mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 16:46:30 +08:00
5104 lines
No EOL
761 KiB
HTML
5104 lines
No EOL
761 KiB
HTML
|
||
<!doctype html>
|
||
<html lang="en" class="no-js">
|
||
<head>
|
||
|
||
<meta charset="utf-8">
|
||
<meta name="viewport" content="width=device-width,initial-scale=1">
|
||
|
||
<meta name="description" content="Data Structures and Algorithms Crash Course with Animated Illustrations and Off-the-Shelf Code">
|
||
|
||
|
||
<meta name="author" content="krahets">
|
||
|
||
|
||
<link rel="canonical" href="https://www.hello-algo.com/en/chapter_computational_complexity/time_complexity/">
|
||
|
||
|
||
<link rel="prev" href="../iteration_and_recursion/">
|
||
|
||
|
||
<link rel="next" href="../space_complexity/">
|
||
|
||
|
||
<link rel="icon" href="../../assets/images/favicon.png">
|
||
<meta name="generator" content="mkdocs-1.5.3, mkdocs-material-9.5.5">
|
||
|
||
|
||
|
||
<title>2.3 Time Complexity - Hello Algo</title>
|
||
|
||
|
||
|
||
<link rel="stylesheet" href="../../assets/stylesheets/main.50c56a3b.min.css">
|
||
|
||
|
||
<link rel="stylesheet" href="../../assets/stylesheets/palette.06af60db.min.css">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
|
||
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto:300,300i,400,400i,700,700i%7CRoboto+Mono:400,400i,700,700i&display=fallback">
|
||
<style>:root{--md-text-font:"Roboto";--md-code-font:"Roboto Mono"}</style>
|
||
|
||
|
||
|
||
<link rel="stylesheet" href="../../stylesheets/extra.css">
|
||
|
||
<script>__md_scope=new URL("../..",location),__md_hash=e=>[...e].reduce((e,_)=>(e<<5)-e+_.charCodeAt(0),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<link href="../../assets/stylesheets/glightbox.min.css" rel="stylesheet"/><style>
|
||
html.glightbox-open { overflow: initial; height: 100%; }
|
||
.gslide-title { margin-top: 0px; user-select: text; }
|
||
.gslide-desc { color: #666; user-select: text; }
|
||
.gslide-image img { background: white; }
|
||
|
||
.gscrollbar-fixer { padding-right: 15px; }
|
||
.gdesc-inner { font-size: 0.75rem; }
|
||
body[data-md-color-scheme="slate"] .gdesc-inner { background: var(--md-default-bg-color);}
|
||
body[data-md-color-scheme="slate"] .gslide-title { color: var(--md-default-fg-color);}
|
||
body[data-md-color-scheme="slate"] .gslide-desc { color: var(--md-default-fg-color);}
|
||
</style> <script src="../../assets/javascripts/glightbox.min.js"></script></head>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<body dir="ltr" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="teal">
|
||
|
||
|
||
<input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
|
||
<input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
|
||
<label class="md-overlay" for="__drawer"></label>
|
||
<div data-md-component="skip">
|
||
|
||
|
||
<a href="#23-time-complexity" class="md-skip">
|
||
Skip to content
|
||
</a>
|
||
|
||
</div>
|
||
<div data-md-component="announce">
|
||
|
||
<aside class="md-banner">
|
||
<div class="md-banner__inner md-grid md-typeset">
|
||
|
||
<button class="md-banner__button md-icon" aria-label="Don't show this again">
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
|
||
</button>
|
||
|
||
|
||
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg"
|
||
viewBox="0 0 512 512"><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.-->
|
||
<path
|
||
d="M480 32c0-12.9-7.8-24.6-19.8-29.6s-25.7-2.2-34.9 6.9L381.7 53c-48 48-113.1 75-181 75H192 160 64c-35.3 0-64 28.7-64 64v96c0 35.3 28.7 64 64 64l0 128c0 17.7 14.3 32 32 32h64c17.7 0 32-14.3 32-32V352l8.7 0c67.9 0 133 27 181 75l43.6 43.6c9.2 9.2 22.9 11.9 34.9 6.9s19.8-16.6 19.8-29.6V300.4c18.6-8.8 32-32.5 32-60.4s-13.4-51.6-32-60.4V32zm-64 76.7V240 371.3C357.2 317.8 280.5 288 200.7 288H192V192h8.7c79.8 0 156.5-29.8 215.3-83.3z" />
|
||
</svg>
|
||
<span>The paper book (Chinese edition) will be published soon. Stay tuned!</span>
|
||
|
||
</div>
|
||
|
||
<script>var content,el=document.querySelector("[data-md-component=announce]");el&&(content=el.querySelector(".md-typeset"),__md_hash(content.innerHTML)===__md_get("__announce")&&(el.hidden=!0))</script>
|
||
|
||
</aside>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<header class="md-header md-header--shadow" data-md-component="header">
|
||
<nav class="md-header__inner md-grid" aria-label="Header">
|
||
<a href="../.." title="Hello Algo" class="md-header__button md-logo" aria-label="Hello Algo" data-md-component="logo">
|
||
|
||
<img src="../../assets/images/logo.svg" alt="logo">
|
||
|
||
</a>
|
||
<label class="md-header__button md-icon" for="__drawer">
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z"/></svg>
|
||
</label>
|
||
<div class="md-header__title" data-md-component="header-title">
|
||
<div class="md-header__ellipsis">
|
||
<div class="md-header__topic">
|
||
<span class="md-ellipsis">
|
||
Hello Algo
|
||
</span>
|
||
</div>
|
||
<div class="md-header__topic" data-md-component="header-topic">
|
||
<span class="md-ellipsis">
|
||
|
||
2.3 Time Complexity
|
||
|
||
</span>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
|
||
<form class="md-header__option" data-md-component="palette">
|
||
|
||
|
||
|
||
|
||
<input class="md-option" data-md-color-media="" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="teal" aria-label="Dark mode" type="radio" name="__palette" id="__palette_0">
|
||
|
||
<label class="md-header__button md-icon" title="Dark mode" for="__palette_1" hidden>
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M7.5 2c-1.79 1.15-3 3.18-3 5.5s1.21 4.35 3.03 5.5C4.46 13 2 10.54 2 7.5A5.5 5.5 0 0 1 7.5 2m11.57 1.5 1.43 1.43L4.93 20.5 3.5 19.07 19.07 3.5m-6.18 2.43L11.41 5 9.97 6l.42-1.7L9 3.24l1.75-.12.58-1.65L12 3.1l1.73.03-1.35 1.13.51 1.67m-3.3 3.61-1.16-.73-1.12.78.34-1.32-1.09-.83 1.36-.09.45-1.29.51 1.27 1.36.03-1.05.87.4 1.31M19 13.5a5.5 5.5 0 0 1-5.5 5.5c-1.22 0-2.35-.4-3.26-1.07l7.69-7.69c.67.91 1.07 2.04 1.07 3.26m-4.4 6.58 2.77-1.15-.24 3.35-2.53-2.2m4.33-2.7 1.15-2.77 2.2 2.54-3.35.23m1.15-4.96-1.14-2.78 3.34.24-2.2 2.54M9.63 18.93l2.77 1.15-2.53 2.19-.24-3.34Z"/></svg>
|
||
</label>
|
||
|
||
|
||
|
||
|
||
|
||
<input class="md-option" data-md-color-media="" data-md-color-scheme="slate" data-md-color-primary="black" data-md-color-accent="teal" aria-label="Light mode" type="radio" name="__palette" id="__palette_1">
|
||
|
||
<label class="md-header__button md-icon" title="Light mode" for="__palette_0" hidden>
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M7.5 2c-1.79 1.15-3 3.18-3 5.5s1.21 4.35 3.03 5.5C4.46 13 2 10.54 2 7.5A5.5 5.5 0 0 1 7.5 2m11.57 1.5 1.43 1.43L4.93 20.5 3.5 19.07 19.07 3.5m-6.18 2.43L11.41 5 9.97 6l.42-1.7L9 3.24l1.75-.12.58-1.65L12 3.1l1.73.03-1.35 1.13.51 1.67m-3.3 3.61-1.16-.73-1.12.78.34-1.32-1.09-.83 1.36-.09.45-1.29.51 1.27 1.36.03-1.05.87.4 1.31M19 13.5a5.5 5.5 0 0 1-5.5 5.5c-1.22 0-2.35-.4-3.26-1.07l7.69-7.69c.67.91 1.07 2.04 1.07 3.26m-4.4 6.58 2.77-1.15-.24 3.35-2.53-2.2m4.33-2.7 1.15-2.77 2.2 2.54-3.35.23m1.15-4.96-1.14-2.78 3.34.24-2.2 2.54M9.63 18.93l2.77 1.15-2.53 2.19-.24-3.34Z"/></svg>
|
||
</label>
|
||
|
||
|
||
</form>
|
||
|
||
|
||
|
||
<script>var media,input,key,value,palette=__md_get("__palette");if(palette&&palette.color){"(prefers-color-scheme)"===palette.color.media&&(media=matchMedia("(prefers-color-scheme: light)"),input=document.querySelector(media.matches?"[data-md-color-media='(prefers-color-scheme: light)']":"[data-md-color-media='(prefers-color-scheme: dark)']"),palette.color.media=input.getAttribute("data-md-color-media"),palette.color.scheme=input.getAttribute("data-md-color-scheme"),palette.color.primary=input.getAttribute("data-md-color-primary"),palette.color.accent=input.getAttribute("data-md-color-accent"));for([key,value]of Object.entries(palette.color))document.body.setAttribute("data-md-color-"+key,value)}</script>
|
||
|
||
|
||
<div class="md-header__option">
|
||
<div class="md-select">
|
||
|
||
<button class="md-header__button md-icon" aria-label="Select language">
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m12.87 15.07-2.54-2.51.03-.03A17.52 17.52 0 0 0 14.07 6H17V4h-7V2H8v2H1v2h11.17C11.5 7.92 10.44 9.75 9 11.35 8.07 10.32 7.3 9.19 6.69 8h-2c.73 1.63 1.73 3.17 2.98 4.56l-5.09 5.02L4 19l5-5 3.11 3.11.76-2.04M18.5 10h-2L12 22h2l1.12-3h4.75L21 22h2l-4.5-12m-2.62 7 1.62-4.33L19.12 17h-3.24Z"/></svg>
|
||
</button>
|
||
<div class="md-select__inner">
|
||
<ul class="md-select__list">
|
||
|
||
<li class="md-select__item">
|
||
<a href="/" hreflang="zh" class="md-select__link">
|
||
中文
|
||
</a>
|
||
</li>
|
||
|
||
<li class="md-select__item">
|
||
<a href="/en/" hreflang="en" class="md-select__link">
|
||
English
|
||
</a>
|
||
</li>
|
||
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
|
||
<label class="md-header__button md-icon" for="__search">
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
|
||
</label>
|
||
<div class="md-search" data-md-component="search" role="dialog">
|
||
<label class="md-search__overlay" for="__search"></label>
|
||
<div class="md-search__inner" role="search">
|
||
<form class="md-search__form" name="search">
|
||
<input type="text" class="md-search__input" name="query" aria-label="Search" placeholder="Search" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required>
|
||
<label class="md-search__icon md-icon" for="__search">
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
|
||
</label>
|
||
<nav class="md-search__options" aria-label="Search">
|
||
|
||
<a href="javascript:void(0)" class="md-search__icon md-icon" title="Share" aria-label="Share" data-clipboard data-clipboard-text="" data-md-component="search-share" tabindex="-1">
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 16.08c-.76 0-1.44.3-1.96.77L8.91 12.7c.05-.23.09-.46.09-.7 0-.24-.04-.47-.09-.7l7.05-4.11c.54.5 1.25.81 2.04.81a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3c0 .24.04.47.09.7L8.04 9.81C7.5 9.31 6.79 9 6 9a3 3 0 0 0-3 3 3 3 0 0 0 3 3c.79 0 1.5-.31 2.04-.81l7.12 4.15c-.05.21-.08.43-.08.66 0 1.61 1.31 2.91 2.92 2.91 1.61 0 2.92-1.3 2.92-2.91A2.92 2.92 0 0 0 18 16.08Z"/></svg>
|
||
</a>
|
||
|
||
<button type="reset" class="md-search__icon md-icon" title="Clear" aria-label="Clear" tabindex="-1">
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
|
||
</button>
|
||
</nav>
|
||
|
||
<div class="md-search__suggest" data-md-component="search-suggest"></div>
|
||
|
||
</form>
|
||
<div class="md-search__output">
|
||
<div class="md-search__scrollwrap" data-md-scrollfix>
|
||
<div class="md-search-result" data-md-component="search-result">
|
||
<div class="md-search-result__meta">
|
||
Initializing search
|
||
</div>
|
||
<ol class="md-search-result__list" role="presentation"></ol>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
|
||
<div class="md-header__source">
|
||
<a href="https://github.com/krahets/hello-algo" title="Go to repository" class="md-source" data-md-component="source">
|
||
<div class="md-source__icon md-icon">
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
|
||
</div>
|
||
<div class="md-source__repository">
|
||
krahets/hello-algo
|
||
</div>
|
||
</a>
|
||
</div>
|
||
|
||
</nav>
|
||
|
||
</header>
|
||
|
||
<div class="md-container" data-md-component="container">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<main class="md-main" data-md-component="main">
|
||
<div class="md-main__inner md-grid">
|
||
|
||
|
||
|
||
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" >
|
||
<div class="md-sidebar__scrollwrap">
|
||
<div class="md-sidebar__inner">
|
||
|
||
|
||
|
||
|
||
<nav class="md-nav md-nav--primary" aria-label="Navigation" data-md-level="0">
|
||
<label class="md-nav__title" for="__drawer">
|
||
<a href="../.." title="Hello Algo" class="md-nav__button md-logo" aria-label="Hello Algo" data-md-component="logo">
|
||
|
||
<img src="../../assets/images/logo.svg" alt="logo">
|
||
|
||
</a>
|
||
Hello Algo
|
||
</label>
|
||
|
||
<div class="md-nav__source">
|
||
<a href="https://github.com/krahets/hello-algo" title="Go to repository" class="md-source" data-md-component="source">
|
||
<div class="md-source__icon md-icon">
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
|
||
</div>
|
||
<div class="md-source__repository">
|
||
krahets/hello-algo
|
||
</div>
|
||
</a>
|
||
</div>
|
||
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_1" >
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../../chapter_preface/" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M21 4H3a2 2 0 0 0-2 2v13a2 2 0 0 0 2 2h18a2 2 0 0 0 2-2V6a2 2 0 0 0-2-2M3 19V6h8v13H3m18 0h-8V6h8v13m-7-9.5h6V11h-6V9.5m0 2.5h6v1.5h-6V12m0 2.5h6V16h-6v-1.5Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
Chapter 0. Preface
|
||
</span>
|
||
|
||
|
||
</a>
|
||
|
||
|
||
<label class="md-nav__link " for="__nav_1" id="__nav_1_label" tabindex="0">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_1_label" aria-expanded="false">
|
||
<label class="md-nav__title" for="__nav_1">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
Chapter 0. Preface
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_preface/about_the_book/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
0.1 About This Book
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_preface/suggestions/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
0.2 How to Read
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_preface/summary/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
0.3 Summary
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_2" >
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../../chapter_introduction/" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2m0 16H5V5h14v14M6.2 7.7h5v1.5h-5V7.7m6.8 8.1h5v1.5h-5v-1.5m0-2.6h5v1.5h-5v-1.5M8 18h1.5v-2h2v-1.5h-2v-2H8v2H6V16h2v2m6.1-7.1 1.4-1.4 1.4 1.4 1.1-1-1.4-1.4L18 7.1 16.9 6l-1.4 1.4L14.1 6 13 7.1l1.4 1.4L13 9.9l1.1 1Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
Chapter 1. Introduction to Algorithms
|
||
</span>
|
||
|
||
|
||
</a>
|
||
|
||
|
||
<label class="md-nav__link " for="__nav_2" id="__nav_2_label" tabindex="0">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_2_label" aria-expanded="false">
|
||
<label class="md-nav__title" for="__nav_2">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
Chapter 1. Introduction to Algorithms
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_introduction/algorithms_are_everywhere/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
1.1 Algorithms are Everywhere
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_introduction/what_is_dsa/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
1.2 What is an Algorithm
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_introduction/summary/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
1.3 Summary
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--active md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_3" checked>
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
Chapter 2. Complexity Analysis
|
||
</span>
|
||
|
||
|
||
</a>
|
||
|
||
|
||
<label class="md-nav__link " for="__nav_3" id="__nav_3_label" tabindex="0">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="true">
|
||
<label class="md-nav__title" for="__nav_3">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
Chapter 2. Complexity Analysis
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../performance_evaluation/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
2.1 Algorithm Efficiency Assessment
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../iteration_and_recursion/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
2.2 Iteration and Recursion
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--active">
|
||
|
||
<input class="md-nav__toggle md-toggle" type="checkbox" id="__toc">
|
||
|
||
|
||
|
||
|
||
|
||
<label class="md-nav__link md-nav__link--active" for="__toc">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
2.3 Time Complexity
|
||
</span>
|
||
|
||
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
<a href="./" class="md-nav__link md-nav__link--active">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
2.3 Time Complexity
|
||
</span>
|
||
|
||
|
||
</a>
|
||
|
||
|
||
|
||
<nav class="md-nav md-nav--secondary" aria-label="Table of contents">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<label class="md-nav__title" for="__toc">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
Table of contents
|
||
</label>
|
||
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#231-assessing-time-growth-trend" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
2.3.1 Assessing Time Growth Trend
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#232-asymptotic-upper-bound" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
2.3.2 Asymptotic Upper Bound
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#233-calculation-method" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
2.3.3 Calculation Method
|
||
</span>
|
||
</a>
|
||
|
||
<nav class="md-nav" aria-label="2.3.3 Calculation Method">
|
||
<ul class="md-nav__list">
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#1-step-1-counting-the-number-of-operations" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
1. Step 1: Counting the Number of Operations
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#2-step-2-determining-the-asymptotic-upper-bound" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
2. Step 2: Determining the Asymptotic Upper Bound
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#234-common-types-of-time-complexity" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
2.3.4 Common Types of Time Complexity
|
||
</span>
|
||
</a>
|
||
|
||
<nav class="md-nav" aria-label="2.3.4 Common Types of Time Complexity">
|
||
<ul class="md-nav__list">
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#1-constant-order-o1" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
1. Constant Order \(O(1)\)
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#2-linear-order-on" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
2. Linear Order \(O(n)\)
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#3-quadratic-order-on2" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
3. Quadratic Order \(O(n^2)\)
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#4-exponential-order-o2n" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
4. Exponential Order \(O(2^n)\)
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#5-logarithmic-order-olog-n" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
5. Logarithmic Order \(O(\log n)\)
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#6-linear-logarithmic-order-on-log-n" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
6. Linear-Logarithmic Order \(O(n \log n)\)
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#7-factorial-order-on" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
7. Factorial Order \(O(n!)\)
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#235-worst-best-and-average-time-complexities" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
2.3.5 Worst, Best, and Average Time Complexities
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
</ul>
|
||
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../space_complexity/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
2.4 Space Complexity
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../summary/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
2.5 Summary
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_4" >
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../../chapter_data_structure/" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M11 13.5v8H3v-8h8m-2 2H5v4h4v-4M12 2l5.5 9h-11L12 2m0 3.86L10.08 9h3.84L12 5.86M17.5 13c2.5 0 4.5 2 4.5 4.5S20 22 17.5 22 13 20 13 17.5s2-4.5 4.5-4.5m0 2a2.5 2.5 0 0 0-2.5 2.5 2.5 2.5 0 0 0 2.5 2.5 2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-2.5-2.5Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
Chapter 3. Data Structures
|
||
</span>
|
||
|
||
|
||
</a>
|
||
|
||
|
||
<label class="md-nav__link " for="__nav_4" id="__nav_4_label" tabindex="0">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_4_label" aria-expanded="false">
|
||
<label class="md-nav__title" for="__nav_4">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
Chapter 3. Data Structures
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_data_structure/classification_of_data_structure/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
3.1 Classification of Data Structures
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_data_structure/basic_data_types/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
3.2 Fundamental Data Types
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_data_structure/number_encoding/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
3.3 Number Encoding *
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_data_structure/character_encoding/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
3.4 Character Encoding *
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_data_structure/summary/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
3.5 Summary
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_5" >
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../../chapter_array_and_linkedlist/" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 5v14h17V5H3m4 2v2H5V7h2m-2 6v-2h2v2H5m0 2h2v2H5v-2m13 2H9v-2h9v2m0-4H9v-2h9v2m0-4H9V7h9v2Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
Chapter 4. Array and Linked List
|
||
</span>
|
||
|
||
|
||
</a>
|
||
|
||
|
||
