mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-28 23:56:28 +08:00
1c0f350ad6
* Add the intial translation of code of all the languages * test * revert * Remove * Add Python and Java code for EN version
104 lines
3.5 KiB
Python
104 lines
3.5 KiB
Python
"""
|
|
File: min_path_sum.py
|
|
Created Time: 2023-07-04
|
|
Author: krahets (krahets@163.com)
|
|
"""
|
|
|
|
from math import inf
|
|
|
|
|
|
def min_path_sum_dfs(grid: list[list[int]], i: int, j: int) -> int:
|
|
"""Minimum path sum: Brute force search"""
|
|
# If it's the top-left cell, terminate the search
|
|
if i == 0 and j == 0:
|
|
return grid[0][0]
|
|
# If the row or column index is out of bounds, return a +∞ cost
|
|
if i < 0 or j < 0:
|
|
return inf
|
|
# Calculate the minimum path cost from the top-left to (i-1, j) and (i, j-1)
|
|
up = min_path_sum_dfs(grid, i - 1, j)
|
|
left = min_path_sum_dfs(grid, i, j - 1)
|
|
# Return the minimum path cost from the top-left to (i, j)
|
|
return min(left, up) + grid[i][j]
|
|
|
|
|
|
def min_path_sum_dfs_mem(
|
|
grid: list[list[int]], mem: list[list[int]], i: int, j: int
|
|
) -> int:
|
|
"""Minimum path sum: Memoized search"""
|
|
# If it's the top-left cell, terminate the search
|
|
if i == 0 and j == 0:
|
|
return grid[0][0]
|
|
# If the row or column index is out of bounds, return a +∞ cost
|
|
if i < 0 or j < 0:
|
|
return inf
|
|
# If there is a record, return it
|
|
if mem[i][j] != -1:
|
|
return mem[i][j]
|
|
# The minimum path cost from the left and top cells
|
|
up = min_path_sum_dfs_mem(grid, mem, i - 1, j)
|
|
left = min_path_sum_dfs_mem(grid, mem, i, j - 1)
|
|
# Record and return the minimum path cost from the top-left to (i, j)
|
|
mem[i][j] = min(left, up) + grid[i][j]
|
|
return mem[i][j]
|
|
|
|
|
|
def min_path_sum_dp(grid: list[list[int]]) -> int:
|
|
"""Minimum path sum: Dynamic programming"""
|
|
n, m = len(grid), len(grid[0])
|
|
# Initialize dp table
|
|
dp = [[0] * m for _ in range(n)]
|
|
dp[0][0] = grid[0][0]
|
|
# State transition: first row
|
|
for j in range(1, m):
|
|
dp[0][j] = dp[0][j - 1] + grid[0][j]
|
|
# State transition: first column
|
|
for i in range(1, n):
|
|
dp[i][0] = dp[i - 1][0] + grid[i][0]
|
|
# State transition: the rest of the rows and columns
|
|
for i in range(1, n):
|
|
for j in range(1, m):
|
|
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]
|
|
return dp[n - 1][m - 1]
|
|
|
|
|
|
def min_path_sum_dp_comp(grid: list[list[int]]) -> int:
|
|
"""Minimum path sum: Space-optimized dynamic programming"""
|
|
n, m = len(grid), len(grid[0])
|
|
# Initialize dp table
|
|
dp = [0] * m
|
|
# State transition: first row
|
|
dp[0] = grid[0][0]
|
|
for j in range(1, m):
|
|
dp[j] = dp[j - 1] + grid[0][j]
|
|
# State transition: the rest of the rows
|
|
for i in range(1, n):
|
|
# State transition: first column
|
|
dp[0] = dp[0] + grid[i][0]
|
|
# State transition: the rest of the columns
|
|
for j in range(1, m):
|
|
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j]
|
|
return dp[m - 1]
|
|
|
|
|
|
"""Driver Code"""
|
|
if __name__ == "__main__":
|
|
grid = [[1, 3, 1, 5], [2, 2, 4, 2], [5, 3, 2, 1], [4, 3, 5, 2]]
|
|
n, m = len(grid), len(grid[0])
|
|
|
|
# Brute force search
|
|
res = min_path_sum_dfs(grid, n - 1, m - 1)
|
|
print(f"The minimum path sum from the top-left to the bottom-right corner is {res}")
|
|
|
|
# Memoized search
|
|
mem = [[-1] * m for _ in range(n)]
|
|
res = min_path_sum_dfs_mem(grid, mem, n - 1, m - 1)
|
|
print(f"The minimum path sum from the top-left to the bottom-right corner is {res}")
|
|
|
|
# Dynamic programming
|
|
res = min_path_sum_dp(grid)
|
|
print(f"The minimum path sum from the top-left to the bottom-right corner is {res}")
|
|
|
|
# Space-optimized dynamic programming
|
|
res = min_path_sum_dp_comp(grid)
|
|
print(f"The minimum path sum from the top-left to the bottom-right corner is {res}")
|