hello-algo/codes/dart/chapter_tree/binary_search_tree.dart
Yudong Jin 1c8b7ef559
refactor: Replace 结点 with 节点 (#452)
* Replace 结点 with 节点
Update the footnotes in the figures

* Update mindmap

* Reduce the size of the mindmap.png
2023-04-09 04:32:17 +08:00

162 lines
4 KiB
Dart

/**
* File: binary_search_tree.dart
* Created Time: 2023-04-04
* Author: liuyuxin (gvenusleo@gmail.com)
*/
import '../utils/print_util.dart';
import '../utils/tree_node.dart';
/* 二叉搜索树 */
TreeNode? root;
void binarySearchTree(List<int> nums) {
nums.sort(); // 排序数组
root = buildTree(nums, 0, nums.length - 1); // 构建二叉搜索树
}
/* 获取二叉树的根节点 */
TreeNode? getRoot() {
return root;
}
/* 构建二叉上搜索树 */
TreeNode? buildTree(List<int> nums, int i, int j) {
if (i > j) {
return null;
}
// 将数组中间节点作为根节点
int mid = (i + j) ~/ 2;
TreeNode? root = TreeNode(nums[mid]);
root.left = buildTree(nums, i, mid - 1);
root.right = buildTree(nums, mid + 1, j);
return root;
}
/* 查找节点 */
TreeNode? search(int num) {
TreeNode? cur = root;
// 循环查找,越过叶节点后跳出
while (cur != null) {
// 目标节点在 cur 的右子树中
if (cur.val < num)
cur = cur.right;
// 目标节点在 cur 的左子树中
else if (cur.val > num)
cur = cur.left;
// 找到目标节点,跳出循环
else
break;
}
// 返回目标节点
return cur;
}
/* 插入节点 */
TreeNode? insert(int num) {
// 若树为空,直接提前返回
if (root == null) return null;
TreeNode? cur = root;
TreeNode? pre = null;
// 循环查找,越过叶节点后跳出
while (cur != null) {
// 找到重复节点,直接返回
if (cur.val == num) return null;
pre = cur;
// 插入位置在 cur 的右子树中
if (cur.val < num)
cur = cur.right;
// 插入位置在 cur 的左子树中
else
cur = cur.left;
}
// 插入节点 val
TreeNode? node = TreeNode(num);
if (pre!.val < num)
pre.right = node;
else
pre.left = node;
return node;
}
/* 删除节点 */
TreeNode? remove(int num) {
// 若树为空,直接提前返回
if (root == null) return null;
TreeNode? cur = root;
TreeNode? pre = null;
// 循环查找,越过叶节点后跳出
while (cur != null) {
// 找到待删除节点,跳出循环
if (cur.val == num) break;
pre = cur;
// 待删除节点在 cur 的右子树中
if (cur.val < num)
cur = cur.right;
// 待删除节点在 cur 的左子树中
else
cur = cur.left;
}
// 若无待删除节点,直接返回
if (cur == null) return null;
// 子节点数量 = 0 or 1
if (cur.left == null || cur.right == null) {
// 当子节点数量 = 0 / 1 时, child = null / 该子节点
TreeNode? child = cur.left ?? cur.right;
// 删除节点 cur
if (pre!.left == cur)
pre.left = child;
else
pre.right = child;
} else {
// 子节点数量 = 2
// 获取中序遍历中 cur 的下一个节点
TreeNode? nex = getInOrderNext(cur.right);
int tem = nex!.val;
// 递归删除节点 nex
remove(nex.val);
// 将 nex 的值复制给 cur
cur.val = tem;
}
return cur;
}
/* 获取中序遍历中的下一个节点(仅适用于 root 有左子节点的情况) */
TreeNode? getInOrderNext(TreeNode? root) {
if (root == null) return null;
// 循环访问左子节点,直到叶节点时为最小节点,跳出
while (root!.left != null) {
root = root.left;
}
return root;
}
/* Driver Code */
void main() {
/* 初始化二叉搜索树 */
List<int> nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15];
binarySearchTree(nums);
print("\n初始化的二叉树为\n");
printTree(getRoot());
/* 查找节点 */
TreeNode? node = search(7);
print("\n查找到的节点对象为 $node,节点值 = ${node?.val}");
/* 插入节点 */
node = insert(16);
print("\n插入节点 16 后,二叉树为\n");
printTree(getRoot());
/* 删除节点 */
remove(1);
print("\n删除节点 1 后,二叉树为\n");
printTree(getRoot());
remove(2);
print("\n删除节点 2 后,二叉树为\n");
printTree(getRoot());
remove(4);
print("\n删除节点 4 后,二叉树为\n");
printTree(getRoot());
}