mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 12:36:28 +08:00
9ea8a73059
* feat: add Swift codes for intro_to_dynamic_programming article * feat: add Swift codes for dp_problem_features article * feat: add Swift codes for dp_solution_pipeline article * feat: add Swift codes for knapsack_problem article * feat: add Swift codes for unbounded_knapsack_problem article * feat: add Swift codes for edit_distance_problem article
63 lines
2 KiB
Swift
63 lines
2 KiB
Swift
/**
|
||
* File: unbounded_knapsack.swift
|
||
* Created Time: 2023-07-15
|
||
* Author: nuomi1 (nuomi1@qq.com)
|
||
*/
|
||
|
||
/* 完全背包:动态规划 */
|
||
func unboundedKnapsackDP(wgt: [Int], val: [Int], cap: Int) -> Int {
|
||
let n = wgt.count
|
||
// 初始化 dp 表
|
||
var dp = Array(repeating: Array(repeating: 0, count: cap + 1), count: n + 1)
|
||
// 状态转移
|
||
for i in stride(from: 1, through: n, by: 1) {
|
||
for c in stride(from: 1, through: cap, by: 1) {
|
||
if wgt[i - 1] > c {
|
||
// 若超过背包容量,则不选物品 i
|
||
dp[i][c] = dp[i - 1][c]
|
||
} else {
|
||
// 不选和选物品 i 这两种方案的较大值
|
||
dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1])
|
||
}
|
||
}
|
||
}
|
||
return dp[n][cap]
|
||
}
|
||
|
||
/* 完全背包:状态压缩后的动态规划 */
|
||
func unboundedKnapsackDPComp(wgt: [Int], val: [Int], cap: Int) -> Int {
|
||
let n = wgt.count
|
||
// 初始化 dp 表
|
||
var dp = Array(repeating: 0, count: cap + 1)
|
||
// 状态转移
|
||
for i in stride(from: 1, through: n, by: 1) {
|
||
for c in stride(from: 1, through: cap, by: 1) {
|
||
if wgt[i - 1] > c {
|
||
// 若超过背包容量,则不选物品 i
|
||
dp[c] = dp[c]
|
||
} else {
|
||
// 不选和选物品 i 这两种方案的较大值
|
||
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])
|
||
}
|
||
}
|
||
}
|
||
return dp[cap]
|
||
}
|
||
|
||
@main
|
||
enum UnboundedKnapsack {
|
||
/* Driver Code */
|
||
static func main() {
|
||
let wgt = [1, 2, 3]
|
||
let val = [5, 11, 15]
|
||
let cap = 4
|
||
|
||
// 动态规划
|
||
var res = unboundedKnapsackDP(wgt: wgt, val: val, cap: cap)
|
||
print("不超过背包容量的最大物品价值为 \(res)")
|
||
|
||
// 状态压缩后的动态规划
|
||
res = unboundedKnapsackDPComp(wgt: wgt, val: val, cap: cap)
|
||
print("不超过背包容量的最大物品价值为 \(res)")
|
||
}
|
||
}
|