hello-algo/codes/csharp/chapter_tree/binary_search_tree.cs
hpstory 56b20eff36
feat(csharp) .NET 8.0 code migration (#966)
* .net 8.0 migration

* update docs

* revert change

* revert change and update appendix docs

* remove static

* Update binary_search_insertion.cs

* Update binary_search_insertion.cs

* Update binary_search_edge.cs

* Update binary_search_insertion.cs

* Update binary_search_edge.cs

---------

Co-authored-by: Yudong Jin <krahets@163.com>
2023-11-26 23:18:44 +08:00

160 lines
4.7 KiB
C#

/**
* File: binary_search_tree.cs
* Created Time: 2022-12-23
* Author: haptear (haptear@hotmail.com)
*/
namespace hello_algo.chapter_tree;
class BinarySearchTree {
TreeNode? root;
public BinarySearchTree() {
// 初始化空树
root = null;
}
/* 获取二叉树根节点 */
public TreeNode? GetRoot() {
return root;
}
/* 查找节点 */
public TreeNode? Search(int num) {
TreeNode? cur = root;
// 循环查找,越过叶节点后跳出
while (cur != null) {
// 目标节点在 cur 的右子树中
if (cur.val < num) cur =
cur.right;
// 目标节点在 cur 的左子树中
else if (cur.val > num)
cur = cur.left;
// 找到目标节点,跳出循环
else
break;
}
// 返回目标节点
return cur;
}
/* 插入节点 */
public void Insert(int num) {
// 若树为空,则初始化根节点
if (root == null) {
root = new TreeNode(num);
return;
}
TreeNode? cur = root, pre = null;
// 循环查找,越过叶节点后跳出
while (cur != null) {
// 找到重复节点,直接返回
if (cur.val == num)
return;
pre = cur;
// 插入位置在 cur 的右子树中
if (cur.val < num)
cur = cur.right;
// 插入位置在 cur 的左子树中
else
cur = cur.left;
}
// 插入节点
TreeNode node = new(num);
if (pre != null) {
if (pre.val < num)
pre.right = node;
else
pre.left = node;
}
}
/* 删除节点 */
public void Remove(int num) {
// 若树为空,直接提前返回
if (root == null)
return;
TreeNode? cur = root, pre = null;
// 循环查找,越过叶节点后跳出
while (cur != null) {
// 找到待删除节点,跳出循环
if (cur.val == num)
break;
pre = cur;
// 待删除节点在 cur 的右子树中
if (cur.val < num)
cur = cur.right;
// 待删除节点在 cur 的左子树中
else
cur = cur.left;
}
// 若无待删除节点,则直接返回
if (cur == null)
return;
// 子节点数量 = 0 or 1
if (cur.left == null || cur.right == null) {
// 当子节点数量 = 0 / 1 时, child = null / 该子节点
TreeNode? child = cur.left ?? cur.right;
// 删除节点 cur
if (cur != root) {
if (pre!.left == cur)
pre.left = child;
else
pre.right = child;
} else {
// 若删除节点为根节点,则重新指定根节点
root = child;
}
}
// 子节点数量 = 2
else {
// 获取中序遍历中 cur 的下一个节点
TreeNode? tmp = cur.right;
while (tmp.left != null) {
tmp = tmp.left;
}
// 递归删除节点 tmp
Remove(tmp.val!.Value);
// 用 tmp 覆盖 cur
cur.val = tmp.val;
}
}
}
public class binary_search_tree {
[Test]
public void Test() {
/* 初始化二叉搜索树 */
BinarySearchTree bst = new();
// 请注意,不同的插入顺序会生成不同的二叉树,该序列可以生成一个完美二叉树
int[] nums = [8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15];
foreach (int num in nums) {
bst.Insert(num);
}
Console.WriteLine("\n初始化的二叉树为\n");
PrintUtil.PrintTree(bst.GetRoot());
/* 查找节点 */
TreeNode? node = bst.Search(7);
Console.WriteLine("\n查找到的节点对象为 " + node + ",节点值 = " + node?.val);
/* 插入节点 */
bst.Insert(16);
Console.WriteLine("\n插入节点 16 后,二叉树为\n");
PrintUtil.PrintTree(bst.GetRoot());
/* 删除节点 */
bst.Remove(1);
Console.WriteLine("\n删除节点 1 后,二叉树为\n");
PrintUtil.PrintTree(bst.GetRoot());
bst.Remove(2);
Console.WriteLine("\n删除节点 2 后,二叉树为\n");
PrintUtil.PrintTree(bst.GetRoot());
bst.Remove(4);
Console.WriteLine("\n删除节点 4 后,二叉树为\n");
PrintUtil.PrintTree(bst.GetRoot());
}
}