<label class="md-nav__link " for="__nav_5" id="__nav_5_label" tabindex="0">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_5_label" aria-expanded="false">
|
||
<label class="md-nav__title" for="__nav_5">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
Chapter 4. Array and Linked List
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_array_and_linkedlist/array/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
4.1 Array
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_array_and_linkedlist/linked_list/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
4.2 Linked List
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_array_and_linkedlist/list/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
4.3 List
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_array_and_linkedlist/ram_and_cache/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
4.4 Memory and Cache
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_array_and_linkedlist/summary/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
4.5 Summary
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_6" >
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../../chapter_stack_and_queue/" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17.36 20.2v-5.38h1.79V22H3v-7.18h1.8v5.38h12.56M6.77 14.32l.37-1.76 8.79 1.85-.37 1.76-8.79-1.85m1.16-4.21.76-1.61 8.14 3.78-.76 1.62-8.14-3.79m2.26-3.99 1.15-1.38 6.9 5.76-1.15 1.37-6.9-5.75m4.45-4.25L20 9.08l-1.44 1.07-5.36-7.21 1.44-1.07M6.59 18.41v-1.8h8.98v1.8H6.59Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
Chapter 5. Stack and Queue
|
||
</span>
|
||
|
||
|
||
</a>
|
||
|
||
|
||
<label class="md-nav__link " for="__nav_6" id="__nav_6_label" tabindex="0">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_6_label" aria-expanded="false">
|
||
<label class="md-nav__title" for="__nav_6">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
Chapter 5. Stack and Queue
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_stack_and_queue/stack/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
5.1 Stack
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_stack_and_queue/queue/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
5.2 Queue
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_stack_and_queue/deque/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
5.3 Double-ended Queue
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_stack_and_queue/summary/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
5.4 Summary
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_7" >
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../../chapter_hashing/" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
Chapter 6. Hash Table
|
||
</span>
|
||
|
||
|
||
</a>
|
||
|
||
|
||
<label class="md-nav__link " for="__nav_7" id="__nav_7_label" tabindex="0">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
|
||
<label class="md-nav__title" for="__nav_7">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
Chapter 6. Hash Table
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_hashing/hash_map/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
6.1 Hash Table
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_hashing/hash_collision/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
6.2 Hash Collision
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_hashing/hash_algorithm/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
6.3 Hash Algorithm
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_hashing/summary/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
6.4 Summary
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
|
||
|
||
<div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" >
|
||
<div class="md-sidebar__scrollwrap">
|
||
<div class="md-sidebar__inner">
|
||
|
||
|
||
<nav class="md-nav md-nav--secondary" aria-label="Table of contents">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<label class="md-nav__title" for="__toc">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
Table of contents
|
||
</label>
|
||
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#231-assessing-time-growth-trend" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
2.3.1 Assessing Time Growth Trend
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#232-asymptotic-upper-bound" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
2.3.2 Asymptotic Upper Bound
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#233-calculation-method" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
2.3.3 Calculation Method
|
||
</span>
|
||
</a>
|
||
|
||
<nav class="md-nav" aria-label="2.3.3 Calculation Method">
|
||
<ul class="md-nav__list">
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#1-step-1-counting-the-number-of-operations" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
1. Step 1: Counting the Number of Operations
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#2-step-2-determining-the-asymptotic-upper-bound" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
2. Step 2: Determining the Asymptotic Upper Bound
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#234-common-types-of-time-complexity" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
2.3.4 Common Types of Time Complexity
|
||
</span>
|
||
</a>
|
||
|
||
<nav class="md-nav" aria-label="2.3.4 Common Types of Time Complexity">
|
||
<ul class="md-nav__list">
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#1-constant-order-o1" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
1. Constant Order \(O(1)\)
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#2-linear-order-on" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
2. Linear Order \(O(n)\)
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#3-quadratic-order-on2" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
3. Quadratic Order \(O(n^2)\)
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#4-exponential-order-o2n" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
4. Exponential Order \(O(2^n)\)
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#5-logarithmic-order-olog-n" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
5. Logarithmic Order \(O(\log n)\)
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#6-linear-logarithmic-order-on-log-n" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
6. Linear-Logarithmic Order \(O(n \log n)\)
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#7-factorial-order-on" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
7. Factorial Order \(O(n!)\)
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#235-worst-best-and-average-time-complexities" class="md-nav__link">
|
||
<span class="md-ellipsis">
|
||
2.3.5 Worst, Best, and Average Time Complexities
|
||
</span>
|
||
</a>
|
||
|
||
</li>
|
||
|
||
</ul>
|
||
|
||
</nav>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
|
||
|
||
<div class="md-content" data-md-component="content">
|
||
<article class="md-content__inner md-typeset">
|
||
|
||
<!-- Tags -->
|
||
|
||
|
||
<!-- Actions -->
|
||
<!-- Actions -->
|
||
|
||
|
||
<!-- Edit button -->
|
||
|
||
<a
|
||
href="https://github.com/krahets/hello-algo/tree/main/docs-en/chapter_computational_complexity/time_complexity.md"
|
||
title="Edit this page"
|
||
class="md-content__button md-icon"
|
||
>
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M441 58.9 453.1 71c9.4 9.4 9.4 24.6 0 33.9L424 134.1 377.9 88 407 58.9c9.4-9.4 24.6-9.4 33.9 0zM209.8 256.2 344 121.9l46.1 46.1-134.3 134.2c-2.9 2.9-6.5 5-10.4 6.1L186.9 325l16.7-58.5c1.1-3.9 3.2-7.5 6.1-10.4zM373.1 25 175.8 222.2c-8.7 8.7-15 19.4-18.3 31.1l-28.6 100c-2.4 8.4-.1 17.4 6.1 23.6s15.2 8.5 23.6 6.1l100-28.6c11.8-3.4 22.5-9.7 31.1-18.3L487 138.9c28.1-28.1 28.1-73.7 0-101.8L474.9 25c-28.1-28.1-73.7-28.1-101.8 0zM88 64c-48.6 0-88 39.4-88 88v272c0 48.6 39.4 88 88 88h272c48.6 0 88-39.4 88-88V312c0-13.3-10.7-24-24-24s-24 10.7-24 24v112c0 22.1-17.9 40-40 40H88c-22.1 0-40-17.9-40-40V152c0-22.1 17.9-40 40-40h112c13.3 0 24-10.7 24-24s-10.7-24-24-24H88z"/></svg>
|
||
</a>
|
||
|
||
|
||
<!-- View button -->
|
||
|
||
|
||
|
||
<!-- Page content -->
|
||
<h1 id="23-time-complexity">2.3 Time Complexity<a class="headerlink" href="#23-time-complexity" title="Permanent link">¶</a></h1>
|
||
<p>Time complexity is a concept used to measure how the run time of an algorithm increases with the size of the input data. Understanding time complexity is crucial for accurately assessing the efficiency of an algorithm.</p>
|
||
<ol>
|
||
<li><strong>Determining the Running Platform</strong>: This includes hardware configuration, programming language, system environment, etc., all of which can affect the efficiency of code execution.</li>
|
||
<li><strong>Evaluating the Run Time for Various Computational Operations</strong>: For instance, an addition operation <code>+</code> might take 1 ns, a multiplication operation <code>*</code> might take 10 ns, a print operation <code>print()</code> might take 5 ns, etc.</li>
|
||
<li><strong>Counting All the Computational Operations in the Code</strong>: Summing the execution times of all these operations gives the total run time.</li>
|
||
</ol>
|
||
<p>For example, consider the following code with an input size of <span class="arithmatex">\(n\)</span>:</p>
|
||
<div class="tabbed-set tabbed-alternate" data-tabs="1:12"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><input id="__tabbed_1_5" name="__tabbed_1" type="radio" /><input id="__tabbed_1_6" name="__tabbed_1" type="radio" /><input id="__tabbed_1_7" name="__tabbed_1" type="radio" /><input id="__tabbed_1_8" name="__tabbed_1" type="radio" /><input id="__tabbed_1_9" name="__tabbed_1" type="radio" /><input id="__tabbed_1_10" name="__tabbed_1" type="radio" /><input id="__tabbed_1_11" name="__tabbed_1" type="radio" /><input id="__tabbed_1_12" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">Python</label><label for="__tabbed_1_2">C++</label><label for="__tabbed_1_3">Java</label><label for="__tabbed_1_4">C#</label><label for="__tabbed_1_5">Go</label><label for="__tabbed_1_6">Swift</label><label for="__tabbed_1_7">JS</label><label for="__tabbed_1_8">TS</label><label for="__tabbed_1_9">Dart</label><label for="__tabbed_1_10">Rust</label><label for="__tabbed_1_11">C</label><label for="__tabbed_1_12">Zig</label></div>
|
||
<div class="tabbed-content">
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-0-1" name="__codelineno-0-1" href="#__codelineno-0-1"></a><span class="c1"># Under an operating platform</span>
|
||
<a id="__codelineno-0-2" name="__codelineno-0-2" href="#__codelineno-0-2"></a><span class="k">def</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span>
|
||
<a id="__codelineno-0-3" name="__codelineno-0-3" href="#__codelineno-0-3"></a> <span class="n">a</span> <span class="o">=</span> <span class="mi">2</span> <span class="c1"># 1 ns</span>
|
||
<a id="__codelineno-0-4" name="__codelineno-0-4" href="#__codelineno-0-4"></a> <span class="n">a</span> <span class="o">=</span> <span class="n">a</span> <span class="o">+</span> <span class="mi">1</span> <span class="c1"># 1 ns</span>
|
||
<a id="__codelineno-0-5" name="__codelineno-0-5" href="#__codelineno-0-5"></a> <span class="n">a</span> <span class="o">=</span> <span class="n">a</span> <span class="o">*</span> <span class="mi">2</span> <span class="c1"># 10 ns</span>
|
||
<a id="__codelineno-0-6" name="__codelineno-0-6" href="#__codelineno-0-6"></a> <span class="c1"># Cycle n times</span>
|
||
<a id="__codelineno-0-7" name="__codelineno-0-7" href="#__codelineno-0-7"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span> <span class="c1"># 1 ns</span>
|
||
<a id="__codelineno-0-8" name="__codelineno-0-8" href="#__codelineno-0-8"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="c1"># 5 ns</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-1-1" name="__codelineno-1-1" href="#__codelineno-1-1"></a><span class="c1">// Under a particular operating platform</span>
|
||
<a id="__codelineno-1-2" name="__codelineno-1-2" href="#__codelineno-1-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-1-3" name="__codelineno-1-3" href="#__codelineno-1-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-1-4" name="__codelineno-1-4" href="#__codelineno-1-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-1-5" name="__codelineno-1-5" href="#__codelineno-1-5"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
|
||
<a id="__codelineno-1-6" name="__codelineno-1-6" href="#__codelineno-1-6"></a><span class="w"> </span><span class="c1">// Loop n times</span>
|
||
<a id="__codelineno-1-7" name="__codelineno-1-7" href="#__codelineno-1-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns , every round i++ is executed</span>
|
||
<a id="__codelineno-1-8" name="__codelineno-1-8" href="#__codelineno-1-8"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o"><<</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o"><<</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span><span class="w"> </span><span class="c1">// 5 ns</span>
|
||
<a id="__codelineno-1-9" name="__codelineno-1-9" href="#__codelineno-1-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-1-10" name="__codelineno-1-10" href="#__codelineno-1-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-2-1" name="__codelineno-2-1" href="#__codelineno-2-1"></a><span class="c1">// Under a particular operating platform</span>
|
||
<a id="__codelineno-2-2" name="__codelineno-2-2" href="#__codelineno-2-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-2-3" name="__codelineno-2-3" href="#__codelineno-2-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-2-4" name="__codelineno-2-4" href="#__codelineno-2-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-2-5" name="__codelineno-2-5" href="#__codelineno-2-5"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
|
||
<a id="__codelineno-2-6" name="__codelineno-2-6" href="#__codelineno-2-6"></a><span class="w"> </span><span class="c1">// Loop n times</span>
|
||
<a id="__codelineno-2-7" name="__codelineno-2-7" href="#__codelineno-2-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns , every round i++ is executed</span>
|
||
<a id="__codelineno-2-8" name="__codelineno-2-8" href="#__codelineno-2-8"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// 5 ns</span>
|
||
<a id="__codelineno-2-9" name="__codelineno-2-9" href="#__codelineno-2-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-2-10" name="__codelineno-2-10" href="#__codelineno-2-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-3-1" name="__codelineno-3-1" href="#__codelineno-3-1"></a><span class="c1">// Under a particular operating platform</span>
|
||
<a id="__codelineno-3-2" name="__codelineno-3-2" href="#__codelineno-3-2"></a><span class="k">void</span><span class="w"> </span><span class="nf">Algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-3-3" name="__codelineno-3-3" href="#__codelineno-3-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-3-4" name="__codelineno-3-4" href="#__codelineno-3-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-3-5" name="__codelineno-3-5" href="#__codelineno-3-5"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="m">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
|
||
<a id="__codelineno-3-6" name="__codelineno-3-6" href="#__codelineno-3-6"></a><span class="w"> </span><span class="c1">// Loop n times</span>
|
||
<a id="__codelineno-3-7" name="__codelineno-3-7" href="#__codelineno-3-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns , every round i++ is executed</span>
|
||
<a id="__codelineno-3-8" name="__codelineno-3-8" href="#__codelineno-3-8"></a><span class="w"> </span><span class="n">Console</span><span class="p">.</span><span class="n">WriteLine</span><span class="p">(</span><span class="m">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// 5 ns</span>
|
||
<a id="__codelineno-3-9" name="__codelineno-3-9" href="#__codelineno-3-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-3-10" name="__codelineno-3-10" href="#__codelineno-3-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="c1">// Under a particular operating platform</span>
|
||
<a id="__codelineno-4-2" name="__codelineno-4-2" href="#__codelineno-4-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-4-3" name="__codelineno-4-3" href="#__codelineno-4-3"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-4-4" name="__codelineno-4-4" href="#__codelineno-4-4"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-4-5" name="__codelineno-4-5" href="#__codelineno-4-5"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="c1">// 10 ns</span>
|
||
<a id="__codelineno-4-6" name="__codelineno-4-6" href="#__codelineno-4-6"></a><span class="w"> </span><span class="c1">// Loop n times</span>
|
||
<a id="__codelineno-4-7" name="__codelineno-4-7" href="#__codelineno-4-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-4-8" name="__codelineno-4-8" href="#__codelineno-4-8"></a><span class="w"> </span><span class="nx">fmt</span><span class="p">.</span><span class="nx">Println</span><span class="p">(</span><span class="nx">a</span><span class="p">)</span><span class="w"> </span><span class="c1">// 5 ns</span>
|
||
<a id="__codelineno-4-9" name="__codelineno-4-9" href="#__codelineno-4-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-4-10" name="__codelineno-4-10" href="#__codelineno-4-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="c1">// Under a particular operating platform</span>
|
||
<a id="__codelineno-5-2" name="__codelineno-5-2" href="#__codelineno-5-2"></a><span class="kd">func</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">{</span>
|
||
<a id="__codelineno-5-3" name="__codelineno-5-3" href="#__codelineno-5-3"></a> <span class="kd">var</span> <span class="nv">a</span> <span class="p">=</span> <span class="mi">2</span> <span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-5-4" name="__codelineno-5-4" href="#__codelineno-5-4"></a> <span class="n">a</span> <span class="p">=</span> <span class="n">a</span> <span class="o">+</span> <span class="mi">1</span> <span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-5-5" name="__codelineno-5-5" href="#__codelineno-5-5"></a> <span class="n">a</span> <span class="p">=</span> <span class="n">a</span> <span class="o">*</span> <span class="mi">2</span> <span class="c1">// 10 ns</span>
|
||
<a id="__codelineno-5-6" name="__codelineno-5-6" href="#__codelineno-5-6"></a> <span class="c1">// Loop n times</span>
|
||
<a id="__codelineno-5-7" name="__codelineno-5-7" href="#__codelineno-5-7"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o"><</span> <span class="n">n</span> <span class="p">{</span> <span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-5-8" name="__codelineno-5-8" href="#__codelineno-5-8"></a> <span class="bp">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="c1">// 5 ns</span>
|
||
<a id="__codelineno-5-9" name="__codelineno-5-9" href="#__codelineno-5-9"></a> <span class="p">}</span>
|
||
<a id="__codelineno-5-10" name="__codelineno-5-10" href="#__codelineno-5-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-6-1" name="__codelineno-6-1" href="#__codelineno-6-1"></a><span class="c1">// Under a particular operating platform</span>
|
||
<a id="__codelineno-6-2" name="__codelineno-6-2" href="#__codelineno-6-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-6-3" name="__codelineno-6-3" href="#__codelineno-6-3"></a><span class="w"> </span><span class="kd">var</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-6-4" name="__codelineno-6-4" href="#__codelineno-6-4"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-6-5" name="__codelineno-6-5" href="#__codelineno-6-5"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
|
||
<a id="__codelineno-6-6" name="__codelineno-6-6" href="#__codelineno-6-6"></a><span class="w"> </span><span class="c1">// Loop n times</span>
|
||
<a id="__codelineno-6-7" name="__codelineno-6-7" href="#__codelineno-6-7"></a><span class="w"> </span><span class="k">for</span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns , every round i++ is executed</span>
|
||
<a id="__codelineno-6-8" name="__codelineno-6-8" href="#__codelineno-6-8"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// 5 ns</span>
|
||
<a id="__codelineno-6-9" name="__codelineno-6-9" href="#__codelineno-6-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-6-10" name="__codelineno-6-10" href="#__codelineno-6-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-7-1" name="__codelineno-7-1" href="#__codelineno-7-1"></a><span class="c1">// Under a particular operating platform</span>
|
||
<a id="__codelineno-7-2" name="__codelineno-7-2" href="#__codelineno-7-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-7-3" name="__codelineno-7-3" href="#__codelineno-7-3"></a><span class="w"> </span><span class="kd">var</span><span class="w"> </span><span class="nx">a</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-7-4" name="__codelineno-7-4" href="#__codelineno-7-4"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-7-5" name="__codelineno-7-5" href="#__codelineno-7-5"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
|
||
<a id="__codelineno-7-6" name="__codelineno-7-6" href="#__codelineno-7-6"></a><span class="w"> </span><span class="c1">// Loop n times</span>
|
||
<a id="__codelineno-7-7" name="__codelineno-7-7" href="#__codelineno-7-7"></a><span class="w"> </span><span class="k">for</span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns , every round i++ is executed</span>
|
||
<a id="__codelineno-7-8" name="__codelineno-7-8" href="#__codelineno-7-8"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// 5 ns</span>
|
||
