-103-2" name="__codelineno-103-2" href="#__codelineno-103-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-103-3" name="__codelineno-103-3" href="#__codelineno-103-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-103-4" name="__codelineno-103-4" href="#__codelineno-103-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-103-5" name="__codelineno-103-5" href="#__codelineno-103-5"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-103-6" name="__codelineno-103-6" href="#__codelineno-103-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-103-7" name="__codelineno-103-7" href="#__codelineno-103-7"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-104-1" name="__codelineno-104-1" href="#__codelineno-104-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
<a id="__codelineno-104-2" name="__codelineno-104-2" href="#__codelineno-104-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-104-3" name="__codelineno-104-3" href="#__codelineno-104-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-104-4" name="__codelineno-104-4" href="#__codelineno-104-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-104-5" name="__codelineno-104-5" href="#__codelineno-104-5"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-105-1" name="__codelineno-105-1" href="#__codelineno-105-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
<a id="__codelineno-105-2" name="__codelineno-105-2" href="#__codelineno-105-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-105-3" name="__codelineno-105-3" href="#__codelineno-105-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-105-4" name="__codelineno-105-4" href="#__codelineno-105-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-105-5" name="__codelineno-105-5" href="#__codelineno-105-5"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-106-1" name="__codelineno-106-1" href="#__codelineno-106-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
<a id="__codelineno-106-2" name="__codelineno-106-2" href="#__codelineno-106-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">expRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-106-3" name="__codelineno-106-3" href="#__codelineno-106-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-106-4" name="__codelineno-106-4" href="#__codelineno-106-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-106-5" name="__codelineno-106-5" href="#__codelineno-106-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-106-6" name="__codelineno-106-6" href="#__codelineno-106-6"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-107-1" name="__codelineno-107-1" href="#__codelineno-107-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
<a id="__codelineno-107-2" name="__codelineno-107-2" href="#__codelineno-107-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">expRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-107-3" name="__codelineno-107-3" href="#__codelineno-107-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-107-4" name="__codelineno-107-4" href="#__codelineno-107-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nf">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-107-5" name="__codelineno-107-5" href="#__codelineno-107-5"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-108-1" name="__codelineno-108-1" href="#__codelineno-108-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
<a id="__codelineno-108-2" name="__codelineno-108-2" href="#__codelineno-108-2"></a><span class="kd">func</span> <span class="nf">expRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-108-3" name="__codelineno-108-3" href="#__codelineno-108-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="p">==</span> <span class="mi">1</span> <span class="p">{</span>
<a id="__codelineno-108-4" name="__codelineno-108-4" href="#__codelineno-108-4"></a> <span class="k">return</span> <span class="mi">1</span>
<a id="__codelineno-108-5" name="__codelineno-108-5" href="#__codelineno-108-5"></a> <span class="p">}</span>
<a id="__codelineno-108-6" name="__codelineno-108-6" href="#__codelineno-108-6"></a> <span class="k">return</span> <span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span>
<a id="__codelineno-108-7" name="__codelineno-108-7" href="#__codelineno-108-7"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-109-1" name="__codelineno-109-1" href="#__codelineno-109-1"></a><span class="c1">// 指数阶(递归实现)</span>
<a id="__codelineno-109-2" name="__codelineno-109-2" href="#__codelineno-109-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-109-3" name="__codelineno-109-3" href="#__codelineno-109-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-109-4" name="__codelineno-109-4" href="#__codelineno-109-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-109-5" name="__codelineno-109-5" href="#__codelineno-109-5"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<h3 id="olog-n">对数阶 <span class="arithmatex">\(O(\log n)\)</span><a class="headerlink" href="#olog-n" title="Permanent link">&para;</a></h3>
<p>与指数阶相反,对数阶反映了“每轮缩减到一半的情况”。对数阶仅次于常数阶,时间增长缓慢,是理想的时间复杂度。</p>
<p>对数阶常出现于「二分查找」和「分治算法」中,体现了“一分为多”和“化繁为简”的算法思想。</p>
<p>设输入数据大小为 <span class="arithmatex">\(n\)</span> ,由于每轮缩减到一半,因此循环次数是 <span class="arithmatex">\(\log_2 n\)</span> ,即 <span class="arithmatex">\(2^n\)</span> 的反函数。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="12:10"><input checked="checked" id="__tabbed_12_1" name="__tabbed_12" type="radio" /><input id="__tabbed_12_2" name="__tabbed_12" type="radio" /><input id="__tabbed_12_3" name="__tabbed_12" type="radio" /><input id="__tabbed_12_4" name="__tabbed_12" type="radio" /><input id="__tabbed_12_5" name="__tabbed_12" type="radio" /><input id="__tabbed_12_6" name="__tabbed_12" type="radio" /><input id="__tabbed_12_7" name="__tabbed_12" type="radio" /><input id="__tabbed_12_8" name="__tabbed_12" type="radio" /><input id="__tabbed_12_9" name="__tabbed_12" type="radio" /><input id="__tabbed_12_10" name="__tabbed_12" type="radio" /><div class="tabbed-labels"><label for="__tabbed_12_1">Java</label><label for="__tabbed_12_2">C++</label><label for="__tabbed_12_3">Python</label><label for="__tabbed_12_4">Go</label><label for="__tabbed_12_5">JavaScript</label><label for="__tabbed_12_6">TypeScript</label><label for="__tabbed_12_7">C</label><label for="__tabbed_12_8">C#</label><label for="__tabbed_12_9">Swift</label><label for="__tabbed_12_10">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-110-1" name="__codelineno-110-1" href="#__codelineno-110-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
<a id="__codelineno-110-2" name="__codelineno-110-2" href="#__codelineno-110-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logarithmic</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-110-3" name="__codelineno-110-3" href="#__codelineno-110-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-110-4" name="__codelineno-110-4" href="#__codelineno-110-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-110-5" name="__codelineno-110-5" href="#__codelineno-110-5"></a><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<a id="__codelineno-110-6" name="__codelineno-110-6" href="#__codelineno-110-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-110-7" name="__codelineno-110-7" href="#__codelineno-110-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-110-8" name="__codelineno-110-8" href="#__codelineno-110-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-110-9" name="__codelineno-110-9" href="#__codelineno-110-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-111-1" name="__codelineno-111-1" href="#__codelineno-111-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
<a id="__codelineno-111-2" name="__codelineno-111-2" href="#__codelineno-111-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logarithmic</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-111-3" name="__codelineno-111-3" href="#__codelineno-111-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-111-4" name="__codelineno-111-4" href="#__codelineno-111-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-111-5" name="__codelineno-111-5" href="#__codelineno-111-5"></a><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<a id="__codelineno-111-6" name="__codelineno-111-6" href="#__codelineno-111-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-111-7" name="__codelineno-111-7" href="#__codelineno-111-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-111-8" name="__codelineno-111-8" href="#__codelineno-111-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-111-9" name="__codelineno-111-9" href="#__codelineno-111-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-112-1" name="__codelineno-112-1" href="#__codelineno-112-1"></a><span class="k">def</span> <span class="nf">logarithmic</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-112-2" name="__codelineno-112-2" href="#__codelineno-112-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;对数阶(循环实现)&quot;&quot;&quot;</span>
<a id="__codelineno-112-3" name="__codelineno-112-3" href="#__codelineno-112-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
<a id="__codelineno-112-4" name="__codelineno-112-4" href="#__codelineno-112-4"></a> <span class="k">while</span> <span class="n">n</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
<a id="__codelineno-112-5" name="__codelineno-112-5" href="#__codelineno-112-5"></a> <span class="n">n</span> <span class="o">=</span> <span class="n">n</span> <span class="o">/</span> <span class="mi">2</span>
<a id="__codelineno-112-6" name="__codelineno-112-6" href="#__codelineno-112-6"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-112-7" name="__codelineno-112-7" href="#__codelineno-112-7"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-113-1" name="__codelineno-113-1" href="#__codelineno-113-1"></a><span class="cm">/* 对数阶(循环实现)*/</span>
<a id="__codelineno-113-2" name="__codelineno-113-2" href="#__codelineno-113-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">logarithmic</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">float64</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-113-3" name="__codelineno-113-3" href="#__codelineno-113-3"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span>
<a id="__codelineno-113-4" name="__codelineno-113-4" href="#__codelineno-113-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="p">&gt;</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-113-5" name="__codelineno-113-5" href="#__codelineno-113-5"></a><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span>
<a id="__codelineno-113-6" name="__codelineno-113-6" href="#__codelineno-113-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span>
<a id="__codelineno-113-7" name="__codelineno-113-7" href="#__codelineno-113-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-113-8" name="__codelineno-113-8" href="#__codelineno-113-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
<a id="__codelineno-113-9" name="__codelineno-113-9" href="#__codelineno-113-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-114-1" name="__codelineno-114-1" href="#__codelineno-114-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
<a id="__codelineno-114-2" name="__codelineno-114-2" href="#__codelineno-114-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">logarithmic</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-114-3" name="__codelineno-114-3" href="#__codelineno-114-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-114-4" name="__codelineno-114-4" href="#__codelineno-114-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-114-5" name="__codelineno-114-5" href="#__codelineno-114-5"></a><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span>
<a id="__codelineno-114-6" name="__codelineno-114-6" href="#__codelineno-114-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-114-7" name="__codelineno-114-7" href="#__codelineno-114-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-114-8" name="__codelineno-114-8" href="#__codelineno-114-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-114-9" name="__codelineno-114-9" href="#__codelineno-114-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-115-1" name="__codelineno-115-1" href="#__codelineno-115-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
<a id="__codelineno-115-2" name="__codelineno-115-2" href="#__codelineno-115-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">logarithmic</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-115-3" name="__codelineno-115-3" href="#__codelineno-115-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-115-4" name="__codelineno-115-4" href="#__codelineno-115-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-115-5" name="__codelineno-115-5" href="#__codelineno-115-5"></a><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span>
<a id="__codelineno-115-6" name="__codelineno-115-6" href="#__codelineno-115-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-115-7" name="__codelineno-115-7" href="#__codelineno-115-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-115-8" name="__codelineno-115-8" href="#__codelineno-115-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-115-9" name="__codelineno-115-9" href="#__codelineno-115-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-116-1" name="__codelineno-116-1" href="#__codelineno-116-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
