hello-algo/codes/zig/chapter_tree/avl_tree.zig
krahets 300016393b Add code source blocks to the chapter Graph.
Fix "函数" and "方法"
2023-02-10 01:04:26 +08:00

260 lines
No EOL
9.6 KiB
Zig
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// File: avl_tree.zig
// Created Time: 2023-01-15
// Author: sjinzh (sjinzh@gmail.com)
const std = @import("std");
const inc = @import("include");
// AVL 树
pub fn AVLTree(comptime T: type) type {
return struct {
const Self = @This();
root: ?*inc.TreeNode(T) = null, // 根结点
mem_arena: ?std.heap.ArenaAllocator = null,
mem_allocator: std.mem.Allocator = undefined, // 内存分配器
// 构造方法
pub fn init(self: *Self, allocator: std.mem.Allocator) void {
if (self.mem_arena == null) {
self.mem_arena = std.heap.ArenaAllocator.init(allocator);
self.mem_allocator = self.mem_arena.?.allocator();
}
}
// 析构方法
pub fn deinit(self: *Self) void {
if (self.mem_arena == null) return;
self.mem_arena.?.deinit();
}
// 获取结点高度
fn height(self: *Self, node: ?*inc.TreeNode(T)) i32 {
_ = self;
// 空结点高度为 -1 ,叶结点高度为 0
return if (node == null) -1 else node.?.height;
}
// 更新结点高度
fn updateHeight(self: *Self, node: ?*inc.TreeNode(T)) void {
// 结点高度等于最高子树高度 + 1
node.?.height = std.math.max(self.height(node.?.left), self.height(node.?.right)) + 1;
}
// 获取平衡因子
fn balanceFactor(self: *Self, node: ?*inc.TreeNode(T)) i32 {
// 空结点平衡因子为 0
if (node == null) return 0;
// 结点平衡因子 = 左子树高度 - 右子树高度
return self.height(node.?.left) - self.height(node.?.right);
}
// 右旋操作
fn rightRotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {
var child = node.?.left;
var grandChild = child.?.right;
// 以 child 为原点,将 node 向右旋转
child.?.right = node;
node.?.left = grandChild;
// 更新结点高度
self.updateHeight(node);
self.updateHeight(child);
// 返回旋转后子树的根结点
return child;
}
// 左旋操作
fn leftRotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {
var child = node.?.right;
var grandChild = child.?.left;
// 以 child 为原点,将 node 向左旋转
child.?.left = node;
node.?.right = grandChild;
// 更新结点高度
self.updateHeight(node);
self.updateHeight(child);
// 返回旋转后子树的根结点
return child;
}
// 执行旋转操作,使该子树重新恢复平衡
fn rotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {
// 获取结点 node 的平衡因子
var balance_factor = self.balanceFactor(node);
// 左偏树
if (balance_factor > 1) {
if (self.balanceFactor(node.?.left) >= 0) {
// 右旋
return self.rightRotate(node);
} else {
// 先左旋后右旋
node.?.left = self.leftRotate(node.?.left);
return self.rightRotate(node);
}
}
// 右偏树
if (balance_factor < -1) {
if (self.balanceFactor(node.?.right) <= 0) {
// 左旋
return self.leftRotate(node);
} else {
// 先右旋后左旋
node.?.right = self.rightRotate(node.?.right);
return self.leftRotate(node);
}
}
// 平衡树,无需旋转,直接返回
return node;
}
// 插入结点
fn insert(self: *Self, val: T) !?*inc.TreeNode(T) {
self.root = try self.insertHelper(self.root, val);
return self.root;
}
// 递归插入结点(辅助方法)
fn insertHelper(self: *Self, node_: ?*inc.TreeNode(T), val: T) !?*inc.TreeNode(T) {
var node = node_;
if (node == null) {
var tmp_node = try self.mem_allocator.create(inc.TreeNode(T));
tmp_node.init(val);
return tmp_node;
}
// 1. 查找插入位置,并插入结点
if (val < node.?.val) {
node.?.left = try self.insertHelper(node.?.left, val);
} else if (val > node.?.val) {