<a id="__codelineno-7-9" name="__codelineno-7-9" href="#__codelineno-7-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-7-10" name="__codelineno-7-10" href="#__codelineno-7-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-8-1" name="__codelineno-8-1" href="#__codelineno-8-1"></a><span class="c1">// Under a particular operating platform</span>
|
||
<a id="__codelineno-8-2" name="__codelineno-8-2" href="#__codelineno-8-2"></a><span class="kt">void</span><span class="w"> </span><span class="n">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-8-3" name="__codelineno-8-3" href="#__codelineno-8-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-8-4" name="__codelineno-8-4" href="#__codelineno-8-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-8-5" name="__codelineno-8-5" href="#__codelineno-8-5"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="m">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
|
||
<a id="__codelineno-8-6" name="__codelineno-8-6" href="#__codelineno-8-6"></a><span class="w"> </span><span class="c1">// Loop n times</span>
|
||
<a id="__codelineno-8-7" name="__codelineno-8-7" href="#__codelineno-8-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns , every round i++ is executed</span>
|
||
<a id="__codelineno-8-8" name="__codelineno-8-8" href="#__codelineno-8-8"></a><span class="w"> </span><span class="n">print</span><span class="p">(</span><span class="m">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// 5 ns</span>
|
||
<a id="__codelineno-8-9" name="__codelineno-8-9" href="#__codelineno-8-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-8-10" name="__codelineno-8-10" href="#__codelineno-8-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-9-1" name="__codelineno-9-1" href="#__codelineno-9-1"></a><span class="c1">// Under a particular operating platform</span>
|
||
<a id="__codelineno-9-2" name="__codelineno-9-2" href="#__codelineno-9-2"></a><span class="k">fn</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-9-3" name="__codelineno-9-3" href="#__codelineno-9-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-9-4" name="__codelineno-9-4" href="#__codelineno-9-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-9-5" name="__codelineno-9-5" href="#__codelineno-9-5"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
|
||
<a id="__codelineno-9-6" name="__codelineno-9-6" href="#__codelineno-9-6"></a><span class="w"> </span><span class="c1">// Loop n times</span>
|
||
<a id="__codelineno-9-7" name="__codelineno-9-7" href="#__codelineno-9-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">n</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns for each round i++</span>
|
||
<a id="__codelineno-9-8" name="__codelineno-9-8" href="#__codelineno-9-8"></a><span class="w"> </span><span class="fm">println!</span><span class="p">(</span><span class="s">"{}"</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// 5 ns</span>
|
||
<a id="__codelineno-9-9" name="__codelineno-9-9" href="#__codelineno-9-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-9-10" name="__codelineno-9-10" href="#__codelineno-9-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-10-1" name="__codelineno-10-1" href="#__codelineno-10-1"></a><span class="c1">// Under a particular operating platform</span>
|
||
<a id="__codelineno-10-2" name="__codelineno-10-2" href="#__codelineno-10-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-10-3" name="__codelineno-10-3" href="#__codelineno-10-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-10-4" name="__codelineno-10-4" href="#__codelineno-10-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-10-5" name="__codelineno-10-5" href="#__codelineno-10-5"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
|
||
<a id="__codelineno-10-6" name="__codelineno-10-6" href="#__codelineno-10-6"></a><span class="w"> </span><span class="c1">// Loop n times</span>
|
||
<a id="__codelineno-10-7" name="__codelineno-10-7" href="#__codelineno-10-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns , every round i++ is executed</span>
|
||
<a id="__codelineno-10-8" name="__codelineno-10-8" href="#__codelineno-10-8"></a><span class="w"> </span><span class="n">printf</span><span class="p">(</span><span class="s">"%d"</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// 5 ns</span>
|
||
<a id="__codelineno-10-9" name="__codelineno-10-9" href="#__codelineno-10-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-10-10" name="__codelineno-10-10" href="#__codelineno-10-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-11-1" name="__codelineno-11-1" href="#__codelineno-11-1"></a><span class="c1">// Under a particular operating platform</span>
|
||
<a id="__codelineno-11-2" name="__codelineno-11-2" href="#__codelineno-11-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">algorithm</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">usize</span><span class="p">)</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-11-3" name="__codelineno-11-3" href="#__codelineno-11-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">a</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-11-4" name="__codelineno-11-4" href="#__codelineno-11-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-11-5" name="__codelineno-11-5" href="#__codelineno-11-5"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
|
||
<a id="__codelineno-11-6" name="__codelineno-11-6" href="#__codelineno-11-6"></a><span class="w"> </span><span class="c1">// Loop n times</span>
|
||
<a id="__codelineno-11-7" name="__codelineno-11-7" href="#__codelineno-11-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="mi">0</span><span class="p">..</span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">|</span><span class="n">_</span><span class="o">|</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns</span>
|
||
<a id="__codelineno-11-8" name="__codelineno-11-8" href="#__codelineno-11-8"></a><span class="w"> </span><span class="n">std</span><span class="p">.</span><span class="n">debug</span><span class="p">.</span><span class="n">print</span><span class="p">(</span><span class="s">"{}</span><span class="se">\n</span><span class="s">"</span><span class="p">,</span><span class="w"> </span><span class="p">.{</span><span class="mi">0</span><span class="p">});</span><span class="w"> </span><span class="c1">// 5 ns</span>
|
||
<a id="__codelineno-11-9" name="__codelineno-11-9" href="#__codelineno-11-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-11-10" name="__codelineno-11-10" href="#__codelineno-11-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<p>Using the above method, the run time of the algorithm can be calculated as <span class="arithmatex">\((6n + 12)\)</span> ns:</p>
|
||
<div class="arithmatex">\[
|
||
1 + 1 + 10 + (1 + 5) \times n = 6n + 12
|
||
\]</div>
|
||
<p>However, in practice, <strong>counting the run time of an algorithm is neither practical nor reasonable</strong>. First, we don't want to tie the estimated time to the running platform, as algorithms need to run on various platforms. Second, it's challenging to know the run time for each type of operation, making the estimation process difficult.</p>
|
||
<h2 id="231-assessing-time-growth-trend">2.3.1 Assessing Time Growth Trend<a class="headerlink" href="#231-assessing-time-growth-trend" title="Permanent link">¶</a></h2>
|
||
<p>Time complexity analysis does not count the algorithm's run time, <strong>but rather the growth trend of the run time as the data volume increases</strong>.</p>
|
||
<p>Let's understand this concept of "time growth trend" with an example. Assume the input data size is <span class="arithmatex">\(n\)</span>, and consider three algorithms <code>A</code>, <code>B</code>, and <code>C</code>:</p>
|
||
<div class="tabbed-set tabbed-alternate" data-tabs="2:12"><input checked="checked" id="__tabbed_2_1" name="__tabbed_2" type="radio" /><input id="__tabbed_2_2" name="__tabbed_2" type="radio" /><input id="__tabbed_2_3" name="__tabbed_2" type="radio" /><input id="__tabbed_2_4" name="__tabbed_2" type="radio" /><input id="__tabbed_2_5" name="__tabbed_2" type="radio" /><input id="__tabbed_2_6" name="__tabbed_2" type="radio" /><input id="__tabbed_2_7" name="__tabbed_2" type="radio" /><input id="__tabbed_2_8" name="__tabbed_2" type="radio" /><input id="__tabbed_2_9" name="__tabbed_2" type="radio" /><input id="__tabbed_2_10" name="__tabbed_2" type="radio" /><input id="__tabbed_2_11" name="__tabbed_2" type="radio" /><input id="__tabbed_2_12" name="__tabbed_2" type="radio" /><div class="tabbed-labels"><label for="__tabbed_2_1">Python</label><label for="__tabbed_2_2">C++</label><label for="__tabbed_2_3">Java</label><label for="__tabbed_2_4">C#</label><label for="__tabbed_2_5">Go</label><label for="__tabbed_2_6">Swift</label><label for="__tabbed_2_7">JS</label><label for="__tabbed_2_8">TS</label><label for="__tabbed_2_9">Dart</label><label for="__tabbed_2_10">Rust</label><label for="__tabbed_2_11">C</label><label for="__tabbed_2_12">Zig</label></div>
|
||
<div class="tabbed-content">
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-12-1" name="__codelineno-12-1" href="#__codelineno-12-1"></a><span class="c1"># Time complexity of algorithm A: constant order</span>
|
||
<a id="__codelineno-12-2" name="__codelineno-12-2" href="#__codelineno-12-2"></a><span class="k">def</span> <span class="nf">algorithm_A</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span>
|
||
<a id="__codelineno-12-3" name="__codelineno-12-3" href="#__codelineno-12-3"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
|
||
<a id="__codelineno-12-4" name="__codelineno-12-4" href="#__codelineno-12-4"></a><span class="c1"># Time complexity of algorithm B: linear order</span>
|
||
<a id="__codelineno-12-5" name="__codelineno-12-5" href="#__codelineno-12-5"></a><span class="k">def</span> <span class="nf">algorithm_B</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span>
|
||
<a id="__codelineno-12-6" name="__codelineno-12-6" href="#__codelineno-12-6"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
|
||
<a id="__codelineno-12-7" name="__codelineno-12-7" href="#__codelineno-12-7"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
|
||
<a id="__codelineno-12-8" name="__codelineno-12-8" href="#__codelineno-12-8"></a><span class="c1"># Time complexity of algorithm C: constant order</span>
|
||
<a id="__codelineno-12-9" name="__codelineno-12-9" href="#__codelineno-12-9"></a><span class="k">def</span> <span class="nf">algorithm_C</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span>
|
||
<a id="__codelineno-12-10" name="__codelineno-12-10" href="#__codelineno-12-10"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1000000</span><span class="p">):</span>
|
||
<a id="__codelineno-12-11" name="__codelineno-12-11" href="#__codelineno-12-11"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-13-1" name="__codelineno-13-1" href="#__codelineno-13-1"></a><span class="c1">// Time complexity of algorithm A: constant order</span>
|
||
<a id="__codelineno-13-2" name="__codelineno-13-2" href="#__codelineno-13-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_A</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-13-3" name="__codelineno-13-3" href="#__codelineno-13-3"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o"><<</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o"><<</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span>
|
||
<a id="__codelineno-13-4" name="__codelineno-13-4" href="#__codelineno-13-4"></a><span class="p">}</span>
|
||
<a id="__codelineno-13-5" name="__codelineno-13-5" href="#__codelineno-13-5"></a><span class="c1">// Time complexity of algorithm B: linear order</span>
|
||
<a id="__codelineno-13-6" name="__codelineno-13-6" href="#__codelineno-13-6"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_B</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-13-7" name="__codelineno-13-7" href="#__codelineno-13-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-13-8" name="__codelineno-13-8" href="#__codelineno-13-8"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o"><<</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o"><<</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span>
|
||
<a id="__codelineno-13-9" name="__codelineno-13-9" href="#__codelineno-13-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-13-10" name="__codelineno-13-10" href="#__codelineno-13-10"></a><span class="p">}</span>
|
||
<a id="__codelineno-13-11" name="__codelineno-13-11" href="#__codelineno-13-11"></a><span class="c1">// Time complexity of algorithm C: constant order</span>
|
||
<a id="__codelineno-13-12" name="__codelineno-13-12" href="#__codelineno-13-12"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_C</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-13-13" name="__codelineno-13-13" href="#__codelineno-13-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mi">1000000</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-13-14" name="__codelineno-13-14" href="#__codelineno-13-14"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o"><<</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o"><<</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span>
|
||
<a id="__codelineno-13-15" name="__codelineno-13-15" href="#__codelineno-13-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-13-16" name="__codelineno-13-16" href="#__codelineno-13-16"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-14-1" name="__codelineno-14-1" href="#__codelineno-14-1"></a><span class="c1">// Time complexity of algorithm A: constant order</span>
|
||
<a id="__codelineno-14-2" name="__codelineno-14-2" href="#__codelineno-14-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_A</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-14-3" name="__codelineno-14-3" href="#__codelineno-14-3"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span>
|
||
<a id="__codelineno-14-4" name="__codelineno-14-4" href="#__codelineno-14-4"></a><span class="p">}</span>
|
||
<a id="__codelineno-14-5" name="__codelineno-14-5" href="#__codelineno-14-5"></a><span class="c1">// Time complexity of algorithm B: linear order</span>
|
||
<a id="__codelineno-14-6" name="__codelineno-14-6" href="#__codelineno-14-6"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_B</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-14-7" name="__codelineno-14-7" href="#__codelineno-14-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-14-8" name="__codelineno-14-8" href="#__codelineno-14-8"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span>
|
||
<a id="__codelineno-14-9" name="__codelineno-14-9" href="#__codelineno-14-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-14-10" name="__codelineno-14-10" href="#__codelineno-14-10"></a><span class="p">}</span>
|
||
<a id="__codelineno-14-11" name="__codelineno-14-11" href="#__codelineno-14-11"></a><span class="c1">// Time complexity of algorithm C: constant order</span>
|
||
<a id="__codelineno-14-12" name="__codelineno-14-12" href="#__codelineno-14-12"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_C</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-14-13" name="__codelineno-14-13" href="#__codelineno-14-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mi">1000000</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-14-14" name="__codelineno-14-14" href="#__codelineno-14-14"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span>
|
||
<a id="__codelineno-14-15" name="__codelineno-14-15" href="#__codelineno-14-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-14-16" name="__codelineno-14-16" href="#__codelineno-14-16"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-15-1" name="__codelineno-15-1" href="#__codelineno-15-1"></a><span class="c1">// Time complexity of algorithm A: constant order</span>
|
||
<a id="__codelineno-15-2" name="__codelineno-15-2" href="#__codelineno-15-2"></a><span class="k">void</span><span class="w"> </span><span class="nf">AlgorithmA</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-15-3" name="__codelineno-15-3" href="#__codelineno-15-3"></a><span class="w"> </span><span class="n">Console</span><span class="p">.</span><span class="n">WriteLine</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
|
||
<a id="__codelineno-15-4" name="__codelineno-15-4" href="#__codelineno-15-4"></a><span class="p">}</span>
|
||
<a id="__codelineno-15-5" name="__codelineno-15-5" href="#__codelineno-15-5"></a><span class="c1">// Time complexity of algorithm B: linear order</span>
|
||
<a id="__codelineno-15-6" name="__codelineno-15-6" href="#__codelineno-15-6"></a><span class="k">void</span><span class="w"> </span><span class="nf">AlgorithmB</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-15-7" name="__codelineno-15-7" href="#__codelineno-15-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-15-8" name="__codelineno-15-8" href="#__codelineno-15-8"></a><span class="w"> </span><span class="n">Console</span><span class="p">.</span><span class="n">WriteLine</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
|
||
<a id="__codelineno-15-9" name="__codelineno-15-9" href="#__codelineno-15-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-15-10" name="__codelineno-15-10" href="#__codelineno-15-10"></a><span class="p">}</span>
|
||
<a id="__codelineno-15-11" name="__codelineno-15-11" href="#__codelineno-15-11"></a><span class="c1">// Time complexity of algorithm C: constant order</span>
|
||
<a id="__codelineno-15-12" name="__codelineno-15-12" href="#__codelineno-15-12"></a><span class="k">void</span><span class="w"> </span><span class="nf">AlgorithmC</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-15-13" name="__codelineno-15-13" href="#__codelineno-15-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="m">1000000</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-15-14" name="__codelineno-15-14" href="#__codelineno-15-14"></a><span class="w"> </span><span class="n">Console</span><span class="p">.</span><span class="n">WriteLine</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
|
||
<a id="__codelineno-15-15" name="__codelineno-15-15" href="#__codelineno-15-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-15-16" name="__codelineno-15-16" href="#__codelineno-15-16"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="c1">// Time complexity of algorithm A: constant order</span>
|
||
<a id="__codelineno-16-2" name="__codelineno-16-2" href="#__codelineno-16-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">algorithm_A</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-16-3" name="__codelineno-16-3" href="#__codelineno-16-3"></a><span class="w"> </span><span class="nx">fmt</span><span class="p">.</span><span class="nx">Println</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
|
||
<a id="__codelineno-16-4" name="__codelineno-16-4" href="#__codelineno-16-4"></a><span class="p">}</span>
|
||
<a id="__codelineno-16-5" name="__codelineno-16-5" href="#__codelineno-16-5"></a><span class="c1">// Time complexity of algorithm B: linear order</span>
|
||
<a id="__codelineno-16-6" name="__codelineno-16-6" href="#__codelineno-16-6"></a><span class="kd">func</span><span class="w"> </span><span class="nx">algorithm_B</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-16-7" name="__codelineno-16-7" href="#__codelineno-16-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-16-8" name="__codelineno-16-8" href="#__codelineno-16-8"></a><span class="w"> </span><span class="nx">fmt</span><span class="p">.</span><span class="nx">Println</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
|
||
<a id="__codelineno-16-9" name="__codelineno-16-9" href="#__codelineno-16-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-16-10" name="__codelineno-16-10" href="#__codelineno-16-10"></a><span class="p">}</span>
|
||
<a id="__codelineno-16-11" name="__codelineno-16-11" href="#__codelineno-16-11"></a><span class="c1">// Time complexity of algorithm C: constant order</span>
|
||
<a id="__codelineno-16-12" name="__codelineno-16-12" href="#__codelineno-16-12"></a><span class="kd">func</span><span class="w"> </span><span class="nx">algorithm_C</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-16-13" name="__codelineno-16-13" href="#__codelineno-16-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p"><</span><span class="w"> </span><span class="mi">1000000</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-16-14" name="__codelineno-16-14" href="#__codelineno-16-14"></a><span class="w"> </span><span class="nx">fmt</span><span class="p">.</span><span class="nx">Println</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
|
||
<a id="__codelineno-16-15" name="__codelineno-16-15" href="#__codelineno-16-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-16-16" name="__codelineno-16-16" href="#__codelineno-16-16"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="c1">// Time complexity of algorithm A: constant order</span>
|
||
<a id="__codelineno-17-2" name="__codelineno-17-2" href="#__codelineno-17-2"></a><span class="kd">func</span> <span class="nf">algorithmA</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">{</span>
|
||
<a id="__codelineno-17-3" name="__codelineno-17-3" href="#__codelineno-17-3"></a> <span class="bp">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
|
||
<a id="__codelineno-17-4" name="__codelineno-17-4" href="#__codelineno-17-4"></a><span class="p">}</span>
|
||
<a id="__codelineno-17-5" name="__codelineno-17-5" href="#__codelineno-17-5"></a>
|
||
<a id="__codelineno-17-6" name="__codelineno-17-6" href="#__codelineno-17-6"></a><span class="c1">// Time complexity of algorithm B: linear order</span>
