mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 01:16:29 +08:00
0e49f0053a
of c, cpp, java, js, ts, swift.
228 lines
No EOL
6.7 KiB
C++
228 lines
No EOL
6.7 KiB
C++
/**
|
|
* File: avl_tree.cpp
|
|
* Created Time: 2022-12-2
|
|
* Author: mgisr (maguagua0706@gmail.com)
|
|
*/
|
|
|
|
#include "../include/include.hpp"
|
|
|
|
class AvlTree {
|
|
private:
|
|
TreeNode *root{};
|
|
static bool isBalance(const TreeNode *p);
|
|
static int getBalanceFactor(const TreeNode *p);
|
|
static void updateHeight(TreeNode *p);
|
|
void fixBalance(TreeNode *p);
|
|
static bool isLeftChild(const TreeNode *p);
|
|
static TreeNode *&fromParentTo(TreeNode *node);
|
|
public:
|
|
AvlTree() = default;
|
|
AvlTree(const AvlTree &p) = default;
|
|
const TreeNode *search(int val);
|
|
bool insert(int val);
|
|
bool remove(int val);
|
|
void printTree();
|
|
};
|
|
|
|
// 判断该结点是否平衡
|
|
bool AvlTree::isBalance(const TreeNode *p) {
|
|
int balance_factor = getBalanceFactor(p);
|
|
if (-1 <= balance_factor && balance_factor <= 1) { return true; }
|
|
else { return false; }
|
|
}
|
|
|
|
// 获取当前结点的平衡因子
|
|
int AvlTree::getBalanceFactor(const TreeNode *p) {
|
|
if (p->left == nullptr && p->right == nullptr) { return 0; }
|
|
else if (p->left == nullptr) { return (-1 - p->right->height); }
|
|
else if (p->right == nullptr) { return p->left->height + 1; }
|
|
else { return p->left->height - p->right->height; }
|
|
}
|
|
|
|
// 更新结点高度
|
|
void AvlTree::updateHeight(TreeNode *p) {
|
|
if (p->left == nullptr && p->right == nullptr) { p->height = 0; }
|
|
else if (p->left == nullptr) { p->height = p->right->height + 1; }
|
|
else if (p->right == nullptr) { p->height = p->left->height + 1; }
|
|
else { p->height = std::max(p->left->height, p->right->height) + 1; }
|
|
}
|
|
|
|
void AvlTree::fixBalance(TreeNode *p) {
|
|
// 左旋操作
|
|
auto rotate_left = [&](TreeNode *node) -> TreeNode * {
|
|
TreeNode *temp = node->right;
|
|
temp->parent = p->parent;
|
|
node->right = temp->left;
|
|
if (temp->left != nullptr) {
|
|
temp->left->parent = node;
|
|
}
|
|
temp->left = node;
|
|
node->parent = temp;
|
|
updateHeight(node);
|
|
updateHeight(temp);
|
|
return temp;
|
|
};
|
|
// 右旋操作
|
|
auto rotate_right = [&](TreeNode *node) -> TreeNode * {
|
|
TreeNode *temp = node->left;
|
|
temp->parent = p->parent;
|
|
node->left = temp->right;
|
|
if (temp->right != nullptr) {
|
|
temp->right->parent = node;
|
|
}
|
|
temp->right = node;
|
|
node->parent = temp;
|
|
updateHeight(node);
|
|
updateHeight(temp);
|
|
return temp;
|
|
};
|
|
// 根据规则选取旋转方式
|
|
if (getBalanceFactor(p) > 1) {
|
|
if (getBalanceFactor(p->left) > 0) {
|
|
if (p->parent == nullptr) { root = rotate_right(p); }
|
|
else { fromParentTo(p) = rotate_right(p); }
|
|
} else {
|
|
p->left = rotate_left(p->left);
|
|
if (p->parent == nullptr) { root = rotate_right(p); }
|
|
else { fromParentTo(p) = rotate_right(p); }
|
|
}
|
|
} else {
|
|
if (getBalanceFactor(p->right) < 0) {
|
|
if (p->parent == nullptr) { root = rotate_left(p); }
|
|
else { fromParentTo(p) = rotate_left(p); }
|
|
} else {
|
|
p->right = rotate_right(p->right);
|
|
if (p->parent == nullptr) { root = rotate_left(p); }
|
|
else { fromParentTo(p) = rotate_left(p); }