<a id="__codelineno-116-2" name="__codelineno-116-2" href="#__codelineno-116-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logarithmic</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-116-3" name="__codelineno-116-3" href="#__codelineno-116-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-116-4" name="__codelineno-116-4" href="#__codelineno-116-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-116-5" name="__codelineno-116-5" href="#__codelineno-116-5"></a><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<a id="__codelineno-116-6" name="__codelineno-116-6" href="#__codelineno-116-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-116-7" name="__codelineno-116-7" href="#__codelineno-116-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-116-8" name="__codelineno-116-8" href="#__codelineno-116-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-116-9" name="__codelineno-116-9" href="#__codelineno-116-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-117-1" name="__codelineno-117-1" href="#__codelineno-117-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
<a id="__codelineno-117-2" name="__codelineno-117-2" href="#__codelineno-117-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logarithmic</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-117-3" name="__codelineno-117-3" href="#__codelineno-117-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-117-4" name="__codelineno-117-4" href="#__codelineno-117-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-117-5" name="__codelineno-117-5" href="#__codelineno-117-5"></a><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="m">2</span><span class="p">;</span>
<a id="__codelineno-117-6" name="__codelineno-117-6" href="#__codelineno-117-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-117-7" name="__codelineno-117-7" href="#__codelineno-117-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-117-8" name="__codelineno-117-8" href="#__codelineno-117-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-117-9" name="__codelineno-117-9" href="#__codelineno-117-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-118-1" name="__codelineno-118-1" href="#__codelineno-118-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
<a id="__codelineno-118-2" name="__codelineno-118-2" href="#__codelineno-118-2"></a><span class="kd">func</span> <span class="nf">logarithmic</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Double</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-118-3" name="__codelineno-118-3" href="#__codelineno-118-3"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span>
<a id="__codelineno-118-4" name="__codelineno-118-4" href="#__codelineno-118-4"></a> <span class="kd">var</span> <span class="nv">n</span> <span class="p">=</span> <span class="n">n</span>
<a id="__codelineno-118-5" name="__codelineno-118-5" href="#__codelineno-118-5"></a> <span class="k">while</span> <span class="n">n</span> <span class="o">&gt;</span> <span class="mi">1</span> <span class="p">{</span>
<a id="__codelineno-118-6" name="__codelineno-118-6" href="#__codelineno-118-6"></a> <span class="n">n</span> <span class="p">=</span> <span class="n">n</span> <span class="o">/</span> <span class="mi">2</span>
<a id="__codelineno-118-7" name="__codelineno-118-7" href="#__codelineno-118-7"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-118-8" name="__codelineno-118-8" href="#__codelineno-118-8"></a> <span class="p">}</span>
<a id="__codelineno-118-9" name="__codelineno-118-9" href="#__codelineno-118-9"></a> <span class="k">return</span> <span class="bp">count</span>
<a id="__codelineno-118-10" name="__codelineno-118-10" href="#__codelineno-118-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-119-1" name="__codelineno-119-1" href="#__codelineno-119-1"></a><span class="c1">// 对数阶(循环实现)</span>
<a id="__codelineno-119-2" name="__codelineno-119-2" href="#__codelineno-119-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">logarithmic</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">f32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-119-3" name="__codelineno-119-3" href="#__codelineno-119-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-119-4" name="__codelineno-119-4" href="#__codelineno-119-4"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">n_var</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
<a id="__codelineno-119-5" name="__codelineno-119-5" href="#__codelineno-119-5"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">n_var</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-119-6" name="__codelineno-119-6" href="#__codelineno-119-6"></a><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-119-7" name="__codelineno-119-7" href="#__codelineno-119-7"></a><span class="w"> </span><span class="n">n_var</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n_var</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<a id="__codelineno-119-8" name="__codelineno-119-8" href="#__codelineno-119-8"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-119-9" name="__codelineno-119-9" href="#__codelineno-119-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-119-10" name="__codelineno-119-10" href="#__codelineno-119-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-119-11" name="__codelineno-119-11" href="#__codelineno-119-11"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p><img alt="对数阶的时间复杂度" src="../time_complexity.assets/time_complexity_logarithmic.png" /></p>
<p align="center"> Fig. 对数阶的时间复杂度 </p>
<p>与指数阶类似,对数阶也常出现于递归函数。以下代码形成了一个高度为 <span class="arithmatex">\(\log_2 n\)</span> 的递归树。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="13:10"><input checked="checked" id="__tabbed_13_1" name="__tabbed_13" type="radio" /><input id="__tabbed_13_2" name="__tabbed_13" type="radio" /><input id="__tabbed_13_3" name="__tabbed_13" type="radio" /><input id="__tabbed_13_4" name="__tabbed_13" type="radio" /><input id="__tabbed_13_5" name="__tabbed_13" type="radio" /><input id="__tabbed_13_6" name="__tabbed_13" type="radio" /><input id="__tabbed_13_7" name="__tabbed_13" type="radio" /><input id="__tabbed_13_8" name="__tabbed_13" type="radio" /><input id="__tabbed_13_9" name="__tabbed_13" type="radio" /><input id="__tabbed_13_10" name="__tabbed_13" type="radio" /><div class="tabbed-labels"><label for="__tabbed_13_1">Java</label><label for="__tabbed_13_2">C++</label><label for="__tabbed_13_3">Python</label><label for="__tabbed_13_4">Go</label><label for="__tabbed_13_5">JavaScript</label><label for="__tabbed_13_6">TypeScript</label><label for="__tabbed_13_7">C</label><label for="__tabbed_13_8">C#</label><label for="__tabbed_13_9">Swift</label><label for="__tabbed_13_10">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-120-1" name="__codelineno-120-1" href="#__codelineno-120-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
<a id="__codelineno-120-2" name="__codelineno-120-2" href="#__codelineno-120-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-120-3" name="__codelineno-120-3" href="#__codelineno-120-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-120-4" name="__codelineno-120-4" href="#__codelineno-120-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-120-5" name="__codelineno-120-5" href="#__codelineno-120-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">logRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-120-6" name="__codelineno-120-6" href="#__codelineno-120-6"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-121-1" name="__codelineno-121-1" href="#__codelineno-121-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
<a id="__codelineno-121-2" name="__codelineno-121-2" href="#__codelineno-121-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-121-3" name="__codelineno-121-3" href="#__codelineno-121-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-121-4" name="__codelineno-121-4" href="#__codelineno-121-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-121-5" name="__codelineno-121-5" href="#__codelineno-121-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">logRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-121-6" name="__codelineno-121-6" href="#__codelineno-121-6"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-122-1" name="__codelineno-122-1" href="#__codelineno-122-1"></a><span class="k">def</span> <span class="nf">log_recur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-122-2" name="__codelineno-122-2" href="#__codelineno-122-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;对数阶(递归实现)&quot;&quot;&quot;</span>
<a id="__codelineno-122-3" name="__codelineno-122-3" href="#__codelineno-122-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">&lt;=</span> <span class="mi">1</span><span class="p">:</span>
<a id="__codelineno-122-4" name="__codelineno-122-4" href="#__codelineno-122-4"></a> <span class="k">return</span> <span class="mi">0</span>
<a id="__codelineno-122-5" name="__codelineno-122-5" href="#__codelineno-122-5"></a> <span class="k">return</span> <span class="n">log_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-123-1" name="__codelineno-123-1" href="#__codelineno-123-1"></a><span class="cm">/* 对数阶(递归实现)*/</span>
<a id="__codelineno-123-2" name="__codelineno-123-2" href="#__codelineno-123-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">logRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">float64</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-123-3" name="__codelineno-123-3" href="#__codelineno-123-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-123-4" name="__codelineno-123-4" href="#__codelineno-123-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span>
<a id="__codelineno-123-5" name="__codelineno-123-5" href="#__codelineno-123-5"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-123-6" name="__codelineno-123-6" href="#__codelineno-123-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">logRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">/</span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-123-7" name="__codelineno-123-7" href="#__codelineno-123-7"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-124-1" name="__codelineno-124-1" href="#__codelineno-124-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
<a id="__codelineno-124-2" name="__codelineno-124-2" href="#__codelineno-124-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">logRecur</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-124-3" name="__codelineno-124-3" href="#__codelineno-124-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-124-4" name="__codelineno-124-4" href="#__codelineno-124-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">logRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-124-5" name="__codelineno-124-5" href="#__codelineno-124-5"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-125-1" name="__codelineno-125-1" href="#__codelineno-125-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
<a id="__codelineno-125-2" name="__codelineno-125-2" href="#__codelineno-125-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">logRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-125-3" name="__codelineno-125-3" href="#__codelineno-125-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-125-4" name="__codelineno-125-4" href="#__codelineno-125-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">logRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-125-5" name="__codelineno-125-5" href="#__codelineno-125-5"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-126-1" name="__codelineno-126-1" href="#__codelineno-126-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
<a id="__codelineno-126-2" name="__codelineno-126-2" href="#__codelineno-126-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-126-3" name="__codelineno-126-3" href="#__codelineno-126-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-126-4" name="__codelineno-126-4" href="#__codelineno-126-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-126-5" name="__codelineno-126-5" href="#__codelineno-126-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">logRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-126-6" name="__codelineno-126-6" href="#__codelineno-126-6"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-127-1" name="__codelineno-127-1" href="#__codelineno-127-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
<a id="__codelineno-127-2" name="__codelineno-127-2" href="#__codelineno-127-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-127-3" name="__codelineno-127-3" href="#__codelineno-127-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-127-4" name="__codelineno-127-4" href="#__codelineno-127-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nf">logRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="m">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-127-5" name="__codelineno-127-5" href="#__codelineno-127-5"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-128-1" name="__codelineno-128-1" href="#__codelineno-128-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
<a id="__codelineno-128-2" name="__codelineno-128-2" href="#__codelineno-128-2"></a><span class="kd">func</span> <span class="nf">logRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Double</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-128-3" name="__codelineno-128-3" href="#__codelineno-128-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">&lt;=</span> <span class="mi">1</span> <span class="p">{</span>
<a id="__codelineno-128-4" name="__codelineno-128-4" href="#__codelineno-128-4"></a> <span class="k">return</span> <span class="mi">0</span>
<a id="__codelineno-128-5" name="__codelineno-128-5" href="#__codelineno-128-5"></a> <span class="p">}</span>
<a id="__codelineno-128-6" name="__codelineno-128-6" href="#__codelineno-128-6"></a> <span class="k">return</span> <span class="n">logRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="n">n</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span>