|
||
<a id="__codelineno-17-7" name="__codelineno-17-7" href="#__codelineno-17-7"></a><span class="kd">func</span> <span class="nf">algorithmB</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">{</span>
|
||
<a id="__codelineno-17-8" name="__codelineno-17-8" href="#__codelineno-17-8"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o"><</span> <span class="n">n</span> <span class="p">{</span>
|
||
<a id="__codelineno-17-9" name="__codelineno-17-9" href="#__codelineno-17-9"></a> <span class="bp">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
|
||
<a id="__codelineno-17-10" name="__codelineno-17-10" href="#__codelineno-17-10"></a> <span class="p">}</span>
|
||
<a id="__codelineno-17-11" name="__codelineno-17-11" href="#__codelineno-17-11"></a><span class="p">}</span>
|
||
<a id="__codelineno-17-12" name="__codelineno-17-12" href="#__codelineno-17-12"></a>
|
||
<a id="__codelineno-17-13" name="__codelineno-17-13" href="#__codelineno-17-13"></a><span class="c1">// Time complexity of algorithm C: constant order</span>
|
||
<a id="__codelineno-17-14" name="__codelineno-17-14" href="#__codelineno-17-14"></a><span class="kd">func</span> <span class="nf">algorithmC</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">{</span>
|
||
<a id="__codelineno-17-15" name="__codelineno-17-15" href="#__codelineno-17-15"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o"><</span> <span class="mi">1000000</span> <span class="p">{</span>
|
||
<a id="__codelineno-17-16" name="__codelineno-17-16" href="#__codelineno-17-16"></a> <span class="bp">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
|
||
<a id="__codelineno-17-17" name="__codelineno-17-17" href="#__codelineno-17-17"></a> <span class="p">}</span>
|
||
<a id="__codelineno-17-18" name="__codelineno-17-18" href="#__codelineno-17-18"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-18-1" name="__codelineno-18-1" href="#__codelineno-18-1"></a><span class="c1">// Time complexity of algorithm A: constant order</span>
|
||
<a id="__codelineno-18-2" name="__codelineno-18-2" href="#__codelineno-18-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm_A</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-18-3" name="__codelineno-18-3" href="#__codelineno-18-3"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
|
||
<a id="__codelineno-18-4" name="__codelineno-18-4" href="#__codelineno-18-4"></a><span class="p">}</span>
|
||
<a id="__codelineno-18-5" name="__codelineno-18-5" href="#__codelineno-18-5"></a><span class="c1">// Time complexity of algorithm B: linear order</span>
|
||
<a id="__codelineno-18-6" name="__codelineno-18-6" href="#__codelineno-18-6"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm_B</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-18-7" name="__codelineno-18-7" href="#__codelineno-18-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-18-8" name="__codelineno-18-8" href="#__codelineno-18-8"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
|
||
<a id="__codelineno-18-9" name="__codelineno-18-9" href="#__codelineno-18-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-18-10" name="__codelineno-18-10" href="#__codelineno-18-10"></a><span class="p">}</span>
|
||
<a id="__codelineno-18-11" name="__codelineno-18-11" href="#__codelineno-18-11"></a><span class="c1">// Time complexity of algorithm C: constant order</span>
|
||
<a id="__codelineno-18-12" name="__codelineno-18-12" href="#__codelineno-18-12"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm_C</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-18-13" name="__codelineno-18-13" href="#__codelineno-18-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mf">1000000</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-18-14" name="__codelineno-18-14" href="#__codelineno-18-14"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
|
||
<a id="__codelineno-18-15" name="__codelineno-18-15" href="#__codelineno-18-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-18-16" name="__codelineno-18-16" href="#__codelineno-18-16"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-19-1" name="__codelineno-19-1" href="#__codelineno-19-1"></a><span class="c1">// Time complexity of algorithm A: constant order</span>
|
||
<a id="__codelineno-19-2" name="__codelineno-19-2" href="#__codelineno-19-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm_A</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-19-3" name="__codelineno-19-3" href="#__codelineno-19-3"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
|
||
<a id="__codelineno-19-4" name="__codelineno-19-4" href="#__codelineno-19-4"></a><span class="p">}</span>
|
||
<a id="__codelineno-19-5" name="__codelineno-19-5" href="#__codelineno-19-5"></a><span class="c1">// Time complexity of algorithm B: linear order</span>
|
||
<a id="__codelineno-19-6" name="__codelineno-19-6" href="#__codelineno-19-6"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm_B</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-19-7" name="__codelineno-19-7" href="#__codelineno-19-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-19-8" name="__codelineno-19-8" href="#__codelineno-19-8"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
|
||
<a id="__codelineno-19-9" name="__codelineno-19-9" href="#__codelineno-19-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-19-10" name="__codelineno-19-10" href="#__codelineno-19-10"></a><span class="p">}</span>
|
||
<a id="__codelineno-19-11" name="__codelineno-19-11" href="#__codelineno-19-11"></a><span class="c1">// Time complexity of algorithm C: constant order</span>
|
||
<a id="__codelineno-19-12" name="__codelineno-19-12" href="#__codelineno-19-12"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm_C</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-19-13" name="__codelineno-19-13" href="#__codelineno-19-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mf">1000000</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-19-14" name="__codelineno-19-14" href="#__codelineno-19-14"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
|
||
<a id="__codelineno-19-15" name="__codelineno-19-15" href="#__codelineno-19-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-19-16" name="__codelineno-19-16" href="#__codelineno-19-16"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-20-1" name="__codelineno-20-1" href="#__codelineno-20-1"></a><span class="c1">// Time complexity of algorithm A: constant order</span>
|
||
<a id="__codelineno-20-2" name="__codelineno-20-2" href="#__codelineno-20-2"></a><span class="kt">void</span><span class="w"> </span><span class="n">algorithmA</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-20-3" name="__codelineno-20-3" href="#__codelineno-20-3"></a><span class="w"> </span><span class="n">print</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
|
||
<a id="__codelineno-20-4" name="__codelineno-20-4" href="#__codelineno-20-4"></a><span class="p">}</span>
|
||
<a id="__codelineno-20-5" name="__codelineno-20-5" href="#__codelineno-20-5"></a><span class="c1">// Time complexity of algorithm B: linear order</span>
|
||
<a id="__codelineno-20-6" name="__codelineno-20-6" href="#__codelineno-20-6"></a><span class="kt">void</span><span class="w"> </span><span class="n">algorithmB</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-20-7" name="__codelineno-20-7" href="#__codelineno-20-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-20-8" name="__codelineno-20-8" href="#__codelineno-20-8"></a><span class="w"> </span><span class="n">print</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
|
||
<a id="__codelineno-20-9" name="__codelineno-20-9" href="#__codelineno-20-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-20-10" name="__codelineno-20-10" href="#__codelineno-20-10"></a><span class="p">}</span>
|
||
<a id="__codelineno-20-11" name="__codelineno-20-11" href="#__codelineno-20-11"></a><span class="c1">// Time complexity of algorithm C: constant order</span>
|
||
<a id="__codelineno-20-12" name="__codelineno-20-12" href="#__codelineno-20-12"></a><span class="kt">void</span><span class="w"> </span><span class="n">algorithmC</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-20-13" name="__codelineno-20-13" href="#__codelineno-20-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="m">1000000</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-20-14" name="__codelineno-20-14" href="#__codelineno-20-14"></a><span class="w"> </span><span class="n">print</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
|
||
<a id="__codelineno-20-15" name="__codelineno-20-15" href="#__codelineno-20-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-20-16" name="__codelineno-20-16" href="#__codelineno-20-16"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-21-1" name="__codelineno-21-1" href="#__codelineno-21-1"></a><span class="c1">// Time complexity of algorithm A: constant order</span>
|
||
<a id="__codelineno-21-2" name="__codelineno-21-2" href="#__codelineno-21-2"></a><span class="k">fn</span> <span class="nf">algorithm_A</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-21-3" name="__codelineno-21-3" href="#__codelineno-21-3"></a><span class="w"> </span><span class="fm">println!</span><span class="p">(</span><span class="s">"{}"</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
|
||
<a id="__codelineno-21-4" name="__codelineno-21-4" href="#__codelineno-21-4"></a><span class="p">}</span>
|
||
<a id="__codelineno-21-5" name="__codelineno-21-5" href="#__codelineno-21-5"></a><span class="c1">// Time complexity of algorithm B: linear order</span>
|
||
<a id="__codelineno-21-6" name="__codelineno-21-6" href="#__codelineno-21-6"></a><span class="k">fn</span> <span class="nf">algorithm_B</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-21-7" name="__codelineno-21-7" href="#__codelineno-21-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-21-8" name="__codelineno-21-8" href="#__codelineno-21-8"></a><span class="w"> </span><span class="fm">println!</span><span class="p">(</span><span class="s">"{}"</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
|
||
<a id="__codelineno-21-9" name="__codelineno-21-9" href="#__codelineno-21-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-21-10" name="__codelineno-21-10" href="#__codelineno-21-10"></a><span class="p">}</span>
|
||
<a id="__codelineno-21-11" name="__codelineno-21-11" href="#__codelineno-21-11"></a><span class="c1">// Time complexity of algorithm C: constant order</span>
|
||
<a id="__codelineno-21-12" name="__codelineno-21-12" href="#__codelineno-21-12"></a><span class="k">fn</span> <span class="nf">algorithm_C</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-21-13" name="__codelineno-21-13" href="#__codelineno-21-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="mi">1000000</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-21-14" name="__codelineno-21-14" href="#__codelineno-21-14"></a><span class="w"> </span><span class="fm">println!</span><span class="p">(</span><span class="s">"{}"</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
|
||
<a id="__codelineno-21-15" name="__codelineno-21-15" href="#__codelineno-21-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-21-16" name="__codelineno-21-16" href="#__codelineno-21-16"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-22-1" name="__codelineno-22-1" href="#__codelineno-22-1"></a><span class="c1">// Time complexity of algorithm A: constant order</span>
|
||
<a id="__codelineno-22-2" name="__codelineno-22-2" href="#__codelineno-22-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_A</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-22-3" name="__codelineno-22-3" href="#__codelineno-22-3"></a><span class="w"> </span><span class="n">printf</span><span class="p">(</span><span class="s">"%d"</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
|
||
<a id="__codelineno-22-4" name="__codelineno-22-4" href="#__codelineno-22-4"></a><span class="p">}</span>
|
||
<a id="__codelineno-22-5" name="__codelineno-22-5" href="#__codelineno-22-5"></a><span class="c1">// Time complexity of algorithm B: linear order</span>
|
||
<a id="__codelineno-22-6" name="__codelineno-22-6" href="#__codelineno-22-6"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_B</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-22-7" name="__codelineno-22-7" href="#__codelineno-22-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-22-8" name="__codelineno-22-8" href="#__codelineno-22-8"></a><span class="w"> </span><span class="n">printf</span><span class="p">(</span><span class="s">"%d"</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
|
||
<a id="__codelineno-22-9" name="__codelineno-22-9" href="#__codelineno-22-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-22-10" name="__codelineno-22-10" href="#__codelineno-22-10"></a><span class="p">}</span>
|
||
<a id="__codelineno-22-11" name="__codelineno-22-11" href="#__codelineno-22-11"></a><span class="c1">// Time complexity of algorithm C: constant order</span>
|
||
<a id="__codelineno-22-12" name="__codelineno-22-12" href="#__codelineno-22-12"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_C</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-22-13" name="__codelineno-22-13" href="#__codelineno-22-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mi">1000000</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-22-14" name="__codelineno-22-14" href="#__codelineno-22-14"></a><span class="w"> </span><span class="n">printf</span><span class="p">(</span><span class="s">"%d"</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
|
||
<a id="__codelineno-22-15" name="__codelineno-22-15" href="#__codelineno-22-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-22-16" name="__codelineno-22-16" href="#__codelineno-22-16"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-23-1" name="__codelineno-23-1" href="#__codelineno-23-1"></a><span class="c1">// Time complexity of algorithm A: constant order</span>
|
||
<a id="__codelineno-23-2" name="__codelineno-23-2" href="#__codelineno-23-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">algorithm_A</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">usize</span><span class="p">)</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-23-3" name="__codelineno-23-3" href="#__codelineno-23-3"></a><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
|
||
<a id="__codelineno-23-4" name="__codelineno-23-4" href="#__codelineno-23-4"></a><span class="w"> </span><span class="n">std</span><span class="p">.</span><span class="n">debug</span><span class="p">.</span><span class="n">print</span><span class="p">(</span><span class="s">"{}</span><span class="se">\n</span><span class="s">"</span><span class="p">,</span><span class="w"> </span><span class="p">.{</span><span class="mi">0</span><span class="p">});</span>
|
||
<a id="__codelineno-23-5" name="__codelineno-23-5" href="#__codelineno-23-5"></a><span class="p">}</span>
|
||
<a id="__codelineno-23-6" name="__codelineno-23-6" href="#__codelineno-23-6"></a><span class="c1">// Time complexity of algorithm B: linear order</span>
|
||
<a id="__codelineno-23-7" name="__codelineno-23-7" href="#__codelineno-23-7"></a><span class="k">fn</span><span class="w"> </span><span class="n">algorithm_B</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-23-8" name="__codelineno-23-8" href="#__codelineno-23-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="mi">0</span><span class="p">..</span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">|</span><span class="n">_</span><span class="o">|</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-23-9" name="__codelineno-23-9" href="#__codelineno-23-9"></a><span class="w"> </span><span class="n">std</span><span class="p">.</span><span class="n">debug</span><span class="p">.</span><span class="n">print</span><span class="p">(</span><span class="s">"{}</span><span class="se">\n</span><span class="s">"</span><span class="p">,</span><span class="w"> </span><span class="p">.{</span><span class="mi">0</span><span class="p">});</span>
|
||
<a id="__codelineno-23-10" name="__codelineno-23-10" href="#__codelineno-23-10"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-23-11" name="__codelineno-23-11" href="#__codelineno-23-11"></a><span class="p">}</span>
|
||
<a id="__codelineno-23-12" name="__codelineno-23-12" href="#__codelineno-23-12"></a><span class="c1">// Time complexity of algorithm C: constant order</span>
|
||
<a id="__codelineno-23-13" name="__codelineno-23-13" href="#__codelineno-23-13"></a><span class="k">fn</span><span class="w"> </span><span class="n">algorithm_C</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-23-14" name="__codelineno-23-14" href="#__codelineno-23-14"></a><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
|
||
<a id="__codelineno-23-15" name="__codelineno-23-15" href="#__codelineno-23-15"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="mi">0</span><span class="p">..</span><span class="mi">1000000</span><span class="p">)</span><span class="w"> </span><span class="o">|</span><span class="n">_</span><span class="o">|</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-23-16" name="__codelineno-23-16" href="#__codelineno-23-16"></a><span class="w"> </span><span class="n">std</span><span class="p">.</span><span class="n">debug</span><span class="p">.</span><span class="n">print</span><span class="p">(</span><span class="s">"{}</span><span class="se">\n</span><span class="s">"</span><span class="p">,</span><span class="w"> </span><span class="p">.{</span><span class="mi">0</span><span class="p">});</span>
|
||
<a id="__codelineno-23-17" name="__codelineno-23-17" href="#__codelineno-23-17"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-23-18" name="__codelineno-23-18" href="#__codelineno-23-18"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<p>The following figure shows the time complexities of these three algorithms.</p>
|
||
<ul>
|
||
<li>Algorithm <code>A</code> has just one print operation, and its run time does not grow with <span class="arithmatex">\(n\)</span>. Its time complexity is considered "constant order."</li>
|
||
<li>Algorithm <code>B</code> involves a print operation looping <span class="arithmatex">\(n\)</span> times, and its run time grows linearly with <span class="arithmatex">\(n\)</span>. Its time complexity is "linear order."</li>
|
||
<li>Algorithm <code>C</code> has a print operation looping 1,000,000 times. Although it takes a long time, it is independent of the input data size <span class="arithmatex">\(n\)</span>. Therefore, the time complexity of <code>C</code> is the same as <code>A</code>, which is "constant order."</li>
|
||
</ul>
|
||
<p><a class="glightbox" href="../time_complexity.assets/time_complexity_simple_example.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Time Growth Trend of Algorithms A, B, and C" class="animation-figure" src="../time_complexity.assets/time_complexity_simple_example.png" /></a></p>
|
||
<p align="center"> Figure 2-7 Time Growth Trend of Algorithms A, B, and C </p>
|
||
|
||
<p>Compared to directly counting the run time of an algorithm, what are the characteristics of time complexity analysis?</p>
|
||
<ul>
|
||
<li><strong>Time complexity effectively assesses algorithm efficiency</strong>. For instance, algorithm <code>B</code> has linearly growing run time, which is slower than algorithm <code>A</code> when <span class="arithmatex">\(n > 1\)</span> and slower than <code>C</code> when <span class="arithmatex">\(n > 1,000,000\)</span>. In fact, as long as the input data size <span class="arithmatex">\(n\)</span> is sufficiently large, a "constant order" complexity algorithm will always be better than a "linear order" one, demonstrating the essence of time growth trend.</li>
|
||
<li><strong>Time complexity analysis is more straightforward</strong>. Obviously, the running platform and the types of computational operations are irrelevant to the trend of run time growth. Therefore, in time complexity analysis, we can simply treat the execution time of all computational operations as the same "unit time," simplifying the "computational operation run time count" to a "computational operation count." This significantly reduces the complexity of estimation.</li>
|
||
<li><strong>Time complexity has its limitations</strong>. For example, although algorithms <code>A</code> and <code>C</code> have the same time complexity, their actual run times can be quite different. Similarly, even though algorithm <code>B</code> has a higher time complexity than <code>C</code>, it is clearly superior when the input data size <span class="arithmatex">\(n\)</span> is small. In these cases, it's difficult to judge the efficiency of algorithms based solely on time complexity. Nonetheless, despite these issues, complexity analysis remains the most effective and commonly used method for evaluating algorithm efficiency.</li>
|
||
</ul>
|
||
<h2 id="232-asymptotic-upper-bound">2.3.2 Asymptotic Upper Bound<a class="headerlink" href="#232-asymptotic-upper-bound" title="Permanent link">¶</a></h2>
|
||
<p>Consider a function with an input size of <span class="arithmatex">\(n\)</span>:</p>
|
||
