mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-26 00:16:28 +08:00
170 lines
4.8 KiB
C++
170 lines
4.8 KiB
C++
/**
|
|
* File: binary_search_tree.cpp
|
|
* Created Time: 2022-11-25
|
|
* Author: Krahets (krahets@163.com)
|
|
*/
|
|
|
|
#include "../utils/common.hpp"
|
|
|
|
/* 二叉搜索树 */
|
|
class BinarySearchTree {
|
|
private:
|
|
TreeNode *root;
|
|
|
|
public:
|
|
/* 构造方法 */
|
|
BinarySearchTree() {
|
|
// 初始化空树
|
|
root = nullptr;
|
|
}
|
|
|
|
/* 析构方法 */
|
|
~BinarySearchTree() {
|
|
freeMemoryTree(root);
|
|
}
|
|
|
|
/* 获取二叉树根节点 */
|
|
TreeNode *getRoot() {
|
|
return root;
|
|
}
|
|
|
|
/* 查找节点 */
|
|
TreeNode *search(int num) {
|
|
TreeNode *cur = root;
|
|
// 循环查找,越过叶节点后跳出
|
|
while (cur != nullptr) {
|
|
// 目标节点在 cur 的右子树中
|
|
if (cur->val < num)
|
|
cur = cur->right;
|
|
// 目标节点在 cur 的左子树中
|
|
else if (cur->val > num)
|
|
cur = cur->left;
|
|
// 找到目标节点,跳出循环
|
|
else
|
|
break;
|
|
}
|
|
// 返回目标节点
|
|
return cur;
|
|
}
|
|
|
|
/* 插入节点 */
|
|
void insert(int num) {
|
|
// 若树为空,则初始化根节点
|
|
if (root == nullptr) {
|
|
root = new TreeNode(num);
|
|
return;
|
|
}
|
|
TreeNode *cur = root, *pre = nullptr;
|
|
// 循环查找,越过叶节点后跳出
|
|
while (cur != nullptr) {
|
|
// 找到重复节点,直接返回
|
|
if (cur->val == num)
|
|
return;
|
|
pre = cur;
|
|
// 插入位置在 cur 的右子树中
|
|
if (cur->val < num)
|
|
cur = cur->right;
|
|
// 插入位置在 cur 的左子树中
|
|
else
|
|
cur = cur->left;
|
|
}
|
|
// 插入节点
|
|
TreeNode *node = new TreeNode(num);
|
|
if (pre->val < num)
|
|
pre->right = node;
|
|
else
|
|
pre->left = node;
|
|
}
|
|
|
|
/* 删除节点 */
|
|
void remove(int num) {
|
|
// 若树为空,直接提前返回
|
|
if (root == nullptr)
|
|
return;
|
|
TreeNode *cur = root, *pre = nullptr;
|
|
// 循环查找,越过叶节点后跳出
|
|
while (cur != nullptr) {
|
|
// 找到待删除节点,跳出循环
|
|
if (cur->val == num)
|
|
break;
|
|
pre = cur;
|
|
// 待删除节点在 cur 的右子树中
|
|
if (cur->val < num)
|
|
cur = cur->right;
|
|
// 待删除节点在 cur 的左子树中
|
|
else
|
|
cur = cur->left;
|
|
}
|
|
// 若无待删除节点,则直接返回
|
|
if (cur == nullptr)
|
|
return;
|
|
// 子节点数量 = 0 or 1
|
|
if (cur->left == nullptr || cur->right == nullptr) {
|
|
// 当子节点数量 = 0 / 1 时, child = nullptr / 该子节点
|
|
TreeNode *child = cur->left != nullptr ? cur->left : cur->right;
|
|
// 删除节点 cur
|
|
if (cur != root) {
|
|
if (pre->left == cur)
|
|
pre->left = child;
|
|
else
|
|
pre->right = child;
|
|
} else {
|
|
// 若删除节点为根节点,则重新指定根节点
|
|
root = child;
|
|
}
|
|
// 释放内存
|
|
delete cur;
|
|
}
|
|
// 子节点数量 = 2
|
|
else {
|
|
// 获取中序遍历中 cur 的下一个节点
|
|
TreeNode *tmp = cur->right;
|
|
while (tmp->left != nullptr) {
|
|
tmp = tmp->left;
|
|
}
|
|
int tmpVal = tmp->val;
|
|
// 递归删除节点 tmp
|
|
remove(tmp->val);
|
|
// 用 tmp 覆盖 cur
|
|
cur->val = tmpVal;
|
|
}
|
|
}
|
|
};
|
|
|
|
/* Driver Code */
|
|
int main() {
|
|
/* 初始化二叉搜索树 */
|
|
BinarySearchTree *bst = new BinarySearchTree();
|
|
// 请注意,不同的插入顺序会生成不同的二叉树,该序列可以生成一个完美二叉树
|
|
vector<int> nums = {8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15};
|
|
for (int num : nums) {
|
|
bst->insert(num);
|
|
}
|
|
cout << endl << "初始化的二叉树为\n" << endl;
|
|
printTree(bst->getRoot());
|
|
|
|
/* 查找节点 */
|
|
TreeNode *node = bst->search(7);
|
|
cout << endl << "查找到的节点对象为 " << node << ",节点值 = " << node->val << endl;
|
|
|
|
/* 插入节点 */
|
|
bst->insert(16);
|
|
cout << endl << "插入节点 16 后,二叉树为\n" << endl;
|
|
printTree(bst->getRoot());
|
|
|
|
/* 删除节点 */
|
|
bst->remove(1);
|
|
cout << endl << "删除节点 1 后,二叉树为\n" << endl;
|
|
printTree(bst->getRoot());
|
|
bst->remove(2);
|
|
cout << endl << "删除节点 2 后,二叉树为\n" << endl;
|
|
printTree(bst->getRoot());
|
|
bst->remove(4);
|
|
cout << endl << "删除节点 4 后,二叉树为\n" << endl;
|
|
printTree(bst->getRoot());
|
|
|
|
// 释放内存
|
|
delete bst;
|
|
|
|
return 0;
|
|
}
|