hello-algo/zh-hant/codes/ruby/chapter_computational_complexity/time_complexity.rb
Yudong Jin b2f0d4603d
Many bug fixes and improvements (#1270)
* Add Ruby and Kotlin icons
Add the avatar of @curtishd

* Update README

* Synchronize zh-hant and zh versions.

* Translate the pythontutor blocks to traditional Chinese

* Fix en/mkdocs.yml

* Update the landing page of the en version.

* Fix the Dockerfile

* Refine the en landingpage

* Fix en landing page

* Reset the README.md
2024-04-11 20:18:19 +08:00

165 lines
3.3 KiB
Ruby

=begin
File: time_complexity.rb
Created Time: 2024-03-30
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
=end
### 常數階 ###
def constant(n)
count = 0
size = 100000
(0...size).each { count += 1 }
count
end
### 線性階 ###
def linear(n)
count = 0
(0...n).each { count += 1 }
count
end
### 線性階(走訪陣列)###
def array_traversal(nums)
count = 0
# 迴圈次數與陣列長度成正比
for num in nums
count += 1
end
count
end
### 平方階 ###
def quadratic(n)
count = 0
# 迴圈次數與資料大小 n 成平方關係
for i in 0...n
for j in 0...n
count += 1
end
end
count
end
### 平方階(泡沫排序)###
def bubble_sort(nums)
count = 0 # 計數器
# 外迴圈:未排序區間為 [0, i]
for i in (nums.length - 1).downto(0)
# 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
for j in 0...i
if nums[j] > nums[j + 1]
# 交換 nums[j] 與 nums[j + 1]
tmp = nums[j]
nums[j] = nums[j + 1]
nums[j + 1] = tmp
count += 3 # 元素交換包含 3 個單元操作
end
end
end
count
end
### 指數階(迴圈實現)###
def exponential(n)
count, base = 0, 1
# 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1)
(0...n).each do
(0...base).each { count += 1 }
base *= 2
end
# count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
count
end
### 指數階(遞迴實現)###
def exp_recur(n)
return 1 if n == 1
exp_recur(n - 1) + exp_recur(n - 1) + 1
end
### 對數階(迴圈實現)###
def logarithmic(n)
count = 0
while n > 1
n /= 2
count += 1
end
count
end
### 對數階(遞迴實現)###
def log_recur(n)
return 0 unless n > 1
log_recur(n / 2) + 1
end
### 線性對數階 ###
def linear_log_recur(n)
return 1 unless n > 1
count = linear_log_recur(n / 2) + linear_log_recur(n / 2)
(0...n).each { count += 1 }
count
end
### 階乘階(遞迴實現)###
def factorial_recur(n)
return 1 if n == 0
count = 0
# 從 1 個分裂出 n 個
(0...n).each { count += factorial_recur(n - 1) }
count
end
### Driver Code ###
if __FILE__ == $0
# 可以修改 n 執行,體會一下各種複雜度的操作數量變化趨勢
n = 8
puts "輸入資料大小 n = #{n}"
count = constant(n)
puts "常數階的操作數量 = #{count}"
count = linear(n)
puts "線性階的操作數量 = #{count}"
count = array_traversal(Array.new(n, 0))
puts "線性階(走訪陣列)的操作數量 = #{count}"
count = quadratic(n)
puts "平方階的操作數量 = #{count}"
nums = Array.new(n) { |i| n - i } # [n, n-1, ..., 2, 1]
count = bubble_sort(nums)
puts "平方階(泡沫排序)的操作數量 = #{count}"
count = exponential(n)
puts "指數階(迴圈實現)的操作數量 = #{count}"
count = exp_recur(n)
puts "指數階(遞迴實現)的操作數量 = #{count}"
count = logarithmic(n)
puts "對數階(迴圈實現)的操作數量 = #{count}"
count = log_recur(n)
puts "對數階(遞迴實現)的操作數量 = #{count}"
count = linear_log_recur(n)
puts "線性對數階(遞迴實現)的操作數量 = #{count}"
count = factorial_recur(n)
puts "階乘階(遞迴實現)的操作數量 = #{count}"
end