<div class="tabbed-set tabbed-alternate" data-tabs="3:12"><input checked="checked" id="__tabbed_3_1" name="__tabbed_3" type="radio" /><input id="__tabbed_3_2" name="__tabbed_3" type="radio" /><input id="__tabbed_3_3" name="__tabbed_3" type="radio" /><input id="__tabbed_3_4" name="__tabbed_3" type="radio" /><input id="__tabbed_3_5" name="__tabbed_3" type="radio" /><input id="__tabbed_3_6" name="__tabbed_3" type="radio" /><input id="__tabbed_3_7" name="__tabbed_3" type="radio" /><input id="__tabbed_3_8" name="__tabbed_3" type="radio" /><input id="__tabbed_3_9" name="__tabbed_3" type="radio" /><input id="__tabbed_3_10" name="__tabbed_3" type="radio" /><input id="__tabbed_3_11" name="__tabbed_3" type="radio" /><input id="__tabbed_3_12" name="__tabbed_3" type="radio" /><div class="tabbed-labels"><label for="__tabbed_3_1">Python</label><label for="__tabbed_3_2">C++</label><label for="__tabbed_3_3">Java</label><label for="__tabbed_3_4">C#</label><label for="__tabbed_3_5">Go</label><label for="__tabbed_3_6">Swift</label><label for="__tabbed_3_7">JS</label><label for="__tabbed_3_8">TS</label><label for="__tabbed_3_9">Dart</label><label for="__tabbed_3_10">Rust</label><label for="__tabbed_3_11">C</label><label for="__tabbed_3_12">Zig</label></div>
|
||
<div class="tabbed-content">
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-24-1" name="__codelineno-24-1" href="#__codelineno-24-1"></a><span class="k">def</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span>
|
||
<a id="__codelineno-24-2" name="__codelineno-24-2" href="#__codelineno-24-2"></a> <span class="n">a</span> <span class="o">=</span> <span class="mi">1</span> <span class="c1"># +1</span>
|
||
<a id="__codelineno-24-3" name="__codelineno-24-3" href="#__codelineno-24-3"></a> <span class="n">a</span> <span class="o">=</span> <span class="n">a</span> <span class="o">+</span> <span class="mi">1</span> <span class="c1"># +1</span>
|
||
<a id="__codelineno-24-4" name="__codelineno-24-4" href="#__codelineno-24-4"></a> <span class="n">a</span> <span class="o">=</span> <span class="n">a</span> <span class="o">*</span> <span class="mi">2</span> <span class="c1"># +1</span>
|
||
<a id="__codelineno-24-5" name="__codelineno-24-5" href="#__codelineno-24-5"></a> <span class="c1"># Cycle n times</span>
|
||
<a id="__codelineno-24-6" name="__codelineno-24-6" href="#__codelineno-24-6"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span> <span class="c1"># +1</span>
|
||
<a id="__codelineno-24-7" name="__codelineno-24-7" href="#__codelineno-24-7"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="c1"># +1</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-25-1" name="__codelineno-25-1" href="#__codelineno-25-1"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-25-2" name="__codelineno-25-2" href="#__codelineno-25-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-25-3" name="__codelineno-25-3" href="#__codelineno-25-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-25-4" name="__codelineno-25-4" href="#__codelineno-25-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-25-5" name="__codelineno-25-5" href="#__codelineno-25-5"></a><span class="w"> </span><span class="c1">// Loop n times</span>
|
||
<a id="__codelineno-25-6" name="__codelineno-25-6" href="#__codelineno-25-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// +1 (execute i ++ every round)</span>
|
||
<a id="__codelineno-25-7" name="__codelineno-25-7" href="#__codelineno-25-7"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o"><<</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o"><<</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-25-8" name="__codelineno-25-8" href="#__codelineno-25-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-25-9" name="__codelineno-25-9" href="#__codelineno-25-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-26-1" name="__codelineno-26-1" href="#__codelineno-26-1"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-26-2" name="__codelineno-26-2" href="#__codelineno-26-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-26-3" name="__codelineno-26-3" href="#__codelineno-26-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-26-4" name="__codelineno-26-4" href="#__codelineno-26-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-26-5" name="__codelineno-26-5" href="#__codelineno-26-5"></a><span class="w"> </span><span class="c1">// Loop n times</span>
|
||
<a id="__codelineno-26-6" name="__codelineno-26-6" href="#__codelineno-26-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// +1 (execute i ++ every round)</span>
|
||
<a id="__codelineno-26-7" name="__codelineno-26-7" href="#__codelineno-26-7"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-26-8" name="__codelineno-26-8" href="#__codelineno-26-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-26-9" name="__codelineno-26-9" href="#__codelineno-26-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-27-1" name="__codelineno-27-1" href="#__codelineno-27-1"></a><span class="k">void</span><span class="w"> </span><span class="nf">Algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-27-2" name="__codelineno-27-2" href="#__codelineno-27-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-27-3" name="__codelineno-27-3" href="#__codelineno-27-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-27-4" name="__codelineno-27-4" href="#__codelineno-27-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="m">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-27-5" name="__codelineno-27-5" href="#__codelineno-27-5"></a><span class="w"> </span><span class="c1">// Loop n times</span>
|
||
<a id="__codelineno-27-6" name="__codelineno-27-6" href="#__codelineno-27-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// +1 (execute i ++ every round)</span>
|
||
<a id="__codelineno-27-7" name="__codelineno-27-7" href="#__codelineno-27-7"></a><span class="w"> </span><span class="n">Console</span><span class="p">.</span><span class="n">WriteLine</span><span class="p">(</span><span class="m">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-27-8" name="__codelineno-27-8" href="#__codelineno-27-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-27-9" name="__codelineno-27-9" href="#__codelineno-27-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a><span class="kd">func</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-28-2" name="__codelineno-28-2" href="#__codelineno-28-2"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-28-3" name="__codelineno-28-3" href="#__codelineno-28-3"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-28-4" name="__codelineno-28-4" href="#__codelineno-28-4"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-28-5" name="__codelineno-28-5" href="#__codelineno-28-5"></a><span class="w"> </span><span class="c1">// Loop n times</span>
|
||
<a id="__codelineno-28-6" name="__codelineno-28-6" href="#__codelineno-28-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-28-7" name="__codelineno-28-7" href="#__codelineno-28-7"></a><span class="w"> </span><span class="nx">fmt</span><span class="p">.</span><span class="nx">Println</span><span class="p">(</span><span class="nx">a</span><span class="p">)</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-28-8" name="__codelineno-28-8" href="#__codelineno-28-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-28-9" name="__codelineno-28-9" href="#__codelineno-28-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a><span class="kd">func</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">{</span>
|
||
<a id="__codelineno-29-2" name="__codelineno-29-2" href="#__codelineno-29-2"></a> <span class="kd">var</span> <span class="nv">a</span> <span class="p">=</span> <span class="mi">1</span> <span class="c1">// +1</span>
|
||
<a id="__codelineno-29-3" name="__codelineno-29-3" href="#__codelineno-29-3"></a> <span class="n">a</span> <span class="p">=</span> <span class="n">a</span> <span class="o">+</span> <span class="mi">1</span> <span class="c1">// +1</span>
|
||
<a id="__codelineno-29-4" name="__codelineno-29-4" href="#__codelineno-29-4"></a> <span class="n">a</span> <span class="p">=</span> <span class="n">a</span> <span class="o">*</span> <span class="mi">2</span> <span class="c1">// +1</span>
|
||
<a id="__codelineno-29-5" name="__codelineno-29-5" href="#__codelineno-29-5"></a> <span class="c1">// Loop n times</span>
|
||
<a id="__codelineno-29-6" name="__codelineno-29-6" href="#__codelineno-29-6"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o"><</span> <span class="n">n</span> <span class="p">{</span> <span class="c1">// +1</span>
|
||
<a id="__codelineno-29-7" name="__codelineno-29-7" href="#__codelineno-29-7"></a> <span class="bp">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="c1">// +1</span>
|
||
<a id="__codelineno-29-8" name="__codelineno-29-8" href="#__codelineno-29-8"></a> <span class="p">}</span>
|
||
<a id="__codelineno-29-9" name="__codelineno-29-9" href="#__codelineno-29-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-30-1" name="__codelineno-30-1" href="#__codelineno-30-1"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-30-2" name="__codelineno-30-2" href="#__codelineno-30-2"></a><span class="w"> </span><span class="kd">var</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-30-3" name="__codelineno-30-3" href="#__codelineno-30-3"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-30-4" name="__codelineno-30-4" href="#__codelineno-30-4"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-30-5" name="__codelineno-30-5" href="#__codelineno-30-5"></a><span class="w"> </span><span class="c1">// Loop n times</span>
|
||
<a id="__codelineno-30-6" name="__codelineno-30-6" href="#__codelineno-30-6"></a><span class="w"> </span><span class="k">for</span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">){</span><span class="w"> </span><span class="c1">// +1 (execute i ++ every round)</span>
|
||
<a id="__codelineno-30-7" name="__codelineno-30-7" href="#__codelineno-30-7"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-30-8" name="__codelineno-30-8" href="#__codelineno-30-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-30-9" name="__codelineno-30-9" href="#__codelineno-30-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-31-1" name="__codelineno-31-1" href="#__codelineno-31-1"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="p">{</span>
|
||
<a id="__codelineno-31-2" name="__codelineno-31-2" href="#__codelineno-31-2"></a><span class="w"> </span><span class="kd">var</span><span class="w"> </span><span class="nx">a</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-31-3" name="__codelineno-31-3" href="#__codelineno-31-3"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-31-4" name="__codelineno-31-4" href="#__codelineno-31-4"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-31-5" name="__codelineno-31-5" href="#__codelineno-31-5"></a><span class="w"> </span><span class="c1">// Loop n times</span>
|
||
<a id="__codelineno-31-6" name="__codelineno-31-6" href="#__codelineno-31-6"></a><span class="w"> </span><span class="k">for</span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">){</span><span class="w"> </span><span class="c1">// +1 (execute i ++ every round)</span>
|
||
<a id="__codelineno-31-7" name="__codelineno-31-7" href="#__codelineno-31-7"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-31-8" name="__codelineno-31-8" href="#__codelineno-31-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-31-9" name="__codelineno-31-9" href="#__codelineno-31-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-32-1" name="__codelineno-32-1" href="#__codelineno-32-1"></a><span class="kt">void</span><span class="w"> </span><span class="n">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-32-2" name="__codelineno-32-2" href="#__codelineno-32-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-32-3" name="__codelineno-32-3" href="#__codelineno-32-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-32-4" name="__codelineno-32-4" href="#__codelineno-32-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="m">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-32-5" name="__codelineno-32-5" href="#__codelineno-32-5"></a><span class="w"> </span><span class="c1">// Loop n times</span>
|
||
<a id="__codelineno-32-6" name="__codelineno-32-6" href="#__codelineno-32-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// +1 (execute i ++ every round)</span>
|
||
<a id="__codelineno-32-7" name="__codelineno-32-7" href="#__codelineno-32-7"></a><span class="w"> </span><span class="n">print</span><span class="p">(</span><span class="m">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-32-8" name="__codelineno-32-8" href="#__codelineno-32-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-32-9" name="__codelineno-32-9" href="#__codelineno-32-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-33-1" name="__codelineno-33-1" href="#__codelineno-33-1"></a><span class="k">fn</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-33-2" name="__codelineno-33-2" href="#__codelineno-33-2"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-33-3" name="__codelineno-33-3" href="#__codelineno-33-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-33-4" name="__codelineno-33-4" href="#__codelineno-33-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-33-5" name="__codelineno-33-5" href="#__codelineno-33-5"></a>
|
||
<a id="__codelineno-33-6" name="__codelineno-33-6" href="#__codelineno-33-6"></a><span class="w"> </span><span class="c1">// Loop n times</span>
|
||
<a id="__codelineno-33-7" name="__codelineno-33-7" href="#__codelineno-33-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">n</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// +1 (execute i ++ every round)</span>
|
||
<a id="__codelineno-33-8" name="__codelineno-33-8" href="#__codelineno-33-8"></a><span class="w"> </span><span class="fm">println!</span><span class="p">(</span><span class="s">"{}"</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-33-9" name="__codelineno-33-9" href="#__codelineno-33-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-33-10" name="__codelineno-33-10" href="#__codelineno-33-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-34-1" name="__codelineno-34-1" href="#__codelineno-34-1"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-34-2" name="__codelineno-34-2" href="#__codelineno-34-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-34-3" name="__codelineno-34-3" href="#__codelineno-34-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-34-4" name="__codelineno-34-4" href="#__codelineno-34-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-34-5" name="__codelineno-34-5" href="#__codelineno-34-5"></a><span class="w"> </span><span class="c1">// Loop n times</span>
|
||
<a id="__codelineno-34-6" name="__codelineno-34-6" href="#__codelineno-34-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// +1 (execute i ++ every round)</span>
|
||
<a id="__codelineno-34-7" name="__codelineno-34-7" href="#__codelineno-34-7"></a><span class="w"> </span><span class="n">printf</span><span class="p">(</span><span class="s">"%d"</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-34-8" name="__codelineno-34-8" href="#__codelineno-34-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-34-9" name="__codelineno-34-9" href="#__codelineno-34-9"></a><span class="p">}</span><span class="w"> </span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-35-1" name="__codelineno-35-1" href="#__codelineno-35-1"></a><span class="k">fn</span><span class="w"> </span><span class="n">algorithm</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">usize</span><span class="p">)</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-35-2" name="__codelineno-35-2" href="#__codelineno-35-2"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">a</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-35-3" name="__codelineno-35-3" href="#__codelineno-35-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-35-4" name="__codelineno-35-4" href="#__codelineno-35-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-35-5" name="__codelineno-35-5" href="#__codelineno-35-5"></a><span class="w"> </span><span class="c1">// Loop n times</span>
|
||
<a id="__codelineno-35-6" name="__codelineno-35-6" href="#__codelineno-35-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="mi">0</span><span class="p">..</span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">|</span><span class="n">_</span><span class="o">|</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// +1 (execute i ++ every round)</span>
|
||
<a id="__codelineno-35-7" name="__codelineno-35-7" href="#__codelineno-35-7"></a><span class="w"> </span><span class="n">std</span><span class="p">.</span><span class="n">debug</span><span class="p">.</span><span class="n">print</span><span class="p">(</span><span class="s">"{}</span><span class="se">\n</span><span class="s">"</span><span class="p">,</span><span class="w"> </span><span class="p">.{</span><span class="mi">0</span><span class="p">});</span><span class="w"> </span><span class="c1">// +1</span>
|
||
<a id="__codelineno-35-8" name="__codelineno-35-8" href="#__codelineno-35-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-35-9" name="__codelineno-35-9" href="#__codelineno-35-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<p>Given a function that represents the number of operations of an algorithm as a function of the input size <span class="arithmatex">\(n\)</span>, denoted as <span class="arithmatex">\(T(n)\)</span>, consider the following example:</p>
|
||
<div class="arithmatex">\[
|
||
T(n) = 3 + 2n
|
||
\]</div>
|
||
<p>Since <span class="arithmatex">\(T(n)\)</span> is a linear function, its growth trend is linear, and therefore, its time complexity is of linear order, denoted as <span class="arithmatex">\(O(n)\)</span>. This mathematical notation, known as "big-O notation," represents the "asymptotic upper bound" of the function <span class="arithmatex">\(T(n)\)</span>.</p>
|
||
<p>In essence, time complexity analysis is about finding the asymptotic upper bound of the "number of operations <span class="arithmatex">\(T(n)\)</span>". It has a precise mathematical definition.</p>
|
||
<div class="admonition abstract">
|
||
<p class="admonition-title">Asymptotic Upper Bound</p>
|
||
<p>If there exist positive real numbers <span class="arithmatex">\(c\)</span> and <span class="arithmatex">\(n_0\)</span> such that for all <span class="arithmatex">\(n > n_0\)</span>, <span class="arithmatex">\(T(n) \leq c \cdot f(n)\)</span>, then <span class="arithmatex">\(f(n)\)</span> is considered an asymptotic upper bound of <span class="arithmatex">\(T(n)\)</span>, denoted as <span class="arithmatex">\(T(n) = O(f(n))\)</span>.</p>
|
||
</div>
|
||
<p>As illustrated below, calculating the asymptotic upper bound involves finding a function <span class="arithmatex">\(f(n)\)</span> such that, as <span class="arithmatex">\(n\)</span> approaches infinity, <span class="arithmatex">\(T(n)\)</span> and <span class="arithmatex">\(f(n)\)</span> have the same growth order, differing only by a constant factor <span class="arithmatex">\(c\)</span>.</p>
|
||
<p><a class="glightbox" href="../time_complexity.assets/asymptotic_upper_bound.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Asymptotic Upper Bound of a Function" class="animation-figure" src="../time_complexity.assets/asymptotic_upper_bound.png" /></a></p>
|
||
<p align="center"> Figure 2-8 Asymptotic Upper Bound of a Function </p>
|
||
|
||
<h2 id="233-calculation-method">2.3.3 Calculation Method<a class="headerlink" href="#233-calculation-method" title="Permanent link">¶</a></h2>
|
||
<p>While the concept of asymptotic upper bound might seem mathematically dense, you don't need to fully grasp it right away. Let's first understand the method of calculation, which can be practiced and comprehended over time.</p>
|
||
<p>Once <span class="arithmatex">\(f(n)\)</span> is determined, we obtain the time complexity <span class="arithmatex">\(O(f(n))\)</span>. But how do we determine the asymptotic upper bound <span class="arithmatex">\(f(n)\)</span>? This process generally involves two steps: counting the number of operations and determining the asymptotic upper bound.</p>
|
||
<h3 id="1-step-1-counting-the-number-of-operations">1. Step 1: Counting the Number of Operations<a class="headerlink" href="#1-step-1-counting-the-number-of-operations" title="Permanent link">¶</a></h3>
|
||
<p>This step involves going through the code line by line. However, due to the presence of the constant <span class="arithmatex">\(c\)</span> in <span class="arithmatex">\(c \cdot f(n)\)</span>, <strong>all coefficients and constant terms in <span class="arithmatex">\(T(n)\)</span> can be ignored</strong>. This principle allows for simplification techniques in counting operations.</p>
|
||
<ol>
|
||
<li><strong>Ignore constant terms in <span class="arithmatex">\(T(n)\)</span></strong>, as they do not affect the time complexity being independent of <span class="arithmatex">\(n\)</span>.</li>
|
||
<li><strong>Omit all coefficients</strong>. For example, looping <span class="arithmatex">\(2n\)</span>, <span class="arithmatex">\(5n + 1\)</span> times, etc., can be simplified to <span class="arithmatex">\(n\)</span> times since the coefficient before <span class="arithmatex">\(n\)</span> does not impact the time complexity.</li>
|
||
<li><strong>Use multiplication for nested loops</strong>. The total number of operations equals the product of the number of operations in each loop, applying the simplification techniques from points 1 and 2 for each loop level.</li>
|
||
</ol>
|
||
<p>Given a function, we can use these techniques to count operations:</p>
|
||
