hello-algo/codes/dart/chapter_dynamic_programming/knapsack.dart
liuyuxin 10c397b172
feat: Add Dart codes for chapter_dynamic_programming and chapter_greedy (#683)
* feat: Add Dart codes for chapter_dynamic_programming

* feat: Add Dart codes for chapter_greedy
2023-08-13 19:29:54 +08:00

116 lines
3.3 KiB
Dart

/**
* File: knapsack.dart
* Created Time: 2023-08-11
* Author: liuyuxin (gvenusleo@gmail.com)
*/
import 'dart:math';
/* 0-1 背包:暴力搜索 */
int knapsackDFS(List<int> wgt, List<int> val, int i, int c) {
// 若已选完所有物品或背包无容量,则返回价值 0
if (i == 0 || c == 0) {
return 0;
}
// 若超过背包容量,则只能不放入背包
if (wgt[i - 1] > c) {
return knapsackDFS(wgt, val, i - 1, c);
}
// 计算不放入和放入物品 i 的最大价值
int no = knapsackDFS(wgt, val, i - 1, c);
int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];
// 返回两种方案中价值更大的那一个
return max(no, yes);
}
/* 0-1 背包:记忆化搜索 */
int knapsackDFSMem(
List<int> wgt,
List<int> val,
List<List<int>> mem,
int i,
int c,
) {
// 若已选完所有物品或背包无容量,则返回价值 0
if (i == 0 || c == 0) {
return 0;
}
// 若已有记录,则直接返回
if (mem[i][c] != -1) {
return mem[i][c];
}
// 若超过背包容量,则只能不放入背包
if (wgt[i - 1] > c) {
return knapsackDFSMem(wgt, val, mem, i - 1, c);
}
// 计算不放入和放入物品 i 的最大价值
int no = knapsackDFSMem(wgt, val, mem, i - 1, c);
int yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];
// 记录并返回两种方案中价值更大的那一个
mem[i][c] = max(no, yes);
return mem[i][c];
}
/* 0-1 背包:动态规划 */
int knapsackDP(List<int> wgt, List<int> val, int cap) {
int n = wgt.length;
// 初始化 dp 表
List<List<int>> dp = List.generate(n + 1, (index) => List.filled(cap + 1, 0));
// 状态转移
for (int i = 1; i <= n; i++) {
for (int c = 1; c <= cap; c++) {
if (wgt[i - 1] > c) {
// 若超过背包容量,则不选物品 i
dp[i][c] = dp[i - 1][c];
} else {
// 不选和选物品 i 这两种方案的较大值
dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[n][cap];
}
/* 0-1 背包:状态压缩后的动态规划 */
int knapsackDPComp(List<int> wgt, List<int> val, int cap) {
int n = wgt.length;
// 初始化 dp 表
List<int> dp = List.filled(cap + 1, 0);
// 状态转移
for (int i = 1; i <= n; i++) {
// 倒序遍历
for (int c = cap; c >= 1; c--) {
if (wgt[i - 1] <= c) {
// 不选和选物品 i 这两种方案的较大值
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[cap];
}
/* Driver Code */
void main() {
List<int> wgt = [10, 20, 30, 40, 50];
List<int> val = [50, 120, 150, 210, 240];
int cap = 50;
int n = wgt.length;
// 暴力搜索
int res = knapsackDFS(wgt, val, n, cap);
print("不超过背包容量的最大物品价值为 $res");
// 记忆化搜索
List<List<int>> mem =
List.generate(n + 1, (index) => List.filled(cap + 1, -1));
res = knapsackDFSMem(wgt, val, mem, n, cap);
print("不超过背包容量的最大物品价值为 $res");
// 动态规划
res = knapsackDP(wgt, val, cap);
print("不超过背包容量的最大物品价值为 $res");
// 状态压缩后的动态规划
res = knapsackDPComp(wgt, val, cap);
print("不超过背包容量的最大物品价值为 $res");
}