hello-algo/codes/rust/chapter_heap/my_heap.rs
Yudong Jin f68bbb0d59
Update the book based on the revised second edition (#1014)
* Revised the book

* Update the book with the second revised edition

* Revise base on the manuscript of the first edition
2023-12-28 18:06:09 +08:00

165 lines
No EOL
4.2 KiB
Rust

/*
* File: my_heap.rs
* Created Time: 2023-07-16
* Author: night-cruise (2586447362@qq.com)
*/
include!("../include/include.rs");
/* 大顶堆 */
struct MaxHeap {
// 使用 vector 而非数组,这样无须考虑扩容问题
max_heap: Vec<i32>,
}
impl MaxHeap {
/* 构造方法,根据输入列表建堆 */
fn new(nums: Vec<i32>) -> Self {
// 将列表元素原封不动添加进堆
let mut heap = MaxHeap { max_heap: nums };
// 堆化除叶节点以外的其他所有节点
for i in (0..=Self::parent(heap.size() - 1)).rev() {
heap.sift_down(i);
}
heap
}
/* 获取左子节点的索引 */
fn left(i: usize) -> usize {
2 * i + 1
}
/* 获取右子节点的索引 */
fn right(i: usize) -> usize {
2 * i + 2
}
/* 获取父节点的索引 */
fn parent(i: usize) -> usize {
(i - 1) / 2 // 向下整除
}
/* 交换元素 */
fn swap(&mut self, i: usize, j: usize) {
self.max_heap.swap(i, j);
}
/* 获取堆大小 */
fn size(&self) -> usize {
self.max_heap.len()
}
/* 判断堆是否为空 */
fn is_empty(&self) -> bool {
self.max_heap.is_empty()
}
/* 访问堆顶元素 */
fn peek(&self) -> Option<i32> {
self.max_heap.first().copied()
}
/* 元素入堆 */
fn push(&mut self, val: i32) {
// 添加节点
self.max_heap.push(val);
// 从底至顶堆化
self.sift_up(self.size() - 1);
}
/* 从节点 i 开始,从底至顶堆化 */
fn sift_up(&mut self, mut i: usize) {
loop {
// 节点 i 已经是堆顶节点了,结束堆化
if i == 0 {
break;
}
// 获取节点 i 的父节点
let p = Self::parent(i);
// 当“节点无须修复”时,结束堆化
if self.max_heap[i] <= self.max_heap[p] {
break;
}
// 交换两节点
self.swap(i, p);
// 循环向上堆化
i = p;
}
}
/* 元素出堆 */
fn pop(&mut self) -> i32 {
// 判空处理
if self.is_empty() {
panic!("index out of bounds");
}
// 交换根节点与最右叶节点(交换首元素与尾元素)
self.swap(0, self.size() - 1);
// 删除节点
let val = self.max_heap.remove(self.size() - 1);
// 从顶至底堆化
self.sift_down(0);
// 返回堆顶元素
val
}
/* 从节点 i 开始,从顶至底堆化 */
fn sift_down(&mut self, mut i: usize) {
loop {
// 判断节点 i, l, r 中值最大的节点,记为 ma
let (l, r, mut ma) = (Self::left(i), Self::right(i), i);
if l < self.size() && self.max_heap[l] > self.max_heap[ma] {
ma = l;
}
if r < self.size() && self.max_heap[r] > self.max_heap[ma] {
ma = r;
}
// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
if ma == i {
break;
}
// 交换两节点
self.swap(i, ma);
// 循环向下堆化
i = ma;
}
}
/* 打印堆(二叉树) */
fn print(&self) {
print_util::print_heap(self.max_heap.clone());
}
}
/* Driver Code */
fn main() {
/* 初始化大顶堆 */
let mut max_heap = MaxHeap::new(vec![9, 8, 6, 6, 7, 5, 2, 1, 4, 3, 6, 2]);
println!("\n输入列表并建堆后");
max_heap.print();
/* 获取堆顶元素 */
let peek = max_heap.peek();
if let Some(peek) = peek {
println!("\n堆顶元素为 {}", peek);
}
/* 元素入堆 */
let val = 7;
max_heap.push(val);
println!("\n元素 {} 入堆后", val);
max_heap.print();
/* 堆顶元素出堆 */
let peek = max_heap.pop();
println!("\n堆顶元素 {} 出堆后", peek);
max_heap.print();
/* 获取堆大小 */
let size = max_heap.size();
println!("\n堆元素数量为 {}", size);
/* 判断堆是否为空 */
let is_empty = max_heap.is_empty();
println!("\n堆是否为空 {}", is_empty);
}