<div class="tabbed-set tabbed-alternate" data-tabs="4:12"><input checked="checked" id="__tabbed_4_1" name="__tabbed_4" type="radio" /><input id="__tabbed_4_2" name="__tabbed_4" type="radio" /><input id="__tabbed_4_3" name="__tabbed_4" type="radio" /><input id="__tabbed_4_4" name="__tabbed_4" type="radio" /><input id="__tabbed_4_5" name="__tabbed_4" type="radio" /><input id="__tabbed_4_6" name="__tabbed_4" type="radio" /><input id="__tabbed_4_7" name="__tabbed_4" type="radio" /><input id="__tabbed_4_8" name="__tabbed_4" type="radio" /><input id="__tabbed_4_9" name="__tabbed_4" type="radio" /><input id="__tabbed_4_10" name="__tabbed_4" type="radio" /><input id="__tabbed_4_11" name="__tabbed_4" type="radio" /><input id="__tabbed_4_12" name="__tabbed_4" type="radio" /><div class="tabbed-labels"><label for="__tabbed_4_1">Python</label><label for="__tabbed_4_2">C++</label><label for="__tabbed_4_3">Java</label><label for="__tabbed_4_4">C#</label><label for="__tabbed_4_5">Go</label><label for="__tabbed_4_6">Swift</label><label for="__tabbed_4_7">JS</label><label for="__tabbed_4_8">TS</label><label for="__tabbed_4_9">Dart</label><label for="__tabbed_4_10">Rust</label><label for="__tabbed_4_11">C</label><label for="__tabbed_4_12">Zig</label></div>
|
||
<div class="tabbed-content">
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-36-1" name="__codelineno-36-1" href="#__codelineno-36-1"></a><span class="k">def</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span>
|
||
<a id="__codelineno-36-2" name="__codelineno-36-2" href="#__codelineno-36-2"></a> <span class="n">a</span> <span class="o">=</span> <span class="mi">1</span> <span class="c1"># +0 (trick 1)</span>
|
||
<a id="__codelineno-36-3" name="__codelineno-36-3" href="#__codelineno-36-3"></a> <span class="n">a</span> <span class="o">=</span> <span class="n">a</span> <span class="o">+</span> <span class="n">n</span> <span class="c1"># +0 (trick 1)</span>
|
||
<a id="__codelineno-36-4" name="__codelineno-36-4" href="#__codelineno-36-4"></a> <span class="c1"># +n (technique 2)</span>
|
||
<a id="__codelineno-36-5" name="__codelineno-36-5" href="#__codelineno-36-5"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">5</span> <span class="o">*</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
|
||
<a id="__codelineno-36-6" name="__codelineno-36-6" href="#__codelineno-36-6"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
|
||
<a id="__codelineno-36-7" name="__codelineno-36-7" href="#__codelineno-36-7"></a> <span class="c1"># +n*n (technique 3)</span>
|
||
<a id="__codelineno-36-8" name="__codelineno-36-8" href="#__codelineno-36-8"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">n</span><span class="p">):</span>
|
||
<a id="__codelineno-36-9" name="__codelineno-36-9" href="#__codelineno-36-9"></a> <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
|
||
<a id="__codelineno-36-10" name="__codelineno-36-10" href="#__codelineno-36-10"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-37-1" name="__codelineno-37-1" href="#__codelineno-37-1"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-37-2" name="__codelineno-37-2" href="#__codelineno-37-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0 (trick 1)</span>
|
||
<a id="__codelineno-37-3" name="__codelineno-37-3" href="#__codelineno-37-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0 (trick 1)</span>
|
||
<a id="__codelineno-37-4" name="__codelineno-37-4" href="#__codelineno-37-4"></a><span class="w"> </span><span class="c1">// +n (technique 2)</span>
|
||
<a id="__codelineno-37-5" name="__codelineno-37-5" href="#__codelineno-37-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mi">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-37-6" name="__codelineno-37-6" href="#__codelineno-37-6"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o"><<</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o"><<</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span>
|
||
<a id="__codelineno-37-7" name="__codelineno-37-7" href="#__codelineno-37-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-37-8" name="__codelineno-37-8" href="#__codelineno-37-8"></a><span class="w"> </span><span class="c1">// +n*n (technique 3)</span>
|
||
<a id="__codelineno-37-9" name="__codelineno-37-9" href="#__codelineno-37-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-37-10" name="__codelineno-37-10" href="#__codelineno-37-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-37-11" name="__codelineno-37-11" href="#__codelineno-37-11"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o"><<</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o"><<</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span>
|
||
<a id="__codelineno-37-12" name="__codelineno-37-12" href="#__codelineno-37-12"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-37-13" name="__codelineno-37-13" href="#__codelineno-37-13"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-37-14" name="__codelineno-37-14" href="#__codelineno-37-14"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-38-1" name="__codelineno-38-1" href="#__codelineno-38-1"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-38-2" name="__codelineno-38-2" href="#__codelineno-38-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0 (trick 1)</span>
|
||
<a id="__codelineno-38-3" name="__codelineno-38-3" href="#__codelineno-38-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0 (trick 1)</span>
|
||
<a id="__codelineno-38-4" name="__codelineno-38-4" href="#__codelineno-38-4"></a><span class="w"> </span><span class="c1">// +n (technique 2)</span>
|
||
<a id="__codelineno-38-5" name="__codelineno-38-5" href="#__codelineno-38-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mi">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-38-6" name="__codelineno-38-6" href="#__codelineno-38-6"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span>
|
||
<a id="__codelineno-38-7" name="__codelineno-38-7" href="#__codelineno-38-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-38-8" name="__codelineno-38-8" href="#__codelineno-38-8"></a><span class="w"> </span><span class="c1">// +n*n (technique 3)</span>
|
||
<a id="__codelineno-38-9" name="__codelineno-38-9" href="#__codelineno-38-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-38-10" name="__codelineno-38-10" href="#__codelineno-38-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-38-11" name="__codelineno-38-11" href="#__codelineno-38-11"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span>
|
||
<a id="__codelineno-38-12" name="__codelineno-38-12" href="#__codelineno-38-12"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-38-13" name="__codelineno-38-13" href="#__codelineno-38-13"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-38-14" name="__codelineno-38-14" href="#__codelineno-38-14"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-39-1" name="__codelineno-39-1" href="#__codelineno-39-1"></a><span class="k">void</span><span class="w"> </span><span class="nf">Algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-39-2" name="__codelineno-39-2" href="#__codelineno-39-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0 (trick 1)</span>
|
||
<a id="__codelineno-39-3" name="__codelineno-39-3" href="#__codelineno-39-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0 (trick 1)</span>
|
||
<a id="__codelineno-39-4" name="__codelineno-39-4" href="#__codelineno-39-4"></a><span class="w"> </span><span class="c1">// +n (technique 2)</span>
|
||
<a id="__codelineno-39-5" name="__codelineno-39-5" href="#__codelineno-39-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="m">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-39-6" name="__codelineno-39-6" href="#__codelineno-39-6"></a><span class="w"> </span><span class="n">Console</span><span class="p">.</span><span class="n">WriteLine</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
|
||
<a id="__codelineno-39-7" name="__codelineno-39-7" href="#__codelineno-39-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-39-8" name="__codelineno-39-8" href="#__codelineno-39-8"></a><span class="w"> </span><span class="c1">// +n*n (technique 3)</span>
|
||
<a id="__codelineno-39-9" name="__codelineno-39-9" href="#__codelineno-39-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="m">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-39-10" name="__codelineno-39-10" href="#__codelineno-39-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-39-11" name="__codelineno-39-11" href="#__codelineno-39-11"></a><span class="w"> </span><span class="n">Console</span><span class="p">.</span><span class="n">WriteLine</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
|
||
<a id="__codelineno-39-12" name="__codelineno-39-12" href="#__codelineno-39-12"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-39-13" name="__codelineno-39-13" href="#__codelineno-39-13"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-39-14" name="__codelineno-39-14" href="#__codelineno-39-14"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-40-1" name="__codelineno-40-1" href="#__codelineno-40-1"></a><span class="kd">func</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-40-2" name="__codelineno-40-2" href="#__codelineno-40-2"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="c1">// +0 (trick 1)</span>
|
||
<a id="__codelineno-40-3" name="__codelineno-40-3" href="#__codelineno-40-3"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="c1">// +0 (trick 1)</span>
|
||
<a id="__codelineno-40-4" name="__codelineno-40-4" href="#__codelineno-40-4"></a><span class="w"> </span><span class="c1">// +n (technique 2)</span>
|
||
<a id="__codelineno-40-5" name="__codelineno-40-5" href="#__codelineno-40-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p"><</span><span class="w"> </span><span class="mi">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-40-6" name="__codelineno-40-6" href="#__codelineno-40-6"></a><span class="w"> </span><span class="nx">fmt</span><span class="p">.</span><span class="nx">Println</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
|
||
<a id="__codelineno-40-7" name="__codelineno-40-7" href="#__codelineno-40-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-40-8" name="__codelineno-40-8" href="#__codelineno-40-8"></a><span class="w"> </span><span class="c1">// +n*n (technique 3)</span>
|
||
<a id="__codelineno-40-9" name="__codelineno-40-9" href="#__codelineno-40-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p"><</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-40-10" name="__codelineno-40-10" href="#__codelineno-40-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="p"><</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-40-11" name="__codelineno-40-11" href="#__codelineno-40-11"></a><span class="w"> </span><span class="nx">fmt</span><span class="p">.</span><span class="nx">Println</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
|
||
<a id="__codelineno-40-12" name="__codelineno-40-12" href="#__codelineno-40-12"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-40-13" name="__codelineno-40-13" href="#__codelineno-40-13"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-40-14" name="__codelineno-40-14" href="#__codelineno-40-14"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-41-1" name="__codelineno-41-1" href="#__codelineno-41-1"></a><span class="kd">func</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">{</span>
|
||
<a id="__codelineno-41-2" name="__codelineno-41-2" href="#__codelineno-41-2"></a> <span class="kd">var</span> <span class="nv">a</span> <span class="p">=</span> <span class="mi">1</span> <span class="c1">// +0 (trick 1)</span>
|
||
<a id="__codelineno-41-3" name="__codelineno-41-3" href="#__codelineno-41-3"></a> <span class="n">a</span> <span class="p">=</span> <span class="n">a</span> <span class="o">+</span> <span class="n">n</span> <span class="c1">// +0 (trick 1)</span>
|
||
<a id="__codelineno-41-4" name="__codelineno-41-4" href="#__codelineno-41-4"></a> <span class="c1">// +n (technique 2)</span>
|
||
<a id="__codelineno-41-5" name="__codelineno-41-5" href="#__codelineno-41-5"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o"><</span> <span class="p">(</span><span class="mi">5</span> <span class="o">*</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="p">{</span>
|
||
<a id="__codelineno-41-6" name="__codelineno-41-6" href="#__codelineno-41-6"></a> <span class="bp">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
|
||
<a id="__codelineno-41-7" name="__codelineno-41-7" href="#__codelineno-41-7"></a> <span class="p">}</span>
|
||
<a id="__codelineno-41-8" name="__codelineno-41-8" href="#__codelineno-41-8"></a> <span class="c1">// +n*n (technique 3)</span>
|
||
<a id="__codelineno-41-9" name="__codelineno-41-9" href="#__codelineno-41-9"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o"><</span> <span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">n</span><span class="p">)</span> <span class="p">{</span>
|
||
<a id="__codelineno-41-10" name="__codelineno-41-10" href="#__codelineno-41-10"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o"><</span> <span class="p">(</span><span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="p">{</span>
|
||
<a id="__codelineno-41-11" name="__codelineno-41-11" href="#__codelineno-41-11"></a> <span class="bp">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
|
||
<a id="__codelineno-41-12" name="__codelineno-41-12" href="#__codelineno-41-12"></a> <span class="p">}</span>
|
||
<a id="__codelineno-41-13" name="__codelineno-41-13" href="#__codelineno-41-13"></a> <span class="p">}</span>
|
||
<a id="__codelineno-41-14" name="__codelineno-41-14" href="#__codelineno-41-14"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-42-1" name="__codelineno-42-1" href="#__codelineno-42-1"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-42-2" name="__codelineno-42-2" href="#__codelineno-42-2"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0 (trick 1)</span>
|
||
<a id="__codelineno-42-3" name="__codelineno-42-3" href="#__codelineno-42-3"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0 (trick 1)</span>
|
||
<a id="__codelineno-42-4" name="__codelineno-42-4" href="#__codelineno-42-4"></a><span class="w"> </span><span class="c1">// +n (technique 2)</span>
|
||
<a id="__codelineno-42-5" name="__codelineno-42-5" href="#__codelineno-42-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mf">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-42-6" name="__codelineno-42-6" href="#__codelineno-42-6"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
|
||
<a id="__codelineno-42-7" name="__codelineno-42-7" href="#__codelineno-42-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-42-8" name="__codelineno-42-8" href="#__codelineno-42-8"></a><span class="w"> </span><span class="c1">// +n*n (technique 3)</span>
|
||
<a id="__codelineno-42-9" name="__codelineno-42-9" href="#__codelineno-42-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-42-10" name="__codelineno-42-10" href="#__codelineno-42-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-42-11" name="__codelineno-42-11" href="#__codelineno-42-11"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
|
||
<a id="__codelineno-42-12" name="__codelineno-42-12" href="#__codelineno-42-12"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-42-13" name="__codelineno-42-13" href="#__codelineno-42-13"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-42-14" name="__codelineno-42-14" href="#__codelineno-42-14"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-43-1" name="__codelineno-43-1" href="#__codelineno-43-1"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-43-2" name="__codelineno-43-2" href="#__codelineno-43-2"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0 (trick 1)</span>
|
||
<a id="__codelineno-43-3" name="__codelineno-43-3" href="#__codelineno-43-3"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0 (trick 1)</span>
|
||
<a id="__codelineno-43-4" name="__codelineno-43-4" href="#__codelineno-43-4"></a><span class="w"> </span><span class="c1">// +n (technique 2)</span>
|
||
<a id="__codelineno-43-5" name="__codelineno-43-5" href="#__codelineno-43-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mf">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-43-6" name="__codelineno-43-6" href="#__codelineno-43-6"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
|
||
<a id="__codelineno-43-7" name="__codelineno-43-7" href="#__codelineno-43-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-43-8" name="__codelineno-43-8" href="#__codelineno-43-8"></a><span class="w"> </span><span class="c1">// +n*n (technique 3)</span>
|
||
<a id="__codelineno-43-9" name="__codelineno-43-9" href="#__codelineno-43-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-43-10" name="__codelineno-43-10" href="#__codelineno-43-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-43-11" name="__codelineno-43-11" href="#__codelineno-43-11"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
|
||
<a id="__codelineno-43-12" name="__codelineno-43-12" href="#__codelineno-43-12"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-43-13" name="__codelineno-43-13" href="#__codelineno-43-13"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-43-14" name="__codelineno-43-14" href="#__codelineno-43-14"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-44-1" name="__codelineno-44-1" href="#__codelineno-44-1"></a><span class="kt">void</span><span class="w"> </span><span class="n">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-44-2" name="__codelineno-44-2" href="#__codelineno-44-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0 (trick 1)</span>
|
||
<a id="__codelineno-44-3" name="__codelineno-44-3" href="#__codelineno-44-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0 (trick 1)</span>
|
||
<a id="__codelineno-44-4" name="__codelineno-44-4" href="#__codelineno-44-4"></a><span class="w"> </span><span class="c1">// +n (technique 2)</span>
|
||
<a id="__codelineno-44-5" name="__codelineno-44-5" href="#__codelineno-44-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="m">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-44-6" name="__codelineno-44-6" href="#__codelineno-44-6"></a><span class="w"> </span><span class="n">print</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
|
||
<a id="__codelineno-44-7" name="__codelineno-44-7" href="#__codelineno-44-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-44-8" name="__codelineno-44-8" href="#__codelineno-44-8"></a><span class="w"> </span><span class="c1">// +n*n (technique 3)</span>
|
||
<a id="__codelineno-44-9" name="__codelineno-44-9" href="#__codelineno-44-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="m">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-44-10" name="__codelineno-44-10" href="#__codelineno-44-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-44-11" name="__codelineno-44-11" href="#__codelineno-44-11"></a><span class="w"> </span><span class="n">print</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
|
||
<a id="__codelineno-44-12" name="__codelineno-44-12" href="#__codelineno-44-12"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-44-13" name="__codelineno-44-13" href="#__codelineno-44-13"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-44-14" name="__codelineno-44-14" href="#__codelineno-44-14"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-45-1" name="__codelineno-45-1" href="#__codelineno-45-1"></a><span class="k">fn</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-45-2" name="__codelineno-45-2" href="#__codelineno-45-2"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0 (trick 1)</span>
|
||
<a id="__codelineno-45-3" name="__codelineno-45-3" href="#__codelineno-45-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0 (trick 1)</span>
|
||
<a id="__codelineno-45-4" name="__codelineno-45-4" href="#__codelineno-45-4"></a>
|
||
<a id="__codelineno-45-5" name="__codelineno-45-5" href="#__codelineno-45-5"></a><span class="w"> </span><span class="c1">// +n (technique 2)</span>
|
||
<a id="__codelineno-45-6" name="__codelineno-45-6" href="#__codelineno-45-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="p">(</span><span class="mi">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-45-7" name="__codelineno-45-7" href="#__codelineno-45-7"></a><span class="w"> </span><span class="fm">println!</span><span class="p">(</span><span class="s">"{}"</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
|
||
<a id="__codelineno-45-8" name="__codelineno-45-8" href="#__codelineno-45-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-45-9" name="__codelineno-45-9" href="#__codelineno-45-9"></a>
|
||
<a id="__codelineno-45-10" name="__codelineno-45-10" href="#__codelineno-45-10"></a><span class="w"> </span><span class="c1">// +n*n (technique 3)</span>
|
||
<a id="__codelineno-45-11" name="__codelineno-45-11" href="#__codelineno-45-11"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="p">(</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-45-12" name="__codelineno-45-12" href="#__codelineno-45-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-45-13" name="__codelineno-45-13" href="#__codelineno-45-13"></a><span class="w"> </span><span class="fm">println!</span><span class="p">(</span><span class="s">"{}"</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
|
||
<a id="__codelineno-45-14" name="__codelineno-45-14" href="#__codelineno-45-14"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-45-15" name="__codelineno-45-15" href="#__codelineno-45-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-45-16" name="__codelineno-45-16" href="#__codelineno-45-16"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-46-1" name="__codelineno-46-1" href="#__codelineno-46-1"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-46-2" name="__codelineno-46-2" href="#__codelineno-46-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0 (trick 1)</span>