<a id="__codelineno-128-7" name="__codelineno-128-7" href="#__codelineno-128-7"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-129-1" name="__codelineno-129-1" href="#__codelineno-129-1"></a><span class="c1">// 对数阶(递归实现)</span>
<a id="__codelineno-129-2" name="__codelineno-129-2" href="#__codelineno-129-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">logRecur</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">f32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-129-3" name="__codelineno-129-3" href="#__codelineno-129-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-129-4" name="__codelineno-129-4" href="#__codelineno-129-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">logRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-129-5" name="__codelineno-129-5" href="#__codelineno-129-5"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<h3 id="on-log-n">线性对数阶 <span class="arithmatex">\(O(n \log n)\)</span><a class="headerlink" href="#on-log-n" title="Permanent link">&para;</a></h3>
<p>线性对数阶常出现于嵌套循环中,两层循环的时间复杂度分别为 <span class="arithmatex">\(O(\log n)\)</span><span class="arithmatex">\(O(n)\)</span></p>
<p>主流排序算法的时间复杂度通常为 <span class="arithmatex">\(O(n \log n)\)</span> ,例如快速排序、归并排序、堆排序等。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="14:10"><input checked="checked" id="__tabbed_14_1" name="__tabbed_14" type="radio" /><input id="__tabbed_14_2" name="__tabbed_14" type="radio" /><input id="__tabbed_14_3" name="__tabbed_14" type="radio" /><input id="__tabbed_14_4" name="__tabbed_14" type="radio" /><input id="__tabbed_14_5" name="__tabbed_14" type="radio" /><input id="__tabbed_14_6" name="__tabbed_14" type="radio" /><input id="__tabbed_14_7" name="__tabbed_14" type="radio" /><input id="__tabbed_14_8" name="__tabbed_14" type="radio" /><input id="__tabbed_14_9" name="__tabbed_14" type="radio" /><input id="__tabbed_14_10" name="__tabbed_14" type="radio" /><div class="tabbed-labels"><label for="__tabbed_14_1">Java</label><label for="__tabbed_14_2">C++</label><label for="__tabbed_14_3">Python</label><label for="__tabbed_14_4">Go</label><label for="__tabbed_14_5">JavaScript</label><label for="__tabbed_14_6">TypeScript</label><label for="__tabbed_14_7">C</label><label for="__tabbed_14_8">C#</label><label for="__tabbed_14_9">Swift</label><label for="__tabbed_14_10">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-130-1" name="__codelineno-130-1" href="#__codelineno-130-1"></a><span class="cm">/* 线性对数阶 */</span>
<a id="__codelineno-130-2" name="__codelineno-130-2" href="#__codelineno-130-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linearLogRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-130-3" name="__codelineno-130-3" href="#__codelineno-130-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-130-4" name="__codelineno-130-4" href="#__codelineno-130-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-130-5" name="__codelineno-130-5" href="#__codelineno-130-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span>
<a id="__codelineno-130-6" name="__codelineno-130-6" href="#__codelineno-130-6"></a><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">);</span>
<a id="__codelineno-130-7" name="__codelineno-130-7" href="#__codelineno-130-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-130-8" name="__codelineno-130-8" href="#__codelineno-130-8"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-130-9" name="__codelineno-130-9" href="#__codelineno-130-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-130-10" name="__codelineno-130-10" href="#__codelineno-130-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-130-11" name="__codelineno-130-11" href="#__codelineno-130-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-131-1" name="__codelineno-131-1" href="#__codelineno-131-1"></a><span class="cm">/* 线性对数阶 */</span>
<a id="__codelineno-131-2" name="__codelineno-131-2" href="#__codelineno-131-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linearLogRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-131-3" name="__codelineno-131-3" href="#__codelineno-131-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-131-4" name="__codelineno-131-4" href="#__codelineno-131-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-131-5" name="__codelineno-131-5" href="#__codelineno-131-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">);</span>
<a id="__codelineno-131-6" name="__codelineno-131-6" href="#__codelineno-131-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-131-7" name="__codelineno-131-7" href="#__codelineno-131-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-131-8" name="__codelineno-131-8" href="#__codelineno-131-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-131-9" name="__codelineno-131-9" href="#__codelineno-131-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-131-10" name="__codelineno-131-10" href="#__codelineno-131-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-132-1" name="__codelineno-132-1" href="#__codelineno-132-1"></a><span class="k">def</span> <span class="nf">linear_log_recur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-132-2" name="__codelineno-132-2" href="#__codelineno-132-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;线性对数阶&quot;&quot;&quot;</span>
<a id="__codelineno-132-3" name="__codelineno-132-3" href="#__codelineno-132-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">&lt;=</span> <span class="mi">1</span><span class="p">:</span>
<a id="__codelineno-132-4" name="__codelineno-132-4" href="#__codelineno-132-4"></a> <span class="k">return</span> <span class="mi">1</span>
<a id="__codelineno-132-5" name="__codelineno-132-5" href="#__codelineno-132-5"></a> <span class="n">count</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="n">linear_log_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">//</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">linear_log_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">//</span> <span class="mi">2</span><span class="p">)</span>
<a id="__codelineno-132-6" name="__codelineno-132-6" href="#__codelineno-132-6"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-132-7" name="__codelineno-132-7" href="#__codelineno-132-7"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-132-8" name="__codelineno-132-8" href="#__codelineno-132-8"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-133-1" name="__codelineno-133-1" href="#__codelineno-133-1"></a><span class="cm">/* 线性对数阶 */</span>
<a id="__codelineno-133-2" name="__codelineno-133-2" href="#__codelineno-133-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">float64</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-133-3" name="__codelineno-133-3" href="#__codelineno-133-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-133-4" name="__codelineno-133-4" href="#__codelineno-133-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-133-5" name="__codelineno-133-5" href="#__codelineno-133-5"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-133-6" name="__codelineno-133-6" href="#__codelineno-133-6"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">/</span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span>
<a id="__codelineno-133-7" name="__codelineno-133-7" href="#__codelineno-133-7"></a><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">/</span><span class="mi">2</span><span class="p">)</span>
<a id="__codelineno-133-8" name="__codelineno-133-8" href="#__codelineno-133-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mf">0.0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-133-9" name="__codelineno-133-9" href="#__codelineno-133-9"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span>
<a id="__codelineno-133-10" name="__codelineno-133-10" href="#__codelineno-133-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-133-11" name="__codelineno-133-11" href="#__codelineno-133-11"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
<a id="__codelineno-133-12" name="__codelineno-133-12" href="#__codelineno-133-12"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-134-1" name="__codelineno-134-1" href="#__codelineno-134-1"></a><span class="cm">/* 线性对数阶 */</span>
<a id="__codelineno-134-2" name="__codelineno-134-2" href="#__codelineno-134-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-134-3" name="__codelineno-134-3" href="#__codelineno-134-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-134-4" name="__codelineno-134-4" href="#__codelineno-134-4"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">);</span>
<a id="__codelineno-134-5" name="__codelineno-134-5" href="#__codelineno-134-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-134-6" name="__codelineno-134-6" href="#__codelineno-134-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-134-7" name="__codelineno-134-7" href="#__codelineno-134-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-134-8" name="__codelineno-134-8" href="#__codelineno-134-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-134-9" name="__codelineno-134-9" href="#__codelineno-134-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-135-1" name="__codelineno-135-1" href="#__codelineno-135-1"></a><span class="cm">/* 线性对数阶 */</span>
<a id="__codelineno-135-2" name="__codelineno-135-2" href="#__codelineno-135-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-135-3" name="__codelineno-135-3" href="#__codelineno-135-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-135-4" name="__codelineno-135-4" href="#__codelineno-135-4"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">);</span>
<a id="__codelineno-135-5" name="__codelineno-135-5" href="#__codelineno-135-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-135-6" name="__codelineno-135-6" href="#__codelineno-135-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-135-7" name="__codelineno-135-7" href="#__codelineno-135-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-135-8" name="__codelineno-135-8" href="#__codelineno-135-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-135-9" name="__codelineno-135-9" href="#__codelineno-135-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-136-1" name="__codelineno-136-1" href="#__codelineno-136-1"></a><span class="cm">/* 线性对数阶 */</span>
<a id="__codelineno-136-2" name="__codelineno-136-2" href="#__codelineno-136-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linearLogRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-136-3" name="__codelineno-136-3" href="#__codelineno-136-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-136-4" name="__codelineno-136-4" href="#__codelineno-136-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-136-5" name="__codelineno-136-5" href="#__codelineno-136-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">);</span>
<a id="__codelineno-136-6" name="__codelineno-136-6" href="#__codelineno-136-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-136-7" name="__codelineno-136-7" href="#__codelineno-136-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-136-8" name="__codelineno-136-8" href="#__codelineno-136-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-136-9" name="__codelineno-136-9" href="#__codelineno-136-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-136-10" name="__codelineno-136-10" href="#__codelineno-136-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-137-1" name="__codelineno-137-1" href="#__codelineno-137-1"></a><span class="cm">/* 线性对数阶 */</span>
<a id="__codelineno-137-2" name="__codelineno-137-2" href="#__codelineno-137-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linearLogRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-137-3" name="__codelineno-137-3" href="#__codelineno-137-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-137-4" name="__codelineno-137-4" href="#__codelineno-137-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="m">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span>
<a id="__codelineno-137-5" name="__codelineno-137-5" href="#__codelineno-137-5"></a><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="m">2</span><span class="p">);</span>
<a id="__codelineno-137-6" name="__codelineno-137-6" href="#__codelineno-137-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-137-7" name="__codelineno-137-7" href="#__codelineno-137-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-137-8" name="__codelineno-137-8" href="#__codelineno-137-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-137-9" name="__codelineno-137-9" href="#__codelineno-137-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-137-10" name="__codelineno-137-10" href="#__codelineno-137-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-138-1" name="__codelineno-138-1" href="#__codelineno-138-1"></a><span class="cm">/* 线性对数阶 */</span>
<a id="__codelineno-138-2" name="__codelineno-138-2" href="#__codelineno-138-2"></a><span class="kd">func</span> <span class="nf">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Double</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-138-3" name="__codelineno-138-3" href="#__codelineno-138-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">&lt;=</span> <span class="mi">1</span> <span class="p">{</span>
<a id="__codelineno-138-4" name="__codelineno-138-4" href="#__codelineno-138-4"></a> <span class="k">return</span> <span class="mi">1</span>
<a id="__codelineno-138-5" name="__codelineno-138-5" href="#__codelineno-138-5"></a> <span class="p">}</span>
<a id="__codelineno-138-6" name="__codelineno-138-6" href="#__codelineno-138-6"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="n">n</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="n">n</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span>
