mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-25 12:36:30 +08:00
89a5f4d0d7
* Fix binary_search_tree TS code * Update binary_search_tree js code style * Update binary_search_tree.ts * Update avl_tree.ts * Update binary_search_tree.ts --------- Co-authored-by: Yudong Jin <krahets@163.com>
139 lines
4.2 KiB
JavaScript
139 lines
4.2 KiB
JavaScript
/**
|
|
* File: binary_search_tree.js
|
|
* Created Time: 2022-12-04
|
|
* Author: IsChristina (christinaxia77@foxmail.com)
|
|
*/
|
|
|
|
const { TreeNode } = require('../modules/TreeNode');
|
|
const { printTree } = require('../modules/PrintUtil');
|
|
|
|
/* 二叉搜索树 */
|
|
class BinarySearchTree {
|
|
/* 构造方法 */
|
|
constructor() {
|
|
// 初始化空树
|
|
this.root = null;
|
|
}
|
|
|
|
/* 获取二叉树根节点 */
|
|
getRoot() {
|
|
return this.root;
|
|
}
|
|
|
|
/* 查找节点 */
|
|
search(num) {
|
|
let cur = this.root;
|
|
// 循环查找,越过叶节点后跳出
|
|
while (cur !== null) {
|
|
// 目标节点在 cur 的右子树中
|
|
if (cur.val < num) cur = cur.right;
|
|
// 目标节点在 cur 的左子树中
|
|
else if (cur.val > num) cur = cur.left;
|
|
// 找到目标节点,跳出循环
|
|
else break;
|
|
}
|
|
// 返回目标节点
|
|
return cur;
|
|
}
|
|
|
|
/* 插入节点 */
|
|
insert(num) {
|
|
// 若树为空,则初始化根节点
|
|
if (this.root === null) {
|
|
this.root = new TreeNode(num);
|
|
return;
|
|
}
|
|
let cur = this.root,
|
|
pre = null;
|
|
// 循环查找,越过叶节点后跳出
|
|
while (cur !== null) {
|
|
// 找到重复节点,直接返回
|
|
if (cur.val === num) return;
|
|
pre = cur;
|
|
// 插入位置在 cur 的右子树中
|
|
if (cur.val < num) cur = cur.right;
|
|
// 插入位置在 cur 的左子树中
|
|
else cur = cur.left;
|
|
}
|
|
// 插入节点
|
|
const node = new TreeNode(num);
|
|
if (pre.val < num) pre.right = node;
|
|
else pre.left = node;
|
|
}
|
|
|
|
/* 删除节点 */
|
|
remove(num) {
|
|
// 若树为空,直接提前返回
|
|
if (this.root === null) return;
|
|
let cur = this.root,
|
|
pre = null;
|
|
// 循环查找,越过叶节点后跳出
|
|
while (cur !== null) {
|
|
// 找到待删除节点,跳出循环
|
|
if (cur.val === num) break;
|
|
pre = cur;
|
|
// 待删除节点在 cur 的右子树中
|
|
if (cur.val < num) cur = cur.right;
|
|
// 待删除节点在 cur 的左子树中
|
|
else cur = cur.left;
|
|
}
|
|
// 若无待删除节点,则直接返回
|
|
if (cur === null) return;
|
|
// 子节点数量 = 0 or 1
|
|
if (cur.left === null || cur.right === null) {
|
|
// 当子节点数量 = 0 / 1 时, child = null / 该子节点
|
|
const child = cur.left !== null ? cur.left : cur.right;
|
|
// 删除节点 cur
|
|
if (cur !== this.root) {
|
|
if (pre.left === cur) pre.left = child;
|
|
else pre.right = child;
|
|
} else {
|
|
// 若删除节点为根节点,则重新指定根节点
|
|
this.root = child;
|
|
}
|
|
}
|
|
// 子节点数量 = 2
|
|
else {
|
|
// 获取中序遍历中 cur 的下一个节点
|
|
let tmp = cur.right;
|
|
while (tmp.left !== null) {
|
|
tmp = tmp.left;
|
|
}
|
|
// 递归删除节点 tmp
|
|
this.remove(tmp.val);
|
|
// 用 tmp 覆盖 cur
|
|
cur.val = tmp.val;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Driver Code */
|
|
/* 初始化二叉搜索树 */
|
|
const bst = new BinarySearchTree();
|
|
// 请注意,不同的插入顺序会生成不同的二叉树,该序列可以生成一个完美二叉树
|
|
const nums = [8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15];
|
|
for (const num of nums) {
|
|
bst.insert(num);
|
|
}
|
|
console.log('\n初始化的二叉树为\n');
|
|
printTree(bst.getRoot());
|
|
|
|
/* 查找节点 */
|
|
const node = bst.search(7);
|
|
console.log('\n查找到的节点对象为 ' + node + ',节点值 = ' + node.val);
|
|
|
|
/* 插入节点 */
|
|
bst.insert(16);
|
|
console.log('\n插入节点 16 后,二叉树为\n');
|
|
printTree(bst.getRoot());
|
|
|
|
/* 删除节点 */
|
|
bst.remove(1);
|
|
console.log('\n删除节点 1 后,二叉树为\n');
|
|
printTree(bst.getRoot());
|
|
bst.remove(2);
|
|
console.log('\n删除节点 2 后,二叉树为\n');
|
|
printTree(bst.getRoot());
|
|
bst.remove(4);
|
|
console.log('\n删除节点 4 后,二叉树为\n');
|
|
printTree(bst.getRoot());
|