|
|
}
|
|
}
|
|
}
|
|
|
|
// 判断当前结点是否为其父节点的左孩子
|
|
bool AvlTree::isLeftChild(const TreeNode *p) {
|
|
if (p->parent == nullptr) { return false; }
|
|
return (p->parent->left == p);
|
|
}
|
|
|
|
// 返回父节点指向当前结点指针的引用
|
|
TreeNode *&AvlTree::fromParentTo(TreeNode *node) {
|
|
if (isLeftChild(node)) { return node->parent->left; }
|
|
else { return node->parent->right; }
|
|
}
|
|
|
|
const TreeNode *AvlTree::search(int val) {
|
|
TreeNode *p = root;
|
|
while (p != nullptr) {
|
|
if (p->val == val) { return p; }
|
|
else if (p->val > val) { p = p->left; }
|
|
else { p = p->right; }
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool AvlTree::insert(int val) {
|
|
TreeNode *p = root;
|
|
if (p == nullptr) {
|
|
root = new TreeNode(val);
|
|
return true;
|
|
}
|
|
for (;;) {
|
|
if (p->val == val) { return false; }
|
|
else if (p->val > val) {
|
|
if (p->left == nullptr) {
|
|
p->left = new TreeNode(val, p);
|
|
break;
|
|
} else {
|
|
p = p->left;
|
|
}
|
|
} else {
|
|
if (p->right == nullptr) {
|
|
p->right = new TreeNode(val, p);
|
|
break;
|
|
} else {
|
|
p = p->right;
|
|
}
|
|
}
|
|
}
|
|
for (; p != nullptr; p = p->parent) {
|
|
if (!isBalance(p)) {
|
|
fixBalance(p);
|
|
break;
|
|
} else { updateHeight(p); }
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool AvlTree::remove(int val) {
|
|
TreeNode *p = root;
|
|
if (p == nullptr) { return false; }
|
|
while (p != nullptr) {
|
|
if (p->val == val) {
|
|
TreeNode *real_delete_node = p;
|
|
TreeNode *next_node;
|
|
if (p->left == nullptr) {
|
|
next_node = p->right;
|
|
if (p->parent == nullptr) { root = next_node; }
|
|
else { fromParentTo(p) = next_node; }
|
|
} else if (p->right == nullptr) {
|
|
next_node = p->left;
|
|
if (p->parent == nullptr) { root = next_node; }
|
|
else { fromParentTo(p) = next_node; }
|
|
} else {
|
|
while (real_delete_node->left != nullptr) {
|
|
real_delete_node = real_delete_node->left;
|
|
}
|
|
std::swap(p->val, real_delete_node->val);
|
|
next_node = real_delete_node->right;
|
|
if (real_delete_node->parent == p) { p->right = next_node; }
|
|
else { real_delete_node->parent->left = next_node; }
|
|
}
|
|
if (next_node != nullptr) {
|
|
next_node->parent = real_delete_node->parent;
|
|
}
|
|
for (p = real_delete_node; p != nullptr; p = p->parent) {
|
|
if (!isBalance(p)) { fixBalance(p); }
|
|
updateHeight(p);
|
|
}
|
|
delete real_delete_node;
|
|
return true;
|
|
} else if (p->val > val) {
|
|
p = p->left;
|
|
} else {
|
|
p = p->right;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void inOrder(const TreeNode *root) {
|
|
if (root == nullptr) return;
|
|
inOrder(root->left);
|
|
cout << root->val << ' ';
|
|
inOrder(root->right);
|
|
}
|
|
|
|
void AvlTree::printTree() {
|
|
inOrder(root);
|
|
cout << endl;
|
|
}
|
|
|
|
int main() {
|
|
AvlTree tree = AvlTree();
|
|
// tree.insert(13);
|
|
// tree.insert(24);
|
|
// tree.insert(37);
|
|
// tree.insert(90);
|
|
// tree.insert(53);
|
|
|
|
tree.insert(53);
|
|
tree.insert(90);
|
|
tree.insert(37);
|
|
tree.insert(24);
|
|
tree.insert(13);
|
|
tree.remove(90);
|
|
tree.printTree();
|
|
const TreeNode *p = tree.search(37);
|
|
cout << p->val;
|
|
return 0;
|
|
} |