<a id="__codelineno-138-7" name="__codelineno-138-7" href="#__codelineno-138-7"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="bp">stride</span><span class="p">(</span><span class="n">from</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span> <span class="n">to</span><span class="p">:</span> <span class="n">n</span><span class="p">,</span> <span class="n">by</span><span class="p">:</span> <span class="mi">1</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-138-8" name="__codelineno-138-8" href="#__codelineno-138-8"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-138-9" name="__codelineno-138-9" href="#__codelineno-138-9"></a> <span class="p">}</span>
<a id="__codelineno-138-10" name="__codelineno-138-10" href="#__codelineno-138-10"></a> <span class="k">return</span> <span class="bp">count</span>
<a id="__codelineno-138-11" name="__codelineno-138-11" href="#__codelineno-138-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-139-1" name="__codelineno-139-1" href="#__codelineno-139-1"></a><span class="c1">// 线性对数阶</span>
<a id="__codelineno-139-2" name="__codelineno-139-2" href="#__codelineno-139-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">f32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-139-3" name="__codelineno-139-3" href="#__codelineno-139-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-139-4" name="__codelineno-139-4" href="#__codelineno-139-4"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span>
<a id="__codelineno-139-5" name="__codelineno-139-5" href="#__codelineno-139-5"></a><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">);</span>
<a id="__codelineno-139-6" name="__codelineno-139-6" href="#__codelineno-139-6"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">i</span><span class="o">:</span><span class="w"> </span><span class="kt">f32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-139-7" name="__codelineno-139-7" href="#__codelineno-139-7"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-139-8" name="__codelineno-139-8" href="#__codelineno-139-8"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-139-9" name="__codelineno-139-9" href="#__codelineno-139-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-139-10" name="__codelineno-139-10" href="#__codelineno-139-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-139-11" name="__codelineno-139-11" href="#__codelineno-139-11"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p><img alt="线性对数阶的时间复杂度" src="../time_complexity.assets/time_complexity_logarithmic_linear.png" /></p>
<p align="center"> Fig. 线性对数阶的时间复杂度 </p>
<h3 id="on_1">阶乘阶 <span class="arithmatex">\(O(n!)\)</span><a class="headerlink" href="#on_1" title="Permanent link">&para;</a></h3>
<p>阶乘阶对应数学上的「全排列」问题。给定 <span class="arithmatex">\(n\)</span> 个互不重复的元素,求其所有可能的排列方案,方案数量为:</p>
<div class="arithmatex">\[
n! = n \times (n - 1) \times (n - 2) \times \cdots \times 2 \times 1
\]</div>
<p>阶乘通常使用递归实现。例如以下代码,第一层分裂出 <span class="arithmatex">\(n\)</span> 个,第二层分裂出 <span class="arithmatex">\(n - 1\)</span> 个,以此类推,直至第 <span class="arithmatex">\(n\)</span> 层时终止分裂。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="15:10"><input checked="checked" id="__tabbed_15_1" name="__tabbed_15" type="radio" /><input id="__tabbed_15_2" name="__tabbed_15" type="radio" /><input id="__tabbed_15_3" name="__tabbed_15" type="radio" /><input id="__tabbed_15_4" name="__tabbed_15" type="radio" /><input id="__tabbed_15_5" name="__tabbed_15" type="radio" /><input id="__tabbed_15_6" name="__tabbed_15" type="radio" /><input id="__tabbed_15_7" name="__tabbed_15" type="radio" /><input id="__tabbed_15_8" name="__tabbed_15" type="radio" /><input id="__tabbed_15_9" name="__tabbed_15" type="radio" /><input id="__tabbed_15_10" name="__tabbed_15" type="radio" /><div class="tabbed-labels"><label for="__tabbed_15_1">Java</label><label for="__tabbed_15_2">C++</label><label for="__tabbed_15_3">Python</label><label for="__tabbed_15_4">Go</label><label for="__tabbed_15_5">JavaScript</label><label for="__tabbed_15_6">TypeScript</label><label for="__tabbed_15_7">C</label><label for="__tabbed_15_8">C#</label><label for="__tabbed_15_9">Swift</label><label for="__tabbed_15_10">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-140-1" name="__codelineno-140-1" href="#__codelineno-140-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
<a id="__codelineno-140-2" name="__codelineno-140-2" href="#__codelineno-140-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">factorialRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-140-3" name="__codelineno-140-3" href="#__codelineno-140-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-140-4" name="__codelineno-140-4" href="#__codelineno-140-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-140-5" name="__codelineno-140-5" href="#__codelineno-140-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-140-6" name="__codelineno-140-6" href="#__codelineno-140-6"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
<a id="__codelineno-140-7" name="__codelineno-140-7" href="#__codelineno-140-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-140-8" name="__codelineno-140-8" href="#__codelineno-140-8"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="n">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
<a id="__codelineno-140-9" name="__codelineno-140-9" href="#__codelineno-140-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-140-10" name="__codelineno-140-10" href="#__codelineno-140-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-140-11" name="__codelineno-140-11" href="#__codelineno-140-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-141-1" name="__codelineno-141-1" href="#__codelineno-141-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
<a id="__codelineno-141-2" name="__codelineno-141-2" href="#__codelineno-141-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">factorialRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-141-3" name="__codelineno-141-3" href="#__codelineno-141-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-141-4" name="__codelineno-141-4" href="#__codelineno-141-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-141-5" name="__codelineno-141-5" href="#__codelineno-141-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-141-6" name="__codelineno-141-6" href="#__codelineno-141-6"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
<a id="__codelineno-141-7" name="__codelineno-141-7" href="#__codelineno-141-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-141-8" name="__codelineno-141-8" href="#__codelineno-141-8"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="n">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
<a id="__codelineno-141-9" name="__codelineno-141-9" href="#__codelineno-141-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-141-10" name="__codelineno-141-10" href="#__codelineno-141-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-141-11" name="__codelineno-141-11" href="#__codelineno-141-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-142-1" name="__codelineno-142-1" href="#__codelineno-142-1"></a><span class="k">def</span> <span class="nf">factorial_recur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-142-2" name="__codelineno-142-2" href="#__codelineno-142-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;阶乘阶(递归实现)&quot;&quot;&quot;</span>
<a id="__codelineno-142-3" name="__codelineno-142-3" href="#__codelineno-142-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<a id="__codelineno-142-4" name="__codelineno-142-4" href="#__codelineno-142-4"></a> <span class="k">return</span> <span class="mi">1</span>
<a id="__codelineno-142-5" name="__codelineno-142-5" href="#__codelineno-142-5"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
<a id="__codelineno-142-6" name="__codelineno-142-6" href="#__codelineno-142-6"></a> <span class="c1"># 从 1 个分裂出 n 个</span>
<a id="__codelineno-142-7" name="__codelineno-142-7" href="#__codelineno-142-7"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-142-8" name="__codelineno-142-8" href="#__codelineno-142-8"></a> <span class="n">count</span> <span class="o">+=</span> <span class="n">factorial_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-142-9" name="__codelineno-142-9" href="#__codelineno-142-9"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-143-1" name="__codelineno-143-1" href="#__codelineno-143-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
<a id="__codelineno-143-2" name="__codelineno-143-2" href="#__codelineno-143-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">factorialRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-143-3" name="__codelineno-143-3" href="#__codelineno-143-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-143-4" name="__codelineno-143-4" href="#__codelineno-143-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-143-5" name="__codelineno-143-5" href="#__codelineno-143-5"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-143-6" name="__codelineno-143-6" href="#__codelineno-143-6"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span>
<a id="__codelineno-143-7" name="__codelineno-143-7" href="#__codelineno-143-7"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
<a id="__codelineno-143-8" name="__codelineno-143-8" href="#__codelineno-143-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-143-9" name="__codelineno-143-9" href="#__codelineno-143-9"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="nx">factorialRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-143-10" name="__codelineno-143-10" href="#__codelineno-143-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-143-11" name="__codelineno-143-11" href="#__codelineno-143-11"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
<a id="__codelineno-143-12" name="__codelineno-143-12" href="#__codelineno-143-12"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-144-1" name="__codelineno-144-1" href="#__codelineno-144-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
<a id="__codelineno-144-2" name="__codelineno-144-2" href="#__codelineno-144-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">factorialRecur</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-144-3" name="__codelineno-144-3" href="#__codelineno-144-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mf">0</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-144-4" name="__codelineno-144-4" href="#__codelineno-144-4"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-144-5" name="__codelineno-144-5" href="#__codelineno-144-5"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
<a id="__codelineno-144-6" name="__codelineno-144-6" href="#__codelineno-144-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-144-7" name="__codelineno-144-7" href="#__codelineno-144-7"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="nx">factorialRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">);</span>
<a id="__codelineno-144-8" name="__codelineno-144-8" href="#__codelineno-144-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-144-9" name="__codelineno-144-9" href="#__codelineno-144-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-144-10" name="__codelineno-144-10" href="#__codelineno-144-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-145-1" name="__codelineno-145-1" href="#__codelineno-145-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
<a id="__codelineno-145-2" name="__codelineno-145-2" href="#__codelineno-145-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">factorialRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-145-3" name="__codelineno-145-3" href="#__codelineno-145-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mf">0</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-145-4" name="__codelineno-145-4" href="#__codelineno-145-4"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-145-5" name="__codelineno-145-5" href="#__codelineno-145-5"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
<a id="__codelineno-145-6" name="__codelineno-145-6" href="#__codelineno-145-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-145-7" name="__codelineno-145-7" href="#__codelineno-145-7"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="nx">factorialRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">);</span>
<a id="__codelineno-145-8" name="__codelineno-145-8" href="#__codelineno-145-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-145-9" name="__codelineno-145-9" href="#__codelineno-145-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-145-10" name="__codelineno-145-10" href="#__codelineno-145-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-146-1" name="__codelineno-146-1" href="#__codelineno-146-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
<a id="__codelineno-146-2" name="__codelineno-146-2" href="#__codelineno-146-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">factorialRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-146-3" name="__codelineno-146-3" href="#__codelineno-146-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-146-4" name="__codelineno-146-4" href="#__codelineno-146-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-146-5" name="__codelineno-146-5" href="#__codelineno-146-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-146-6" name="__codelineno-146-6" href="#__codelineno-146-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-146-7" name="__codelineno-146-7" href="#__codelineno-146-7"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="n">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
