hello-algo/codes/python/chapter_dynamic_programming/min_path_sum.py
Yudong Jin a005c6ebd3
Some improvements (#1073)
* Update avatar's link in the landing page

* Bug fixes

* Move assets folder from overrides to docs

* Reduce figures' corner radius

* Update copyright

* Update header image

* Krahets -> krahets

* Update the landing page
2024-02-07 22:21:18 +08:00

104 lines
3.2 KiB
Python

"""
File: min_path_sum.py
Created Time: 2023-07-04
Author: krahets (krahets@163.com)
"""
from math import inf
def min_path_sum_dfs(grid: list[list[int]], i: int, j: int) -> int:
"""最小路径和:暴力搜索"""
# 若为左上角单元格,则终止搜索
if i == 0 and j == 0:
return grid[0][0]
# 若行列索引越界,则返回 +∞ 代价
if i < 0 or j < 0:
return inf
# 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
up = min_path_sum_dfs(grid, i - 1, j)
left = min_path_sum_dfs(grid, i, j - 1)
# 返回从左上角到 (i, j) 的最小路径代价
return min(left, up) + grid[i][j]
def min_path_sum_dfs_mem(
grid: list[list[int]], mem: list[list[int]], i: int, j: int
) -> int:
"""最小路径和:记忆化搜索"""
# 若为左上角单元格,则终止搜索
if i == 0 and j == 0:
return grid[0][0]
# 若行列索引越界,则返回 +∞ 代价
if i < 0 or j < 0:
return inf
# 若已有记录,则直接返回
if mem[i][j] != -1:
return mem[i][j]
# 左边和上边单元格的最小路径代价
up = min_path_sum_dfs_mem(grid, mem, i - 1, j)
left = min_path_sum_dfs_mem(grid, mem, i, j - 1)
# 记录并返回左上角到 (i, j) 的最小路径代价
mem[i][j] = min(left, up) + grid[i][j]
return mem[i][j]
def min_path_sum_dp(grid: list[list[int]]) -> int:
"""最小路径和:动态规划"""
n, m = len(grid), len(grid[0])
# 初始化 dp 表
dp = [[0] * m for _ in range(n)]
dp[0][0] = grid[0][0]
# 状态转移:首行
for j in range(1, m):
dp[0][j] = dp[0][j - 1] + grid[0][j]
# 状态转移:首列
for i in range(1, n):
dp[i][0] = dp[i - 1][0] + grid[i][0]
# 状态转移:其余行和列
for i in range(1, n):
for j in range(1, m):
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]
return dp[n - 1][m - 1]
def min_path_sum_dp_comp(grid: list[list[int]]) -> int:
"""最小路径和:空间优化后的动态规划"""
n, m = len(grid), len(grid[0])
# 初始化 dp 表
dp = [0] * m
# 状态转移:首行
dp[0] = grid[0][0]
for j in range(1, m):
dp[j] = dp[j - 1] + grid[0][j]
# 状态转移:其余行
for i in range(1, n):
# 状态转移:首列
dp[0] = dp[0] + grid[i][0]
# 状态转移:其余列
for j in range(1, m):
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j]
return dp[m - 1]
"""Driver Code"""
if __name__ == "__main__":
grid = [[1, 3, 1, 5], [2, 2, 4, 2], [5, 3, 2, 1], [4, 3, 5, 2]]
n, m = len(grid), len(grid[0])
# 暴力搜索
res = min_path_sum_dfs(grid, n - 1, m - 1)
print(f"从左上角到右下角的做小路径和为 {res}")
# 记忆化搜索
mem = [[-1] * m for _ in range(n)]
res = min_path_sum_dfs_mem(grid, mem, n - 1, m - 1)
print(f"从左上角到右下角的做小路径和为 {res}")
# 动态规划
res = min_path_sum_dp(grid)
print(f"从左上角到右下角的做小路径和为 {res}")
# 空间优化后的动态规划
res = min_path_sum_dp_comp(grid)
print(f"从左上角到右下角的做小路径和为 {res}")