|
||
<a id="__codelineno-46-3" name="__codelineno-46-3" href="#__codelineno-46-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0 (trick 1)</span>
|
||
<a id="__codelineno-46-4" name="__codelineno-46-4" href="#__codelineno-46-4"></a><span class="w"> </span><span class="c1">// +n (technique 2)</span>
|
||
<a id="__codelineno-46-5" name="__codelineno-46-5" href="#__codelineno-46-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mi">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-46-6" name="__codelineno-46-6" href="#__codelineno-46-6"></a><span class="w"> </span><span class="n">printf</span><span class="p">(</span><span class="s">"%d"</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
|
||
<a id="__codelineno-46-7" name="__codelineno-46-7" href="#__codelineno-46-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-46-8" name="__codelineno-46-8" href="#__codelineno-46-8"></a><span class="w"> </span><span class="c1">// +n*n (technique 3)</span>
|
||
<a id="__codelineno-46-9" name="__codelineno-46-9" href="#__codelineno-46-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-46-10" name="__codelineno-46-10" href="#__codelineno-46-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-46-11" name="__codelineno-46-11" href="#__codelineno-46-11"></a><span class="w"> </span><span class="n">printf</span><span class="p">(</span><span class="s">"%d"</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
|
||
<a id="__codelineno-46-12" name="__codelineno-46-12" href="#__codelineno-46-12"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-46-13" name="__codelineno-46-13" href="#__codelineno-46-13"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-46-14" name="__codelineno-46-14" href="#__codelineno-46-14"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><pre><span></span><code><a id="__codelineno-47-1" name="__codelineno-47-1" href="#__codelineno-47-1"></a><span class="k">fn</span><span class="w"> </span><span class="n">algorithm</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">usize</span><span class="p">)</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-47-2" name="__codelineno-47-2" href="#__codelineno-47-2"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">a</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0 (trick 1)</span>
|
||
<a id="__codelineno-47-3" name="__codelineno-47-3" href="#__codelineno-47-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nb">@as</span><span class="p">(</span><span class="kt">i32</span><span class="p">,</span><span class="w"> </span><span class="nb">@intCast</span><span class="p">(</span><span class="n">n</span><span class="p">));</span><span class="w"> </span><span class="c1">// +0 (trick 1)</span>
|
||
<a id="__codelineno-47-4" name="__codelineno-47-4" href="#__codelineno-47-4"></a>
|
||
<a id="__codelineno-47-5" name="__codelineno-47-5" href="#__codelineno-47-5"></a><span class="w"> </span><span class="c1">// +n (technique 2)</span>
|
||
<a id="__codelineno-47-6" name="__codelineno-47-6" href="#__codelineno-47-6"></a><span class="w"> </span><span class="k">for</span><span class="p">(</span><span class="mi">0</span><span class="p">..(</span><span class="mi">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">))</span><span class="w"> </span><span class="o">|</span><span class="n">_</span><span class="o">|</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-47-7" name="__codelineno-47-7" href="#__codelineno-47-7"></a><span class="w"> </span><span class="n">std</span><span class="p">.</span><span class="n">debug</span><span class="p">.</span><span class="n">print</span><span class="p">(</span><span class="s">"{}</span><span class="se">\n</span><span class="s">"</span><span class="p">,</span><span class="w"> </span><span class="p">.{</span><span class="mi">0</span><span class="p">});</span>
|
||
<a id="__codelineno-47-8" name="__codelineno-47-8" href="#__codelineno-47-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-47-9" name="__codelineno-47-9" href="#__codelineno-47-9"></a>
|
||
<a id="__codelineno-47-10" name="__codelineno-47-10" href="#__codelineno-47-10"></a><span class="w"> </span><span class="c1">// +n*n (technique 3)</span>
|
||
<a id="__codelineno-47-11" name="__codelineno-47-11" href="#__codelineno-47-11"></a><span class="w"> </span><span class="k">for</span><span class="p">(</span><span class="mi">0</span><span class="p">..(</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="p">))</span><span class="w"> </span><span class="o">|</span><span class="n">_</span><span class="o">|</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-47-12" name="__codelineno-47-12" href="#__codelineno-47-12"></a><span class="w"> </span><span class="k">for</span><span class="p">(</span><span class="mi">0</span><span class="p">..(</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">))</span><span class="w"> </span><span class="o">|</span><span class="n">_</span><span class="o">|</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-47-13" name="__codelineno-47-13" href="#__codelineno-47-13"></a><span class="w"> </span><span class="n">std</span><span class="p">.</span><span class="n">debug</span><span class="p">.</span><span class="n">print</span><span class="p">(</span><span class="s">"{}</span><span class="se">\n</span><span class="s">"</span><span class="p">,</span><span class="w"> </span><span class="p">.{</span><span class="mi">0</span><span class="p">});</span>
|
||
<a id="__codelineno-47-14" name="__codelineno-47-14" href="#__codelineno-47-14"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-47-15" name="__codelineno-47-15" href="#__codelineno-47-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-47-16" name="__codelineno-47-16" href="#__codelineno-47-16"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<p>The formula below shows the counting results before and after simplification, both leading to a time complexity of <span class="arithmatex">\(O(n^2)\)</span>:</p>
|
||
<div class="arithmatex">\[
|
||
\begin{aligned}
|
||
T(n) & = 2n(n + 1) + (5n + 1) + 2 & \text{Complete Count (-.-|||)} \newline
|
||
& = 2n^2 + 7n + 3 \newline
|
||
T(n) & = n^2 + n & \text{Simplified Count (o.O)}
|
||
\end{aligned}
|
||
\]</div>
|
||
<h3 id="2-step-2-determining-the-asymptotic-upper-bound">2. Step 2: Determining the Asymptotic Upper Bound<a class="headerlink" href="#2-step-2-determining-the-asymptotic-upper-bound" title="Permanent link">¶</a></h3>
|
||
<p><strong>The time complexity is determined by the highest order term in <span class="arithmatex">\(T(n)\)</span></strong>. This is because, as <span class="arithmatex">\(n\)</span> approaches infinity, the highest order term dominates, rendering the influence of other terms negligible.</p>
|
||
<p>The following table illustrates examples of different operation counts and their corresponding time complexities. Some exaggerated values are used to emphasize that coefficients cannot alter the order of growth. When <span class="arithmatex">\(n\)</span> becomes very large, these constants become insignificant.</p>
|
||
<p align="center"> Table: Time Complexity for Different Operation Counts </p>
|
||
|
||
<div class="center-table">
|
||
<table>
|
||
<thead>
|
||
<tr>
|
||
<th>Operation Count <span class="arithmatex">\(T(n)\)</span></th>
|
||
<th>Time Complexity <span class="arithmatex">\(O(f(n))\)</span></th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<td><span class="arithmatex">\(100000\)</span></td>
|
||
<td><span class="arithmatex">\(O(1)\)</span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="arithmatex">\(3n + 2\)</span></td>
|
||
<td><span class="arithmatex">\(O(n)\)</span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="arithmatex">\(2n^2 + 3n + 2\)</span></td>
|
||
<td><span class="arithmatex">\(O(n^2)\)</span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="arithmatex">\(n^3 + 10000n^2\)</span></td>
|
||
<td><span class="arithmatex">\(O(n^3)\)</span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="arithmatex">\(2^n + 10000n^{10000}\)</span></td>
|
||
<td><span class="arithmatex">\(O(2^n)\)</span></td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
</div>
|
||
<h2 id="234-common-types-of-time-complexity">2.3.4 Common Types of Time Complexity<a class="headerlink" href="#234-common-types-of-time-complexity" title="Permanent link">¶</a></h2>
|
||
<p>Let's consider the input data size as <span class="arithmatex">\(n\)</span>. The common types of time complexities are illustrated below, arranged from lowest to highest:</p>
|
||
<div class="arithmatex">\[
|
||
\begin{aligned}
|
||
O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(2^n) < O(n!) \newline
|
||
\text{Constant Order} < \text{Logarithmic Order} < \text{Linear Order} < \text{Linear-Logarithmic Order} < \text{Quadratic Order} < \text{Exponential Order} < \text{Factorial Order}
|
||
\end{aligned}
|
||
\]</div>
|
||
<p><a class="glightbox" href="../time_complexity.assets/time_complexity_common_types.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Common Types of Time Complexity" class="animation-figure" src="../time_complexity.assets/time_complexity_common_types.png" /></a></p>
|
||
<p align="center"> Figure 2-9 Common Types of Time Complexity </p>
|
||
|
||
<h3 id="1-constant-order-o1">1. Constant Order <span class="arithmatex">\(O(1)\)</span><a class="headerlink" href="#1-constant-order-o1" title="Permanent link">¶</a></h3>
|
||
<p>Constant order means the number of operations is independent of the input data size <span class="arithmatex">\(n\)</span>. In the following function, although the number of operations <code>size</code> might be large, the time complexity remains <span class="arithmatex">\(O(1)\)</span> as it's unrelated to <span class="arithmatex">\(n\)</span>:</p>
|
||
<div class="tabbed-set tabbed-alternate" data-tabs="5:12"><input checked="checked" id="__tabbed_5_1" name="__tabbed_5" type="radio" /><input id="__tabbed_5_2" name="__tabbed_5" type="radio" /><input id="__tabbed_5_3" name="__tabbed_5" type="radio" /><input id="__tabbed_5_4" name="__tabbed_5" type="radio" /><input id="__tabbed_5_5" name="__tabbed_5" type="radio" /><input id="__tabbed_5_6" name="__tabbed_5" type="radio" /><input id="__tabbed_5_7" name="__tabbed_5" type="radio" /><input id="__tabbed_5_8" name="__tabbed_5" type="radio" /><input id="__tabbed_5_9" name="__tabbed_5" type="radio" /><input id="__tabbed_5_10" name="__tabbed_5" type="radio" /><input id="__tabbed_5_11" name="__tabbed_5" type="radio" /><input id="__tabbed_5_12" name="__tabbed_5" type="radio" /><div class="tabbed-labels"><label for="__tabbed_5_1">Python</label><label for="__tabbed_5_2">C++</label><label for="__tabbed_5_3">Java</label><label for="__tabbed_5_4">C#</label><label for="__tabbed_5_5">Go</label><label for="__tabbed_5_6">Swift</label><label for="__tabbed_5_7">JS</label><label for="__tabbed_5_8">TS</label><label for="__tabbed_5_9">Dart</label><label for="__tabbed_5_10">Rust</label><label for="__tabbed_5_11">C</label><label for="__tabbed_5_12">Zig</label></div>
|
||
<div class="tabbed-content">
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-48-1" name="__codelineno-48-1" href="#__codelineno-48-1"></a><span class="k">def</span> <span class="nf">constant</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
|
||
<a id="__codelineno-48-2" name="__codelineno-48-2" href="#__codelineno-48-2"></a><span class="w"> </span><span class="sd">"""常数阶"""</span>
|
||
<a id="__codelineno-48-3" name="__codelineno-48-3" href="#__codelineno-48-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
|
||
<a id="__codelineno-48-4" name="__codelineno-48-4" href="#__codelineno-48-4"></a> <span class="n">size</span> <span class="o">=</span> <span class="mi">100000</span>
|
||
<a id="__codelineno-48-5" name="__codelineno-48-5" href="#__codelineno-48-5"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">size</span><span class="p">):</span>
|
||
<a id="__codelineno-48-6" name="__codelineno-48-6" href="#__codelineno-48-6"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
|
||
<a id="__codelineno-48-7" name="__codelineno-48-7" href="#__codelineno-48-7"></a> <span class="k">return</span> <span class="n">count</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-49-1" name="__codelineno-49-1" href="#__codelineno-49-1"></a><span class="cm">/* 常数阶 */</span>
|
||
<a id="__codelineno-49-2" name="__codelineno-49-2" href="#__codelineno-49-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">constant</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-49-3" name="__codelineno-49-3" href="#__codelineno-49-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-49-4" name="__codelineno-49-4" href="#__codelineno-49-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">100000</span><span class="p">;</span>
|
||
<a id="__codelineno-49-5" name="__codelineno-49-5" href="#__codelineno-49-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">size</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span>
|
||
<a id="__codelineno-49-6" name="__codelineno-49-6" href="#__codelineno-49-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-49-7" name="__codelineno-49-7" href="#__codelineno-49-7"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-49-8" name="__codelineno-49-8" href="#__codelineno-49-8"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-50-1" name="__codelineno-50-1" href="#__codelineno-50-1"></a><span class="cm">/* 常数阶 */</span>
|
||
<a id="__codelineno-50-2" name="__codelineno-50-2" href="#__codelineno-50-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">constant</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-50-3" name="__codelineno-50-3" href="#__codelineno-50-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-50-4" name="__codelineno-50-4" href="#__codelineno-50-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">100000</span><span class="p">;</span>
|
||
<a id="__codelineno-50-5" name="__codelineno-50-5" href="#__codelineno-50-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">size</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span>
|
||
<a id="__codelineno-50-6" name="__codelineno-50-6" href="#__codelineno-50-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-50-7" name="__codelineno-50-7" href="#__codelineno-50-7"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-50-8" name="__codelineno-50-8" href="#__codelineno-50-8"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-51-1" name="__codelineno-51-1" href="#__codelineno-51-1"></a><span class="cm">/* 常数阶 */</span>
|
||
<a id="__codelineno-51-2" name="__codelineno-51-2" href="#__codelineno-51-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">Constant</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-51-3" name="__codelineno-51-3" href="#__codelineno-51-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
|
||
<a id="__codelineno-51-4" name="__codelineno-51-4" href="#__codelineno-51-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">100000</span><span class="p">;</span>
|
||
<a id="__codelineno-51-5" name="__codelineno-51-5" href="#__codelineno-51-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">size</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span>
|
||
<a id="__codelineno-51-6" name="__codelineno-51-6" href="#__codelineno-51-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-51-7" name="__codelineno-51-7" href="#__codelineno-51-7"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-51-8" name="__codelineno-51-8" href="#__codelineno-51-8"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-52-1" name="__codelineno-52-1" href="#__codelineno-52-1"></a><span class="cm">/* 常数阶 */</span>
|
||
<a id="__codelineno-52-2" name="__codelineno-52-2" href="#__codelineno-52-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">constant</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-52-3" name="__codelineno-52-3" href="#__codelineno-52-3"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span>
|
||
<a id="__codelineno-52-4" name="__codelineno-52-4" href="#__codelineno-52-4"></a><span class="w"> </span><span class="nx">size</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">100000</span>
|
||
<a id="__codelineno-52-5" name="__codelineno-52-5" href="#__codelineno-52-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p"><</span><span class="w"> </span><span class="nx">size</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-52-6" name="__codelineno-52-6" href="#__codelineno-52-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span>
|
||
<a id="__codelineno-52-7" name="__codelineno-52-7" href="#__codelineno-52-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-52-8" name="__codelineno-52-8" href="#__codelineno-52-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
|
||
<a id="__codelineno-52-9" name="__codelineno-52-9" href="#__codelineno-52-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-53-1" name="__codelineno-53-1" href="#__codelineno-53-1"></a><span class="cm">/* 常数阶 */</span>
|
||
<a id="__codelineno-53-2" name="__codelineno-53-2" href="#__codelineno-53-2"></a><span class="kd">func</span> <span class="nf">constant</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-></span> <span class="nb">Int</span> <span class="p">{</span>
|
||
<a id="__codelineno-53-3" name="__codelineno-53-3" href="#__codelineno-53-3"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span>
|
||
<a id="__codelineno-53-4" name="__codelineno-53-4" href="#__codelineno-53-4"></a> <span class="kd">let</span> <span class="nv">size</span> <span class="p">=</span> <span class="mi">100_000</span>
|
||
<a id="__codelineno-53-5" name="__codelineno-53-5" href="#__codelineno-53-5"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o"><</span> <span class="n">size</span> <span class="p">{</span>
|
||
<a id="__codelineno-53-6" name="__codelineno-53-6" href="#__codelineno-53-6"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">1</span>
|
||
<a id="__codelineno-53-7" name="__codelineno-53-7" href="#__codelineno-53-7"></a> <span class="p">}</span>
|
||
<a id="__codelineno-53-8" name="__codelineno-53-8" href="#__codelineno-53-8"></a> <span class="k">return</span> <span class="bp">count</span>
|
||
<a id="__codelineno-53-9" name="__codelineno-53-9" href="#__codelineno-53-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-54-1" name="__codelineno-54-1" href="#__codelineno-54-1"></a><span class="cm">/* 常数阶 */</span>
|
||
<a id="__codelineno-54-2" name="__codelineno-54-2" href="#__codelineno-54-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">constant</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-54-3" name="__codelineno-54-3" href="#__codelineno-54-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||
<a id="__codelineno-54-4" name="__codelineno-54-4" href="#__codelineno-54-4"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">100000</span><span class="p">;</span>
|
||
<a id="__codelineno-54-5" name="__codelineno-54-5" href="#__codelineno-54-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">size</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-54-6" name="__codelineno-54-6" href="#__codelineno-54-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
|
||
<a id="__codelineno-54-7" name="__codelineno-54-7" href="#__codelineno-54-7"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-55-1" name="__codelineno-55-1" href="#__codelineno-55-1"></a><span class="cm">/* 常数阶 */</span>
|
||
<a id="__codelineno-55-2" name="__codelineno-55-2" href="#__codelineno-55-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">constant</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-55-3" name="__codelineno-55-3" href="#__codelineno-55-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||
<a id="__codelineno-55-4" name="__codelineno-55-4" href="#__codelineno-55-4"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">100000</span><span class="p">;</span>
|
||
<a id="__codelineno-55-5" name="__codelineno-55-5" href="#__codelineno-55-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">size</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-55-6" name="__codelineno-55-6" href="#__codelineno-55-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
|
||
<a id="__codelineno-55-7" name="__codelineno-55-7" href="#__codelineno-55-7"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.dart</span><pre><span></span><code><a id="__codelineno-56-1" name="__codelineno-56-1" href="#__codelineno-56-1"></a><span class="cm">/* 常数阶 */</span>
|
||
<a id="__codelineno-56-2" name="__codelineno-56-2" href="#__codelineno-56-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">constant</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-56-3" name="__codelineno-56-3" href="#__codelineno-56-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
|
||
<a id="__codelineno-56-4" name="__codelineno-56-4" href="#__codelineno-56-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">100000</span><span class="p">;</span>
|
||
<a id="__codelineno-56-5" name="__codelineno-56-5" href="#__codelineno-56-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">var</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">size</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-56-6" name="__codelineno-56-6" href="#__codelineno-56-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-56-7" name="__codelineno-56-7" href="#__codelineno-56-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-56-8" name="__codelineno-56-8" href="#__codelineno-56-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-56-9" name="__codelineno-56-9" href="#__codelineno-56-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.rs</span><pre><span></span><code><a id="__codelineno-57-1" name="__codelineno-57-1" href="#__codelineno-57-1"></a><span class="cm">/* 常数阶 */</span>