<a id="__codelineno-146-8" name="__codelineno-146-8" href="#__codelineno-146-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-146-9" name="__codelineno-146-9" href="#__codelineno-146-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-146-10" name="__codelineno-146-10" href="#__codelineno-146-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-147-1" name="__codelineno-147-1" href="#__codelineno-147-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
<a id="__codelineno-147-2" name="__codelineno-147-2" href="#__codelineno-147-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">factorialRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-147-3" name="__codelineno-147-3" href="#__codelineno-147-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">0</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-147-4" name="__codelineno-147-4" href="#__codelineno-147-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-147-5" name="__codelineno-147-5" href="#__codelineno-147-5"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
<a id="__codelineno-147-6" name="__codelineno-147-6" href="#__codelineno-147-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-147-7" name="__codelineno-147-7" href="#__codelineno-147-7"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="n">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">);</span>
<a id="__codelineno-147-8" name="__codelineno-147-8" href="#__codelineno-147-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-147-9" name="__codelineno-147-9" href="#__codelineno-147-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-147-10" name="__codelineno-147-10" href="#__codelineno-147-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-148-1" name="__codelineno-148-1" href="#__codelineno-148-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
<a id="__codelineno-148-2" name="__codelineno-148-2" href="#__codelineno-148-2"></a><span class="kd">func</span> <span class="nf">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-148-3" name="__codelineno-148-3" href="#__codelineno-148-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="p">==</span> <span class="mi">0</span> <span class="p">{</span>
<a id="__codelineno-148-4" name="__codelineno-148-4" href="#__codelineno-148-4"></a> <span class="k">return</span> <span class="mi">1</span>
<a id="__codelineno-148-5" name="__codelineno-148-5" href="#__codelineno-148-5"></a> <span class="p">}</span>
<a id="__codelineno-148-6" name="__codelineno-148-6" href="#__codelineno-148-6"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span>
<a id="__codelineno-148-7" name="__codelineno-148-7" href="#__codelineno-148-7"></a> <span class="c1">// 从 1 个分裂出 n 个</span>
<a id="__codelineno-148-8" name="__codelineno-148-8" href="#__codelineno-148-8"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">n</span> <span class="p">{</span>
<a id="__codelineno-148-9" name="__codelineno-148-9" href="#__codelineno-148-9"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="n">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-148-10" name="__codelineno-148-10" href="#__codelineno-148-10"></a> <span class="p">}</span>
<a id="__codelineno-148-11" name="__codelineno-148-11" href="#__codelineno-148-11"></a> <span class="k">return</span> <span class="bp">count</span>
<a id="__codelineno-148-12" name="__codelineno-148-12" href="#__codelineno-148-12"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-149-1" name="__codelineno-149-1" href="#__codelineno-149-1"></a><span class="c1">// 阶乘阶(递归实现)</span>
<a id="__codelineno-149-2" name="__codelineno-149-2" href="#__codelineno-149-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-149-3" name="__codelineno-149-3" href="#__codelineno-149-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-149-4" name="__codelineno-149-4" href="#__codelineno-149-4"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-149-5" name="__codelineno-149-5" href="#__codelineno-149-5"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">i</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-149-6" name="__codelineno-149-6" href="#__codelineno-149-6"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
<a id="__codelineno-149-7" name="__codelineno-149-7" href="#__codelineno-149-7"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-149-8" name="__codelineno-149-8" href="#__codelineno-149-8"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="n">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
<a id="__codelineno-149-9" name="__codelineno-149-9" href="#__codelineno-149-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-149-10" name="__codelineno-149-10" href="#__codelineno-149-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-149-11" name="__codelineno-149-11" href="#__codelineno-149-11"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p><img alt="阶乘阶的时间复杂度" src="../time_complexity.assets/time_complexity_factorial.png" /></p>
<p align="center"> Fig. 阶乘阶的时间复杂度 </p>
<h2 id="226">2.2.6. &nbsp; 最差、最佳、平均时间复杂度<a class="headerlink" href="#226" title="Permanent link">&para;</a></h2>
<p><strong>某些算法的时间复杂度不是固定的,而是与输入数据的分布有关</strong>。例如,假设输入一个长度为 <span class="arithmatex">\(n\)</span> 的数组 <code>nums</code> ,其中 <code>nums</code> 由从 <span class="arithmatex">\(1\)</span><span class="arithmatex">\(n\)</span> 的数字组成,但元素顺序是随机打乱的;算法的任务是返回元素 <span class="arithmatex">\(1\)</span> 的索引。我们可以得出以下结论:</p>
<ul>
<li><code>nums = [?, ?, ..., 1]</code> ,即当末尾元素是 <span class="arithmatex">\(1\)</span> 时,需要完整遍历数组,此时达到 <strong>最差时间复杂度 <span class="arithmatex">\(O(n)\)</span></strong></li>
<li><code>nums = [1, ?, ?, ...]</code> ,即当首个数字为 <span class="arithmatex">\(1\)</span> 时,无论数组多长都不需要继续遍历,此时达到 <strong>最佳时间复杂度 <span class="arithmatex">\(\Omega(1)\)</span></strong></li>
</ul>
<p>“函数渐近上界”使用大 <span class="arithmatex">\(O\)</span> 记号表示,代表「最差时间复杂度」。相应地,“函数渐近下界”用 <span class="arithmatex">\(\Omega\)</span> 记号来表示,代表「最佳时间复杂度」。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="16:10"><input checked="checked" id="__tabbed_16_1" name="__tabbed_16" type="radio" /><input id="__tabbed_16_2" name="__tabbed_16" type="radio" /><input id="__tabbed_16_3" name="__tabbed_16" type="radio" /><input id="__tabbed_16_4" name="__tabbed_16" type="radio" /><input id="__tabbed_16_5" name="__tabbed_16" type="radio" /><input id="__tabbed_16_6" name="__tabbed_16" type="radio" /><input id="__tabbed_16_7" name="__tabbed_16" type="radio" /><input id="__tabbed_16_8" name="__tabbed_16" type="radio" /><input id="__tabbed_16_9" name="__tabbed_16" type="radio" /><input id="__tabbed_16_10" name="__tabbed_16" type="radio" /><div class="tabbed-labels"><label for="__tabbed_16_1">Java</label><label for="__tabbed_16_2">C++</label><label for="__tabbed_16_3">Python</label><label for="__tabbed_16_4">Go</label><label for="__tabbed_16_5">JavaScript</label><label for="__tabbed_16_6">TypeScript</label><label for="__tabbed_16_7">C</label><label for="__tabbed_16_8">C#</label><label for="__tabbed_16_9">Swift</label><label for="__tabbed_16_10">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.java</span><pre><span></span><code><a id="__codelineno-150-1" name="__codelineno-150-1" href="#__codelineno-150-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
<a id="__codelineno-150-2" name="__codelineno-150-2" href="#__codelineno-150-2"></a><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="nf">randomNumbers</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-150-3" name="__codelineno-150-3" href="#__codelineno-150-3"></a><span class="w"> </span><span class="n">Integer</span><span class="o">[]</span><span class="w"> </span><span class="n">nums</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">Integer</span><span class="o">[</span><span class="n">n</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-150-4" name="__codelineno-150-4" href="#__codelineno-150-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
<a id="__codelineno-150-5" name="__codelineno-150-5" href="#__codelineno-150-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-150-6" name="__codelineno-150-6" href="#__codelineno-150-6"></a><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-150-7" name="__codelineno-150-7" href="#__codelineno-150-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-150-8" name="__codelineno-150-8" href="#__codelineno-150-8"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
<a id="__codelineno-150-9" name="__codelineno-150-9" href="#__codelineno-150-9"></a><span class="w"> </span><span class="n">Collections</span><span class="p">.</span><span class="na">shuffle</span><span class="p">(</span><span class="n">Arrays</span><span class="p">.</span><span class="na">asList</span><span class="p">(</span><span class="n">nums</span><span class="p">));</span>
<a id="__codelineno-150-10" name="__codelineno-150-10" href="#__codelineno-150-10"></a><span class="w"> </span><span class="c1">// Integer[] -&gt; int[]</span>
<a id="__codelineno-150-11" name="__codelineno-150-11" href="#__codelineno-150-11"></a><span class="w"> </span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="o">[</span><span class="n">n</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-150-12" name="__codelineno-150-12" href="#__codelineno-150-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-150-13" name="__codelineno-150-13" href="#__codelineno-150-13"></a><span class="w"> </span><span class="n">res</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-150-14" name="__codelineno-150-14" href="#__codelineno-150-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-150-15" name="__codelineno-150-15" href="#__codelineno-150-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-150-16" name="__codelineno-150-16" href="#__codelineno-150-16"></a><span class="p">}</span>
<a id="__codelineno-150-17" name="__codelineno-150-17" href="#__codelineno-150-17"></a>
<a id="__codelineno-150-18" name="__codelineno-150-18" href="#__codelineno-150-18"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
<a id="__codelineno-150-19" name="__codelineno-150-19" href="#__codelineno-150-19"></a><span class="kt">int</span><span class="w"> </span><span class="nf">findOne</span><span class="p">(</span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-150-20" name="__codelineno-150-20" href="#__codelineno-150-20"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="na">length</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-150-21" name="__codelineno-150-21" href="#__codelineno-150-21"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
<a id="__codelineno-150-22" name="__codelineno-150-22" href="#__codelineno-150-22"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
<a id="__codelineno-150-23" name="__codelineno-150-23" href="#__codelineno-150-23"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-150-24" name="__codelineno-150-24" href="#__codelineno-150-24"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">i</span><span class="p">;</span>
<a id="__codelineno-150-25" name="__codelineno-150-25" href="#__codelineno-150-25"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-150-26" name="__codelineno-150-26" href="#__codelineno-150-26"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-150-27" name="__codelineno-150-27" href="#__codelineno-150-27"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-151-1" name="__codelineno-151-1" href="#__codelineno-151-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
<a id="__codelineno-151-2" name="__codelineno-151-2" href="#__codelineno-151-2"></a><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">randomNumbers</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-151-3" name="__codelineno-151-3" href="#__codelineno-151-3"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">nums</span><span class="p">(</span><span class="n">n</span><span class="p">);</span>
<a id="__codelineno-151-4" name="__codelineno-151-4" href="#__codelineno-151-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
<a id="__codelineno-151-5" name="__codelineno-151-5" href="#__codelineno-151-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-151-6" name="__codelineno-151-6" href="#__codelineno-151-6"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-151-7" name="__codelineno-151-7" href="#__codelineno-151-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-151-8" name="__codelineno-151-8" href="#__codelineno-151-8"></a><span class="w"> </span><span class="c1">// 使用系统时间生成随机种子</span>
<a id="__codelineno-151-9" name="__codelineno-151-9" href="#__codelineno-151-9"></a><span class="w"> </span><span class="kt">unsigned</span><span class="w"> </span><span class="n">seed</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">chrono</span><span class="o">::</span><span class="n">system_clock</span><span class="o">::</span><span class="n">now</span><span class="p">().</span><span class="n">time_since_epoch</span><span class="p">().</span><span class="n">count</span><span class="p">();</span>
<a id="__codelineno-151-10" name="__codelineno-151-10" href="#__codelineno-151-10"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
<a id="__codelineno-151-11" name="__codelineno-151-11" href="#__codelineno-151-11"></a><span class="w"> </span><span class="n">shuffle</span><span class="p">(</span><span class="n">nums</span><span class="p">.</span><span class="n">begin</span><span class="p">(),</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">end</span><span class="p">(),</span><span class="w"> </span><span class="n">default_random_engine</span><span class="p">(</span><span class="n">seed</span><span class="p">));</span>
<a id="__codelineno-151-12" name="__codelineno-151-12" href="#__codelineno-151-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">nums</span><span class="p">;</span>