node.?.right = try self.insertHelper(node.?.right, val);
} else {
return node; // 重复结点不插入,直接返回
}
self.updateHeight(node); // 更新结点高度
// 2. 执行旋转操作,使该子树重新恢复平衡
node = self.rotate(node);
// 返回子树的根结点
return node;
}
// 删除结点
fn remove(self: *Self, val: T) ?*inc.TreeNode(T) {
self.root = self.removeHelper(self.root, val);
return self.root;
}
// 递归删除结点(辅助方法)
fn removeHelper(self: *Self, node_: ?*inc.TreeNode(T), val: T) ?*inc.TreeNode(T) {
var node = node_;
if (node == null) return null;
// 1. 查找结点,并删除之
if (val < node.?.val) {
node.?.left = self.removeHelper(node.?.left, val);
} else if (val > node.?.val) {
node.?.right = self.removeHelper(node.?.right, val);
} else {
if (node.?.left == null or node.?.right == null) {
var child = if (node.?.left != null) node.?.left else node.?.right;
// 子结点数量 = 0 ,直接删除 node 并返回
if (child == null) {
return null;
// 子结点数量 = 1 ,直接删除 node
} else {
node = child;
}
} else {
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
var temp = self.getInOrderNext(node.?.right);
node.?.right = self.removeHelper(node.?.right, temp.?.val);
node.?.val = temp.?.val;
}
}
self.updateHeight(node); // 更新结点高度
// 2. 执行旋转操作,使该子树重新恢复平衡
node = self.rotate(node);
// 返回子树的根结点
return node;
}
// 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况)
fn getInOrderNext(self: *Self, node_: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {
_ = self;
var node = node_;
if (node == null) return node;
// 循环访问左子结点,直到叶结点时为最小结点,跳出
while (node.?.left != null) {
node = node.?.left;
}
return node;
}
// 查找结点
fn search(self: *Self, val: T) ?*inc.TreeNode(T) {
var cur = self.root;
// 循环查找,越过叶结点后跳出
while (cur != null) {
// 目标结点在 cur 的右子树中
if (cur.?.val < val) {
cur = cur.?.right;
// 目标结点在 cur 的左子树中
} else if (cur.?.val > val) {
cur = cur.?.left;
// 找到目标结点,跳出循环
} else {
break;
}
}
// 返回目标结点
return cur;
}
};
}
pub fn testInsert(comptime T: type, tree_: *AVLTree(T), val: T) !void {
var tree = tree_;
_ = try tree.insert(val);
std.debug.print("\n插入结点 {} 后AVL 树为\n", .{val});
try inc.PrintUtil.printTree(tree.root, null, false);
}
pub fn testRemove(comptime T: type, tree_: *AVLTree(T), val: T) void {
var tree = tree_;
_ = tree.remove(val);
std.debug.print("\n删除结点 {} 后AVL 树为\n", .{val});
try inc.PrintUtil.printTree(tree.root, null, false);
}
// Driver Code
pub fn main() !void {
// 初始化空 AVL 树
var avl_tree = AVLTree(i32){};
avl_tree.init(std.heap.page_allocator);
defer avl_tree.deinit();
// 插入结点
// 请关注插入结点后AVL 树是如何保持平衡的
try testInsert(i32, &avl_tree, 1);
try testInsert(i32, &avl_tree, 2);
try testInsert(i32, &avl_tree, 3);
try testInsert(i32, &avl_tree, 4);
try testInsert(i32, &avl_tree, 5);
try testInsert(i32, &avl_tree, 8);
try testInsert(i32, &avl_tree, 7);
try testInsert(i32, &avl_tree, 9);
try testInsert(i32, &avl_tree, 10);
try testInsert(i32, &avl_tree, 6);
// 插入重复结点
try testInsert(i32, &avl_tree, 7);
// 删除结点
// 请关注删除结点后AVL 树是如何保持平衡的
testRemove(i32, &avl_tree, 8); // 删除度为 0 的结点
testRemove(i32, &avl_tree, 5); // 删除度为 1 的结点
testRemove(i32, &avl_tree, 4); // 删除度为 2 的结点
// 查找结点
var node = avl_tree.search(7).?;
std.debug.print("\n查找到的结点对象为 {any},结点值 = {}\n", .{node, node.val});
_ = try std.io.getStdIn().reader().readByte();
}