<a id="__codelineno-151-13" name="__codelineno-151-13" href="#__codelineno-151-13"></a><span class="p">}</span>
<a id="__codelineno-151-14" name="__codelineno-151-14" href="#__codelineno-151-14"></a>
<a id="__codelineno-151-15" name="__codelineno-151-15" href="#__codelineno-151-15"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
<a id="__codelineno-151-16" name="__codelineno-151-16" href="#__codelineno-151-16"></a><span class="kt">int</span><span class="w"> </span><span class="n">findOne</span><span class="p">(</span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-151-17" name="__codelineno-151-17" href="#__codelineno-151-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">size</span><span class="p">();</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-151-18" name="__codelineno-151-18" href="#__codelineno-151-18"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
<a id="__codelineno-151-19" name="__codelineno-151-19" href="#__codelineno-151-19"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
<a id="__codelineno-151-20" name="__codelineno-151-20" href="#__codelineno-151-20"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-151-21" name="__codelineno-151-21" href="#__codelineno-151-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">i</span><span class="p">;</span>
<a id="__codelineno-151-22" name="__codelineno-151-22" href="#__codelineno-151-22"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-151-23" name="__codelineno-151-23" href="#__codelineno-151-23"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">-1</span><span class="p">;</span>
<a id="__codelineno-151-24" name="__codelineno-151-24" href="#__codelineno-151-24"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.py</span><pre><span></span><code><a id="__codelineno-152-1" name="__codelineno-152-1" href="#__codelineno-152-1"></a><span class="k">def</span> <span class="nf">random_numbers</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">]:</span>
<a id="__codelineno-152-2" name="__codelineno-152-2" href="#__codelineno-152-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;生成一个数组,元素为: 1, 2, ..., n ,顺序被打乱&quot;&quot;&quot;</span>
<a id="__codelineno-152-3" name="__codelineno-152-3" href="#__codelineno-152-3"></a> <span class="c1"># 生成数组 nums =: 1, 2, 3, ..., n</span>
<a id="__codelineno-152-4" name="__codelineno-152-4" href="#__codelineno-152-4"></a> <span class="n">nums</span> <span class="o">=</span> <span class="p">[</span><span class="n">i</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)]</span>
<a id="__codelineno-152-5" name="__codelineno-152-5" href="#__codelineno-152-5"></a> <span class="c1"># 随机打乱数组元素</span>
<a id="__codelineno-152-6" name="__codelineno-152-6" href="#__codelineno-152-6"></a> <span class="n">random</span><span class="o">.</span><span class="n">shuffle</span><span class="p">(</span><span class="n">nums</span><span class="p">)</span>
<a id="__codelineno-152-7" name="__codelineno-152-7" href="#__codelineno-152-7"></a> <span class="k">return</span> <span class="n">nums</span>
<a id="__codelineno-152-8" name="__codelineno-152-8" href="#__codelineno-152-8"></a>
<a id="__codelineno-152-9" name="__codelineno-152-9" href="#__codelineno-152-9"></a><span class="k">def</span> <span class="nf">find_one</span><span class="p">(</span><span class="n">nums</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-152-10" name="__codelineno-152-10" href="#__codelineno-152-10"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;查找数组 nums 中数字 1 所在索引&quot;&quot;&quot;</span>
<a id="__codelineno-152-11" name="__codelineno-152-11" href="#__codelineno-152-11"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">nums</span><span class="p">)):</span>
<a id="__codelineno-152-12" name="__codelineno-152-12" href="#__codelineno-152-12"></a> <span class="c1"># 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
<a id="__codelineno-152-13" name="__codelineno-152-13" href="#__codelineno-152-13"></a> <span class="c1"># 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
<a id="__codelineno-152-14" name="__codelineno-152-14" href="#__codelineno-152-14"></a> <span class="k">if</span> <span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<a id="__codelineno-152-15" name="__codelineno-152-15" href="#__codelineno-152-15"></a> <span class="k">return</span> <span class="n">i</span>
<a id="__codelineno-152-16" name="__codelineno-152-16" href="#__codelineno-152-16"></a> <span class="k">return</span> <span class="o">-</span><span class="mi">1</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.go</span><pre><span></span><code><a id="__codelineno-153-1" name="__codelineno-153-1" href="#__codelineno-153-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
<a id="__codelineno-153-2" name="__codelineno-153-2" href="#__codelineno-153-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">randomNumbers</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">[]</span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-153-3" name="__codelineno-153-3" href="#__codelineno-153-3"></a><span class="w"> </span><span class="nx">nums</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span>
<a id="__codelineno-153-4" name="__codelineno-153-4" href="#__codelineno-153-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
<a id="__codelineno-153-5" name="__codelineno-153-5" href="#__codelineno-153-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-153-6" name="__codelineno-153-6" href="#__codelineno-153-6"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-153-7" name="__codelineno-153-7" href="#__codelineno-153-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-153-8" name="__codelineno-153-8" href="#__codelineno-153-8"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
<a id="__codelineno-153-9" name="__codelineno-153-9" href="#__codelineno-153-9"></a><span class="w"> </span><span class="nx">rand</span><span class="p">.</span><span class="nx">Shuffle</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="nx">nums</span><span class="p">),</span><span class="w"> </span><span class="kd">func</span><span class="p">(</span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-153-10" name="__codelineno-153-10" href="#__codelineno-153-10"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">],</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">],</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span>
<a id="__codelineno-153-11" name="__codelineno-153-11" href="#__codelineno-153-11"></a><span class="w"> </span><span class="p">})</span>
<a id="__codelineno-153-12" name="__codelineno-153-12" href="#__codelineno-153-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">nums</span>
<a id="__codelineno-153-13" name="__codelineno-153-13" href="#__codelineno-153-13"></a><span class="p">}</span>
<a id="__codelineno-153-14" name="__codelineno-153-14" href="#__codelineno-153-14"></a>
<a id="__codelineno-153-15" name="__codelineno-153-15" href="#__codelineno-153-15"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
<a id="__codelineno-153-16" name="__codelineno-153-16" href="#__codelineno-153-16"></a><span class="kd">func</span><span class="w"> </span><span class="nx">findOne</span><span class="p">(</span><span class="nx">nums</span><span class="w"> </span><span class="p">[]</span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-153-17" name="__codelineno-153-17" href="#__codelineno-153-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nb">len</span><span class="p">(</span><span class="nx">nums</span><span class="p">);</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-153-18" name="__codelineno-153-18" href="#__codelineno-153-18"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
<a id="__codelineno-153-19" name="__codelineno-153-19" href="#__codelineno-153-19"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
<a id="__codelineno-153-20" name="__codelineno-153-20" href="#__codelineno-153-20"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-153-21" name="__codelineno-153-21" href="#__codelineno-153-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">i</span>
<a id="__codelineno-153-22" name="__codelineno-153-22" href="#__codelineno-153-22"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-153-23" name="__codelineno-153-23" href="#__codelineno-153-23"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-153-24" name="__codelineno-153-24" href="#__codelineno-153-24"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span>
<a id="__codelineno-153-25" name="__codelineno-153-25" href="#__codelineno-153-25"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.js</span><pre><span></span><code><a id="__codelineno-154-1" name="__codelineno-154-1" href="#__codelineno-154-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
<a id="__codelineno-154-2" name="__codelineno-154-2" href="#__codelineno-154-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">randomNumbers</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-154-3" name="__codelineno-154-3" href="#__codelineno-154-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">nums</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">);</span>
<a id="__codelineno-154-4" name="__codelineno-154-4" href="#__codelineno-154-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
<a id="__codelineno-154-5" name="__codelineno-154-5" href="#__codelineno-154-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-154-6" name="__codelineno-154-6" href="#__codelineno-154-6"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-154-7" name="__codelineno-154-7" href="#__codelineno-154-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-154-8" name="__codelineno-154-8" href="#__codelineno-154-8"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
<a id="__codelineno-154-9" name="__codelineno-154-9" href="#__codelineno-154-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-154-10" name="__codelineno-154-10" href="#__codelineno-154-10"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">r</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">floor</span><span class="p">(</span><span class="nb">Math</span><span class="p">.</span><span class="nx">random</span><span class="p">()</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">));</span>
<a id="__codelineno-154-11" name="__codelineno-154-11" href="#__codelineno-154-11"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">temp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">];</span>
<a id="__codelineno-154-12" name="__codelineno-154-12" href="#__codelineno-154-12"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">r</span><span class="p">];</span>
<a id="__codelineno-154-13" name="__codelineno-154-13" href="#__codelineno-154-13"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">r</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">temp</span><span class="p">;</span>
<a id="__codelineno-154-14" name="__codelineno-154-14" href="#__codelineno-154-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-154-15" name="__codelineno-154-15" href="#__codelineno-154-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">nums</span><span class="p">;</span>
<a id="__codelineno-154-16" name="__codelineno-154-16" href="#__codelineno-154-16"></a><span class="p">}</span>
<a id="__codelineno-154-17" name="__codelineno-154-17" href="#__codelineno-154-17"></a>
<a id="__codelineno-154-18" name="__codelineno-154-18" href="#__codelineno-154-18"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
<a id="__codelineno-154-19" name="__codelineno-154-19" href="#__codelineno-154-19"></a><span class="kd">function</span><span class="w"> </span><span class="nx">findOne</span><span class="p">(</span><span class="nx">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-154-20" name="__codelineno-154-20" href="#__codelineno-154-20"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">nums</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-154-21" name="__codelineno-154-21" href="#__codelineno-154-21"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
<a id="__codelineno-154-22" name="__codelineno-154-22" href="#__codelineno-154-22"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
<a id="__codelineno-154-23" name="__codelineno-154-23" href="#__codelineno-154-23"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-154-24" name="__codelineno-154-24" href="#__codelineno-154-24"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span>
<a id="__codelineno-154-25" name="__codelineno-154-25" href="#__codelineno-154-25"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-154-26" name="__codelineno-154-26" href="#__codelineno-154-26"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-154-27" name="__codelineno-154-27" href="#__codelineno-154-27"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-154-28" name="__codelineno-154-28" href="#__codelineno-154-28"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.ts</span><pre><span></span><code><a id="__codelineno-155-1" name="__codelineno-155-1" href="#__codelineno-155-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
<a id="__codelineno-155-2" name="__codelineno-155-2" href="#__codelineno-155-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">randomNumbers</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">[]</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-155-3" name="__codelineno-155-3" href="#__codelineno-155-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">nums</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">);</span>
<a id="__codelineno-155-4" name="__codelineno-155-4" href="#__codelineno-155-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
<a id="__codelineno-155-5" name="__codelineno-155-5" href="#__codelineno-155-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-155-6" name="__codelineno-155-6" href="#__codelineno-155-6"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-155-7" name="__codelineno-155-7" href="#__codelineno-155-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-155-8" name="__codelineno-155-8" href="#__codelineno-155-8"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
<a id="__codelineno-155-9" name="__codelineno-155-9" href="#__codelineno-155-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-155-10" name="__codelineno-155-10" href="#__codelineno-155-10"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">r</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">floor</span><span class="p">(</span><span class="nb">Math</span><span class="p">.</span><span class="nx">random</span><span class="p">()</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">));</span>
<a id="__codelineno-155-11" name="__codelineno-155-11" href="#__codelineno-155-11"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">temp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">];</span>
<a id="__codelineno-155-12" name="__codelineno-155-12" href="#__codelineno-155-12"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">r</span><span class="p">];</span>
<a id="__codelineno-155-13" name="__codelineno-155-13" href="#__codelineno-155-13"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">r</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">temp</span><span class="p">;</span>
<a id="__codelineno-155-14" name="__codelineno-155-14" href="#__codelineno-155-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-155-15" name="__codelineno-155-15" href="#__codelineno-155-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">nums</span><span class="p">;</span>
<a id="__codelineno-155-16" name="__codelineno-155-16" href="#__codelineno-155-16"></a><span class="p">}</span>
<a id="__codelineno-155-17" name="__codelineno-155-17" href="#__codelineno-155-17"></a>
<a id="__codelineno-155-18" name="__codelineno-155-18" href="#__codelineno-155-18"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
<a id="__codelineno-155-19" name="__codelineno-155-19" href="#__codelineno-155-19"></a><span class="kd">function</span><span class="w"> </span><span class="nx">findOne</span><span class="p">(</span><span class="nx">nums</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">[])</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-155-20" name="__codelineno-155-20" href="#__codelineno-155-20"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">nums</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-155-21" name="__codelineno-155-21" href="#__codelineno-155-21"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
<a id="__codelineno-155-22" name="__codelineno-155-22" href="#__codelineno-155-22"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
<a id="__codelineno-155-23" name="__codelineno-155-23" href="#__codelineno-155-23"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-155-24" name="__codelineno-155-24" href="#__codelineno-155-24"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span>
<a id="__codelineno-155-25" name="__codelineno-155-25" href="#__codelineno-155-25"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-155-26" name="__codelineno-155-26" href="#__codelineno-155-26"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-155-27" name="__codelineno-155-27" href="#__codelineno-155-27"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-155-28" name="__codelineno-155-28" href="#__codelineno-155-28"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.c</span><pre><span></span><code><a id="__codelineno-156-1" name="__codelineno-156-1" href="#__codelineno-156-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
<a id="__codelineno-156-2" name="__codelineno-156-2" href="#__codelineno-156-2"></a><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="nf">randomNumbers</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-156-3" name="__codelineno-156-3" href="#__codelineno-156-3"></a><span class="w"> </span><span class="c1">// 分配堆区内存创建一维可变长数组数组中元素数量为n元素类型为int</span>
<a id="__codelineno-156-4" name="__codelineno-156-4" href="#__codelineno-156-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="n">nums</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="n">malloc</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="k">sizeof</span><span class="p">(</span><span class="kt">int</span><span class="p">));</span>
<a id="__codelineno-156-5" name="__codelineno-156-5" href="#__codelineno-156-5"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
<a id="__codelineno-156-6" name="__codelineno-156-6" href="#__codelineno-156-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-156-7" name="__codelineno-156-7" href="#__codelineno-156-7"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-156-8" name="__codelineno-156-8" href="#__codelineno-156-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-156-9" name="__codelineno-156-9" href="#__codelineno-156-9"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
<a id="__codelineno-156-10" name="__codelineno-156-10" href="#__codelineno-156-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-156-11" name="__codelineno-156-11" href="#__codelineno-156-11"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">rand</span><span class="p">()</span><span class="w"> </span><span class="o">%</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
<a id="__codelineno-156-12" name="__codelineno-156-12" href="#__codelineno-156-12"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">temp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">];</span>
<a id="__codelineno-156-13" name="__codelineno-156-13" href="#__codelineno-156-13"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-156-14" name="__codelineno-156-14" href="#__codelineno-156-14"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">temp</span><span class="p">;</span>
<a id="__codelineno-156-15" name="__codelineno-156-15" href="#__codelineno-156-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-156-16" name="__codelineno-156-16" href="#__codelineno-156-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">nums</span><span class="p">;</span>
<a id="__codelineno-156-17" name="__codelineno-156-17" href="#__codelineno-156-17"></a><span class="p">}</span>
<a id="__codelineno-156-18" name="__codelineno-156-18" href="#__codelineno-156-18"></a>
<a id="__codelineno-156-19" name="__codelineno-156-19" href="#__codelineno-156-19"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
<a id="__codelineno-156-20" name="__codelineno-156-20" href="#__codelineno-156-20"></a><span class="kt">int</span><span class="w"> </span><span class="nf">findOne</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="n">nums</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-156-21" name="__codelineno-156-21" href="#__codelineno-156-21"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-156-22" name="__codelineno-156-22" href="#__codelineno-156-22"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
<a id="__codelineno-156-23" name="__codelineno-156-23" href="#__codelineno-156-23"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
<a id="__codelineno-156-24" name="__codelineno-156-24" href="#__codelineno-156-24"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-156-25" name="__codelineno-156-25" href="#__codelineno-156-25"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">i</span><span class="p">;</span>
<a id="__codelineno-156-26" name="__codelineno-156-26" href="#__codelineno-156-26"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-156-27" name="__codelineno-156-27" href="#__codelineno-156-27"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">-1</span><span class="p">;</span>
<a id="__codelineno-156-28" name="__codelineno-156-28" href="#__codelineno-156-28"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.cs</span><pre><span></span><code><a id="__codelineno-157-1" name="__codelineno-157-1" href="#__codelineno-157-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
<a id="__codelineno-157-2" name="__codelineno-157-2" href="#__codelineno-157-2"></a><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="nf">randomNumbers</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-157-3" name="__codelineno-157-3" href="#__codelineno-157-3"></a><span class="w"> </span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">nums</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="p">[</span><span class="n">n</span><span class="p">];</span>
<a id="__codelineno-157-4" name="__codelineno-157-4" href="#__codelineno-157-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
<a id="__codelineno-157-5" name="__codelineno-157-5" href="#__codelineno-157-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-157-6" name="__codelineno-157-6" href="#__codelineno-157-6"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-157-7" name="__codelineno-157-7" href="#__codelineno-157-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-157-8" name="__codelineno-157-8" href="#__codelineno-157-8"></a>
<a id="__codelineno-157-9" name="__codelineno-157-9" href="#__codelineno-157-9"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
<a id="__codelineno-157-10" name="__codelineno-157-10" href="#__codelineno-157-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">Length</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-157-11" name="__codelineno-157-11" href="#__codelineno-157-11"></a><span class="w"> </span><span class="kt">var</span><span class="w"> </span><span class="n">index</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">Random</span><span class="p">().</span><span class="n">Next</span><span class="p">(</span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">Length</span><span class="p">);</span>
<a id="__codelineno-157-12" name="__codelineno-157-12" href="#__codelineno-157-12"></a><span class="w"> </span><span class="kt">var</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">];</span>
<a id="__codelineno-157-13" name="__codelineno-157-13" href="#__codelineno-157-13"></a><span class="w"> </span><span class="kt">var</span><span class="w"> </span><span class="n">ran</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">index</span><span class="p">];</span>
<a id="__codelineno-157-14" name="__codelineno-157-14" href="#__codelineno-157-14"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">ran</span><span class="p">;</span>
<a id="__codelineno-157-15" name="__codelineno-157-15" href="#__codelineno-157-15"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">index</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
<a id="__codelineno-157-16" name="__codelineno-157-16" href="#__codelineno-157-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-157-17" name="__codelineno-157-17" href="#__codelineno-157-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">nums</span><span class="p">;</span>
<a id="__codelineno-157-18" name="__codelineno-157-18" href="#__codelineno-157-18"></a><span class="p">}</span>
<a id="__codelineno-157-19" name="__codelineno-157-19" href="#__codelineno-157-19"></a>
<a id="__codelineno-157-20" name="__codelineno-157-20" href="#__codelineno-157-20"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
<a id="__codelineno-157-21" name="__codelineno-157-21" href="#__codelineno-157-21"></a><span class="kt">int</span><span class="w"> </span><span class="nf">findOne</span><span class="p">(</span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-157-22" name="__codelineno-157-22" href="#__codelineno-157-22"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">Length</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-157-23" name="__codelineno-157-23" href="#__codelineno-157-23"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
<a id="__codelineno-157-24" name="__codelineno-157-24" href="#__codelineno-157-24"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
<a id="__codelineno-157-25" name="__codelineno-157-25" href="#__codelineno-157-25"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">1</span><span class="p">)</span>
<a id="__codelineno-157-26" name="__codelineno-157-26" href="#__codelineno-157-26"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">i</span><span class="p">;</span>
<a id="__codelineno-157-27" name="__codelineno-157-27" href="#__codelineno-157-27"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-157-28" name="__codelineno-157-28" href="#__codelineno-157-28"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-157-29" name="__codelineno-157-29" href="#__codelineno-157-29"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.swift</span><pre><span></span><code><a id="__codelineno-158-1" name="__codelineno-158-1" href="#__codelineno-158-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
<a id="__codelineno-158-2" name="__codelineno-158-2" href="#__codelineno-158-2"></a><span class="kd">func</span> <span class="nf">randomNumbers</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="p">[</span><span class="nb">Int</span><span class="p">]</span> <span class="p">{</span>
<a id="__codelineno-158-3" name="__codelineno-158-3" href="#__codelineno-158-3"></a> <span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
<a id="__codelineno-158-4" name="__codelineno-158-4" href="#__codelineno-158-4"></a> <span class="kd">var</span> <span class="nv">nums</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="mi">1</span> <span class="p">...</span> <span class="n">n</span><span class="p">)</span>
<a id="__codelineno-158-5" name="__codelineno-158-5" href="#__codelineno-158-5"></a> <span class="c1">// 随机打乱数组元素</span>
<a id="__codelineno-158-6" name="__codelineno-158-6" href="#__codelineno-158-6"></a> <span class="n">nums</span><span class="p">.</span><span class="n">shuffle</span><span class="p">()</span>
<a id="__codelineno-158-7" name="__codelineno-158-7" href="#__codelineno-158-7"></a> <span class="k">return</span> <span class="n">nums</span>
<a id="__codelineno-158-8" name="__codelineno-158-8" href="#__codelineno-158-8"></a><span class="p">}</span>
<a id="__codelineno-158-9" name="__codelineno-158-9" href="#__codelineno-158-9"></a>
<a id="__codelineno-158-10" name="__codelineno-158-10" href="#__codelineno-158-10"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
<a id="__codelineno-158-11" name="__codelineno-158-11" href="#__codelineno-158-11"></a><span class="kd">func</span> <span class="nf">findOne</span><span class="p">(</span><span class="n">nums</span><span class="p">:</span> <span class="p">[</span><span class="nb">Int</span><span class="p">])</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-158-12" name="__codelineno-158-12" href="#__codelineno-158-12"></a> <span class="k">for</span> <span class="n">i</span> <span class="k">in</span> <span class="n">nums</span><span class="p">.</span><span class="bp">indices</span> <span class="p">{</span>
<a id="__codelineno-158-13" name="__codelineno-158-13" href="#__codelineno-158-13"></a> <span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
<a id="__codelineno-158-14" name="__codelineno-158-14" href="#__codelineno-158-14"></a> <span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
<a id="__codelineno-158-15" name="__codelineno-158-15" href="#__codelineno-158-15"></a> <span class="k">if</span> <span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="p">==</span> <span class="mi">1</span> <span class="p">{</span>
<a id="__codelineno-158-16" name="__codelineno-158-16" href="#__codelineno-158-16"></a> <span class="k">return</span> <span class="n">i</span>
<a id="__codelineno-158-17" name="__codelineno-158-17" href="#__codelineno-158-17"></a> <span class="p">}</span>
<a id="__codelineno-158-18" name="__codelineno-158-18" href="#__codelineno-158-18"></a> <span class="p">}</span>
<a id="__codelineno-158-19" name="__codelineno-158-19" href="#__codelineno-158-19"></a> <span class="k">return</span> <span class="o">-</span><span class="mi">1</span>
<a id="__codelineno-158-20" name="__codelineno-158-20" href="#__codelineno-158-20"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.zig</span><pre><span></span><code><a id="__codelineno-159-1" name="__codelineno-159-1" href="#__codelineno-159-1"></a><span class="c1">// 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱</span>
<a id="__codelineno-159-2" name="__codelineno-159-2" href="#__codelineno-159-2"></a><span class="kr">pub</span><span class="w"> </span><span class="k">fn</span><span class="w"> </span><span class="n">randomNumbers</span><span class="p">(</span><span class="kr">comptime</span><span class="w"> </span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">usize</span><span class="p">)</span><span class="w"> </span><span class="p">[</span><span class="n">n</span><span class="p">]</span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-159-3" name="__codelineno-159-3" href="#__codelineno-159-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">nums</span><span class="o">:</span><span class="w"> </span><span class="p">[</span><span class="n">n</span><span class="p">]</span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">undefined</span><span class="p">;</span>
<a id="__codelineno-159-4" name="__codelineno-159-4" href="#__codelineno-159-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
<a id="__codelineno-159-5" name="__codelineno-159-5" href="#__codelineno-159-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="o">|*</span><span class="n">num</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="o">|</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-159-6" name="__codelineno-159-6" href="#__codelineno-159-6"></a><span class="w"> </span><span class="n">num</span><span class="p">.</span><span class="o">*</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">@intCast</span><span class="p">(</span><span class="kt">i32</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-159-7" name="__codelineno-159-7" href="#__codelineno-159-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-159-8" name="__codelineno-159-8" href="#__codelineno-159-8"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
<a id="__codelineno-159-9" name="__codelineno-159-9" href="#__codelineno-159-9"></a><span class="w"> </span><span class="kr">const</span><span class="w"> </span><span class="n">rand</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">std</span><span class="p">.</span><span class="n">crypto</span><span class="p">.</span><span class="n">random</span><span class="p">;</span>
<a id="__codelineno-159-10" name="__codelineno-159-10" href="#__codelineno-159-10"></a><span class="w"> </span><span class="n">rand</span><span class="p">.</span><span class="n">shuffle</span><span class="p">(</span><span class="kt">i32</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">nums</span><span class="p">);</span>
<a id="__codelineno-159-11" name="__codelineno-159-11" href="#__codelineno-159-11"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">nums</span><span class="p">;</span>
<a id="__codelineno-159-12" name="__codelineno-159-12" href="#__codelineno-159-12"></a><span class="p">}</span>
<a id="__codelineno-159-13" name="__codelineno-159-13" href="#__codelineno-159-13"></a>
<a id="__codelineno-159-14" name="__codelineno-159-14" href="#__codelineno-159-14"></a><span class="c1">// 查找数组 nums 中数字 1 所在索引</span>
<a id="__codelineno-159-15" name="__codelineno-159-15" href="#__codelineno-159-15"></a><span class="kr">pub</span><span class="w"> </span><span class="k">fn</span><span class="w"> </span><span class="n">findOne</span><span class="p">(</span><span class="n">nums</span><span class="o">:</span><span class="w"> </span><span class="p">[]</span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-159-16" name="__codelineno-159-16" href="#__codelineno-159-16"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="o">|</span><span class="n">num</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="o">|</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-159-17" name="__codelineno-159-17" href="#__codelineno-159-17"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
<a id="__codelineno-159-18" name="__codelineno-159-18" href="#__codelineno-159-18"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
<a id="__codelineno-159-19" name="__codelineno-159-19" href="#__codelineno-159-19"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">num</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nb">@intCast</span><span class="p">(</span><span class="kt">i32</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">);</span>
<a id="__codelineno-159-20" name="__codelineno-159-20" href="#__codelineno-159-20"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-159-21" name="__codelineno-159-21" href="#__codelineno-159-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-159-22" name="__codelineno-159-22" href="#__codelineno-159-22"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<div class="admonition tip">
<p class="admonition-title">Tip</p>
<p>实际应用中我们很少使用「最佳时间复杂度」,因为通常只有在很小概率下才能达到,可能会带来一定的误导性。相反,「最差时间复杂度」更为实用,因为它给出了一个“效率安全值”,让我们可以放心地使用算法。</p>
</div>
<p>从上述示例可以看出,最差或最佳时间复杂度只出现在“特殊分布的数据”中,这些情况的出现概率可能很小,因此并不能最真实地反映算法运行效率。相较之下,<strong>「平均时间复杂度」可以体现算法在随机输入数据下的运行效率</strong>,用 <span class="arithmatex">\(\Theta\)</span> 记号来表示。</p>
<p>对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱的,因此元素 <span class="arithmatex">\(1\)</span> 出现在任意索引的概率都是相等的,那么算法的平均循环次数则是数组长度的一半 <span class="arithmatex">\(\frac{n}{2}\)</span> ,平均时间复杂度为 <span class="arithmatex">\(\Theta(\frac{n}{2}) = \Theta(n)\)</span></p>
<p>但在实际应用中,尤其是较为复杂的算法,计算平均时间复杂度比较困难,因为很难简便地分析出在数据分布下的整体数学期望。在这种情况下,我们通常使用最差时间复杂度作为算法效率的评判标准。</p>
<div class="admonition question">
<p class="admonition-title">为什么很少看到 <span class="arithmatex">\(\Theta\)</span> 符号?</p>
<p>可能由于 <span class="arithmatex">\(O\)</span> 符号过于朗朗上口,我们常常使用它来表示「平均复杂度」,但从严格意义上看,这种做法并不规范。在本书和其他资料中,若遇到类似“平均时间复杂度 <span class="arithmatex">\(O(n)\)</span>”的表述,请将其直接理解为 <span class="arithmatex">\(\Theta(n)\)</span></p>
</div>
<h2 id="__comments">评论</h2>
<!-- Insert generated snippet here -->
<script
src="https://giscus.app/client.js"
data-repo="krahets/hello-algo"
data-repo-id="R_kgDOIXtSqw"
data-category="Announcements"
data-category-id="DIC_kwDOIXtSq84CSZk_"
data-mapping="pathname"
data-strict="1"
data-reactions-enabled="1"
data-emit-metadata="0"
data-input-position="top"
data-theme="preferred_color_scheme"
data-lang="zh-CN"
crossorigin="anonymous"
async
>
</script>
<!-- Synchronize Giscus theme with palette -->
<script>
var giscus = document.querySelector("script[src*=giscus]")
/* Set palette on initial load */
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark" : "light"
giscus.setAttribute("data-theme", theme)
}
/* Register event handlers after documented loaded */
document.addEventListener("DOMContentLoaded", function() {
var ref = document.querySelector("[data-md-component=palette]")
ref.addEventListener("change", function() {
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark" : "light"
/* Instruct Giscus to change theme */
var frame = document.querySelector(".giscus-frame")
frame.contentWindow.postMessage(
{ giscus: { setConfig: { theme } } },
"https://giscus.app"
)
}
})
})
</script>
</article>
</div>
<script>var tabs=__md_get("__tabs");if(Array.isArray(tabs))e:for(var set of document.querySelectorAll(".tabbed-set")){var tab,labels=set.querySelector(".tabbed-labels");for(tab of tabs)for(var label of labels.getElementsByTagName("label"))if(label.innerText.trim()===tab){var input=document.getElementById(label.htmlFor);input.checked=!0;continue e}}</script>
</div>
<button type="button" class="md-top md-icon" data-md-component="top" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8v12Z"/></svg>
回到页面顶部
</button>
</main>
<footer class="md-footer">
<nav class="md-footer__inner md-grid" aria-label="页脚" >
<a href="../performance_evaluation/" class="md-footer__link md-footer__link--prev" aria-label="上一页: 2.1. &amp;nbsp; 算法效率评估" rel="prev">
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</div>
<div class="md-footer__title">
<span class="md-footer__direction">
上一页
</span>
<div class="md-ellipsis">
2.1. &nbsp; 算法效率评估
</div>
</div>
</a>
<a href="../space_complexity/" class="md-footer__link md-footer__link--next" aria-label="下一页: 2.3. &amp;nbsp; 空间复杂度" rel="next">
<div class="md-footer__title">
<span class="md-footer__direction">
下一页
</span>
<div class="md-ellipsis">
2.3. &nbsp; 空间复杂度
</div>
</div>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
</div>
</a>
</nav>
<div class="md-footer-meta md-typeset">
<div class="md-footer-meta__inner md-grid">
<div class="md-copyright">
<div class="md-copyright__highlight">
Copyright &copy; 2023 Krahets
</div>
</div>
<div class="md-social">
<a href="https://github.com/krahets" target="_blank" rel="noopener" title="github.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</a>
<a href="https://twitter.com/krahets" target="_blank" rel="noopener" title="twitter.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"/></svg>
</a>
<a href="https://leetcode.cn/u/jyd/" target="_blank" rel="noopener" title="leetcode.cn" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 640 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M392.8 1.2c-17-4.9-34.7 5-39.6 22l-128 448c-4.9 17 5 34.7 22 39.6s34.7-5 39.6-22l128-448c4.9-17-5-34.7-22-39.6zm80.6 120.1c-12.5 12.5-12.5 32.8 0 45.3l89.3 89.4-89.4 89.4c-12.5 12.5-12.5 32.8 0 45.3s32.8 12.5 45.3 0l112-112c12.5-12.5 12.5-32.8 0-45.3l-112-112c-12.5-12.5-32.8-12.5-45.3 0zm-306.7 0c-12.5-12.5-32.8-12.5-45.3 0l-112 112c-12.5 12.5-12.5 32.8 0 45.3l112 112c12.5 12.5 32.8 12.5 45.3 0s12.5-32.8 0-45.3L77.3 256l89.4-89.4c12.5-12.5 12.5-32.8 0-45.3z"/></svg>
</a>
</div>
</div>
</div>
</footer>
</div>
<div class="md-dialog" data-md-component="dialog">
<div class="md-dialog__inner md-typeset"></div>
</div>
<script id="__config" type="application/json">{"base": "../..", "features": ["content.action.edit", "content.code.annotate", "content.code.copy", "content.tabs.link", "content.tooltips", "navigation.indexes", "navigation.sections", "navigation.top", "navigation.footer", "navigation.tracking", "search.highlight", "search.share", "search.suggest", "toc.follow"], "search": "../../assets/javascripts/workers/search.208ed371.min.js", "translations": {"clipboard.copied": "\u5df2\u590d\u5236", "clipboard.copy": "\u590d\u5236", "search.result.more.one": "\u5728\u8be5\u9875\u4e0a\u8fd8\u6709 1 \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.more.other": "\u5728\u8be5\u9875\u4e0a\u8fd8\u6709 # \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.none": "\u6ca1\u6709\u627e\u5230\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.one": "\u627e\u5230 1 \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.other": "# \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.placeholder": "\u952e\u5165\u4ee5\u5f00\u59cb\u641c\u7d22", "search.result.term.missing": "\u7f3a\u5c11", "select.version": "\u9009\u62e9\u5f53\u524d\u7248\u672c"}}</script>
<script src="../../assets/javascripts/bundle.fac441b0.min.js"></script>
<script src="../../javascripts/mathjax.js"></script>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</body>
</html>