|
||
<a id="__codelineno-57-2" name="__codelineno-57-2" href="#__codelineno-57-2"></a><span class="k">fn</span> <span class="nf">constant</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span>-> <span class="kt">i32</span> <span class="p">{</span>
|
||
<a id="__codelineno-57-3" name="__codelineno-57-3" href="#__codelineno-57-3"></a><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
|
||
<a id="__codelineno-57-4" name="__codelineno-57-4" href="#__codelineno-57-4"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-57-5" name="__codelineno-57-5" href="#__codelineno-57-5"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">100_000</span><span class="p">;</span>
|
||
<a id="__codelineno-57-6" name="__codelineno-57-6" href="#__codelineno-57-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">size</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-57-7" name="__codelineno-57-7" href="#__codelineno-57-7"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-57-8" name="__codelineno-57-8" href="#__codelineno-57-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-57-9" name="__codelineno-57-9" href="#__codelineno-57-9"></a><span class="w"> </span><span class="n">count</span>
|
||
<a id="__codelineno-57-10" name="__codelineno-57-10" href="#__codelineno-57-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-58-1" name="__codelineno-58-1" href="#__codelineno-58-1"></a><span class="cm">/* 常数阶 */</span>
|
||
<a id="__codelineno-58-2" name="__codelineno-58-2" href="#__codelineno-58-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">constant</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-58-3" name="__codelineno-58-3" href="#__codelineno-58-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-58-4" name="__codelineno-58-4" href="#__codelineno-58-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">100000</span><span class="p">;</span>
|
||
<a id="__codelineno-58-5" name="__codelineno-58-5" href="#__codelineno-58-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-58-6" name="__codelineno-58-6" href="#__codelineno-58-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">size</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-58-7" name="__codelineno-58-7" href="#__codelineno-58-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-58-8" name="__codelineno-58-8" href="#__codelineno-58-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-58-9" name="__codelineno-58-9" href="#__codelineno-58-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-58-10" name="__codelineno-58-10" href="#__codelineno-58-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-59-1" name="__codelineno-59-1" href="#__codelineno-59-1"></a><span class="c1">// 常数阶</span>
|
||
<a id="__codelineno-59-2" name="__codelineno-59-2" href="#__codelineno-59-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">constant</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-59-3" name="__codelineno-59-3" href="#__codelineno-59-3"></a><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
|
||
<a id="__codelineno-59-4" name="__codelineno-59-4" href="#__codelineno-59-4"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-59-5" name="__codelineno-59-5" href="#__codelineno-59-5"></a><span class="w"> </span><span class="kr">const</span><span class="w"> </span><span class="n">size</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">100</span><span class="n">_000</span><span class="p">;</span>
|
||
<a id="__codelineno-59-6" name="__codelineno-59-6" href="#__codelineno-59-6"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">i</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-59-7" name="__codelineno-59-7" href="#__codelineno-59-7"></a><span class="w"> </span><span class="k">while</span><span class="p">(</span><span class="n">i</span><span class="o"><</span><span class="n">size</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-59-8" name="__codelineno-59-8" href="#__codelineno-59-8"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-59-9" name="__codelineno-59-9" href="#__codelineno-59-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-59-10" name="__codelineno-59-10" href="#__codelineno-59-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-59-11" name="__codelineno-59-11" href="#__codelineno-59-11"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<details class="pythontutor">
|
||
<summary>Code Visualization</summary>
|
||
<p><div style="height: 459px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20constant%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%B8%B8%E6%95%B0%E9%98%B6%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20size%20%3D%2010%0A%20%20%20%20for%20_%20in%20range%28size%29%3A%0A%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20count%20%3D%20constant%28n%29%0A%20%20%20%20print%28%22%E5%B8%B8%E6%95%B0%E9%98%B6%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B0%E9%87%8F%20%3D%22,%20count%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20constant%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%B8%B8%E6%95%B0%E9%98%B6%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20size%20%3D%2010%0A%20%20%20%20for%20_%20in%20range%28size%29%3A%0A%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20count%20%3D%20constant%28n%29%0A%20%20%20%20print%28%22%E5%B8%B8%E6%95%B0%E9%98%B6%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B0%E9%87%8F%20%3D%22,%20count%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen ></a></div></p>
|
||
</details>
|
||
<h3 id="2-linear-order-on">2. Linear Order <span class="arithmatex">\(O(n)\)</span><a class="headerlink" href="#2-linear-order-on" title="Permanent link">¶</a></h3>
|
||
<p>Linear order indicates the number of operations grows linearly with the input data size <span class="arithmatex">\(n\)</span>. Linear order commonly appears in single-loop structures:</p>
|
||
<div class="tabbed-set tabbed-alternate" data-tabs="6:12"><input checked="checked" id="__tabbed_6_1" name="__tabbed_6" type="radio" /><input id="__tabbed_6_2" name="__tabbed_6" type="radio" /><input id="__tabbed_6_3" name="__tabbed_6" type="radio" /><input id="__tabbed_6_4" name="__tabbed_6" type="radio" /><input id="__tabbed_6_5" name="__tabbed_6" type="radio" /><input id="__tabbed_6_6" name="__tabbed_6" type="radio" /><input id="__tabbed_6_7" name="__tabbed_6" type="radio" /><input id="__tabbed_6_8" name="__tabbed_6" type="radio" /><input id="__tabbed_6_9" name="__tabbed_6" type="radio" /><input id="__tabbed_6_10" name="__tabbed_6" type="radio" /><input id="__tabbed_6_11" name="__tabbed_6" type="radio" /><input id="__tabbed_6_12" name="__tabbed_6" type="radio" /><div class="tabbed-labels"><label for="__tabbed_6_1">Python</label><label for="__tabbed_6_2">C++</label><label for="__tabbed_6_3">Java</label><label for="__tabbed_6_4">C#</label><label for="__tabbed_6_5">Go</label><label for="__tabbed_6_6">Swift</label><label for="__tabbed_6_7">JS</label><label for="__tabbed_6_8">TS</label><label for="__tabbed_6_9">Dart</label><label for="__tabbed_6_10">Rust</label><label for="__tabbed_6_11">C</label><label for="__tabbed_6_12">Zig</label></div>
|
||
<div class="tabbed-content">
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-60-1" name="__codelineno-60-1" href="#__codelineno-60-1"></a><span class="k">def</span> <span class="nf">linear</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
|
||
<a id="__codelineno-60-2" name="__codelineno-60-2" href="#__codelineno-60-2"></a><span class="w"> </span><span class="sd">"""线性阶"""</span>
|
||
<a id="__codelineno-60-3" name="__codelineno-60-3" href="#__codelineno-60-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
|
||
<a id="__codelineno-60-4" name="__codelineno-60-4" href="#__codelineno-60-4"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
|
||
<a id="__codelineno-60-5" name="__codelineno-60-5" href="#__codelineno-60-5"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
|
||
<a id="__codelineno-60-6" name="__codelineno-60-6" href="#__codelineno-60-6"></a> <span class="k">return</span> <span class="n">count</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-61-1" name="__codelineno-61-1" href="#__codelineno-61-1"></a><span class="cm">/* 线性阶 */</span>
|
||
<a id="__codelineno-61-2" name="__codelineno-61-2" href="#__codelineno-61-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linear</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-61-3" name="__codelineno-61-3" href="#__codelineno-61-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-61-4" name="__codelineno-61-4" href="#__codelineno-61-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span>
|
||
<a id="__codelineno-61-5" name="__codelineno-61-5" href="#__codelineno-61-5"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-61-6" name="__codelineno-61-6" href="#__codelineno-61-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-61-7" name="__codelineno-61-7" href="#__codelineno-61-7"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-62-1" name="__codelineno-62-1" href="#__codelineno-62-1"></a><span class="cm">/* 线性阶 */</span>
|
||
<a id="__codelineno-62-2" name="__codelineno-62-2" href="#__codelineno-62-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linear</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-62-3" name="__codelineno-62-3" href="#__codelineno-62-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-62-4" name="__codelineno-62-4" href="#__codelineno-62-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span>
|
||
<a id="__codelineno-62-5" name="__codelineno-62-5" href="#__codelineno-62-5"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-62-6" name="__codelineno-62-6" href="#__codelineno-62-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-62-7" name="__codelineno-62-7" href="#__codelineno-62-7"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-63-1" name="__codelineno-63-1" href="#__codelineno-63-1"></a><span class="cm">/* 线性阶 */</span>
|
||
<a id="__codelineno-63-2" name="__codelineno-63-2" href="#__codelineno-63-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">Linear</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-63-3" name="__codelineno-63-3" href="#__codelineno-63-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
|
||
<a id="__codelineno-63-4" name="__codelineno-63-4" href="#__codelineno-63-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span>
|
||
<a id="__codelineno-63-5" name="__codelineno-63-5" href="#__codelineno-63-5"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-63-6" name="__codelineno-63-6" href="#__codelineno-63-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-63-7" name="__codelineno-63-7" href="#__codelineno-63-7"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-64-1" name="__codelineno-64-1" href="#__codelineno-64-1"></a><span class="cm">/* 线性阶 */</span>
|
||
<a id="__codelineno-64-2" name="__codelineno-64-2" href="#__codelineno-64-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">linear</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-64-3" name="__codelineno-64-3" href="#__codelineno-64-3"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span>
|
||
<a id="__codelineno-64-4" name="__codelineno-64-4" href="#__codelineno-64-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-64-5" name="__codelineno-64-5" href="#__codelineno-64-5"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span>
|
||
<a id="__codelineno-64-6" name="__codelineno-64-6" href="#__codelineno-64-6"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-64-7" name="__codelineno-64-7" href="#__codelineno-64-7"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
|
||
<a id="__codelineno-64-8" name="__codelineno-64-8" href="#__codelineno-64-8"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-65-1" name="__codelineno-65-1" href="#__codelineno-65-1"></a><span class="cm">/* 线性阶 */</span>
|
||
<a id="__codelineno-65-2" name="__codelineno-65-2" href="#__codelineno-65-2"></a><span class="kd">func</span> <span class="nf">linear</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-></span> <span class="nb">Int</span> <span class="p">{</span>
|
||
<a id="__codelineno-65-3" name="__codelineno-65-3" href="#__codelineno-65-3"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span>
|
||
<a id="__codelineno-65-4" name="__codelineno-65-4" href="#__codelineno-65-4"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o"><</span> <span class="n">n</span> <span class="p">{</span>
|
||
<a id="__codelineno-65-5" name="__codelineno-65-5" href="#__codelineno-65-5"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">1</span>
|
||
<a id="__codelineno-65-6" name="__codelineno-65-6" href="#__codelineno-65-6"></a> <span class="p">}</span>
|
||
<a id="__codelineno-65-7" name="__codelineno-65-7" href="#__codelineno-65-7"></a> <span class="k">return</span> <span class="bp">count</span>
|
||
<a id="__codelineno-65-8" name="__codelineno-65-8" href="#__codelineno-65-8"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-66-1" name="__codelineno-66-1" href="#__codelineno-66-1"></a><span class="cm">/* 线性阶 */</span>
|
||
<a id="__codelineno-66-2" name="__codelineno-66-2" href="#__codelineno-66-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">linear</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-66-3" name="__codelineno-66-3" href="#__codelineno-66-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||
<a id="__codelineno-66-4" name="__codelineno-66-4" href="#__codelineno-66-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-66-5" name="__codelineno-66-5" href="#__codelineno-66-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
|
||
<a id="__codelineno-66-6" name="__codelineno-66-6" href="#__codelineno-66-6"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-67-1" name="__codelineno-67-1" href="#__codelineno-67-1"></a><span class="cm">/* 线性阶 */</span>
|
||
<a id="__codelineno-67-2" name="__codelineno-67-2" href="#__codelineno-67-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">linear</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-67-3" name="__codelineno-67-3" href="#__codelineno-67-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||
<a id="__codelineno-67-4" name="__codelineno-67-4" href="#__codelineno-67-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-67-5" name="__codelineno-67-5" href="#__codelineno-67-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
|
||
<a id="__codelineno-67-6" name="__codelineno-67-6" href="#__codelineno-67-6"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.dart</span><pre><span></span><code><a id="__codelineno-68-1" name="__codelineno-68-1" href="#__codelineno-68-1"></a><span class="cm">/* 线性阶 */</span>
|
||
<a id="__codelineno-68-2" name="__codelineno-68-2" href="#__codelineno-68-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">linear</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-68-3" name="__codelineno-68-3" href="#__codelineno-68-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
|
||
<a id="__codelineno-68-4" name="__codelineno-68-4" href="#__codelineno-68-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">var</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-68-5" name="__codelineno-68-5" href="#__codelineno-68-5"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-68-6" name="__codelineno-68-6" href="#__codelineno-68-6"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-68-7" name="__codelineno-68-7" href="#__codelineno-68-7"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-68-8" name="__codelineno-68-8" href="#__codelineno-68-8"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.rs</span><pre><span></span><code><a id="__codelineno-69-1" name="__codelineno-69-1" href="#__codelineno-69-1"></a><span class="cm">/* 线性阶 */</span>
|
||
<a id="__codelineno-69-2" name="__codelineno-69-2" href="#__codelineno-69-2"></a><span class="k">fn</span> <span class="nf">linear</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span>-> <span class="kt">i32</span> <span class="p">{</span>
|
||
<a id="__codelineno-69-3" name="__codelineno-69-3" href="#__codelineno-69-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-69-4" name="__codelineno-69-4" href="#__codelineno-69-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-69-5" name="__codelineno-69-5" href="#__codelineno-69-5"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-69-6" name="__codelineno-69-6" href="#__codelineno-69-6"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-69-7" name="__codelineno-69-7" href="#__codelineno-69-7"></a><span class="w"> </span><span class="n">count</span>
|
||
<a id="__codelineno-69-8" name="__codelineno-69-8" href="#__codelineno-69-8"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-70-1" name="__codelineno-70-1" href="#__codelineno-70-1"></a><span class="cm">/* 线性阶 */</span>
|
||
<a id="__codelineno-70-2" name="__codelineno-70-2" href="#__codelineno-70-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linear</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-70-3" name="__codelineno-70-3" href="#__codelineno-70-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-70-4" name="__codelineno-70-4" href="#__codelineno-70-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-70-5" name="__codelineno-70-5" href="#__codelineno-70-5"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-70-6" name="__codelineno-70-6" href="#__codelineno-70-6"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-70-7" name="__codelineno-70-7" href="#__codelineno-70-7"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-70-8" name="__codelineno-70-8" href="#__codelineno-70-8"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-71-1" name="__codelineno-71-1" href="#__codelineno-71-1"></a><span class="c1">// 线性阶</span>
|
||
<a id="__codelineno-71-2" name="__codelineno-71-2" href="#__codelineno-71-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">linear</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-71-3" name="__codelineno-71-3" href="#__codelineno-71-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-71-4" name="__codelineno-71-4" href="#__codelineno-71-4"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">i</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-71-5" name="__codelineno-71-5" href="#__codelineno-71-5"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-71-6" name="__codelineno-71-6" href="#__codelineno-71-6"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-71-7" name="__codelineno-71-7" href="#__codelineno-71-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-71-8" name="__codelineno-71-8" href="#__codelineno-71-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-71-9" name="__codelineno-71-9" href="#__codelineno-71-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<details class="pythontutor">
|
||
<summary>Code Visualization</summary>
|
||
<p><div style="height: 441px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20linear%28n%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%BA%BF%E6%80%A7%E9%98%B6%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20for%20_%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20count%20%3D%20linear%28n%29%0A%20%20%20%20print%28%22%E7%BA%BF%E6%80%A7%E9%98%B6%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B0%E9%87%8F%20%3D%22,%20count%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20linear%28n%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%BA%BF%E6%80%A7%E9%98%B6%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20for%20_%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20count%20%3D%20linear%28n%29%0A%20%20%20%20print%28%22%E7%BA%BF%E6%80%A7%E9%98%B6%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B0%E9%87%8F%20%3D%22,%20count%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen ></a></div></p>
|
||
</details>
|
||
<p>Operations like array traversal and linked list traversal have a time complexity of <span class="arithmatex">\(O(n)\)</span>, where <span class="arithmatex">\(n\)</span> is the length of the array or list:</p>
|
||
<div class="tabbed-set tabbed-alternate" data-tabs="7:12"><input checked="checked" id="__tabbed_7_1" name="__tabbed_7" type="radio" /><input id="__tabbed_7_2" name="__tabbed_7" type="radio" /><input id="__tabbed_7_3" name="__tabbed_7" type="radio" /><input id="__tabbed_7_4" name="__tabbed_7" type="radio" /><input id="__tabbed_7_5" name="__tabbed_7" type="radio" /><input id="__tabbed_7_6" name="__tabbed_7" type="radio" /><input id="__tabbed_7_7" name="__tabbed_7" type="radio" /><input id="__tabbed_7_8" name="__tabbed_7" type="radio" /><input id="__tabbed_7_9" name="__tabbed_7" type="radio" /><input id="__tabbed_7_10" name="__tabbed_7" type="radio" /><input id="__tabbed_7_11" name="__tabbed_7" type="radio" /><input id="__tabbed_7_12" name="__tabbed_7" type="radio" /><div class="tabbed-labels"><label for="__tabbed_7_1">Python</label><label for="__tabbed_7_2">C++</label><label for="__tabbed_7_3">Java</label><label for="__tabbed_7_4">C#</label><label for="__tabbed_7_5">Go</label><label for="__tabbed_7_6">Swift</label><label for="__tabbed_7_7">JS</label><label for="__tabbed_7_8">TS</label><label for="__tabbed_7_9">Dart</label><label for="__tabbed_7_10">Rust</label><label for="__tabbed_7_11">C</label><label for="__tabbed_7_12">Zig</label></div>
|
||
<div class="tabbed-content">
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-72-1" name="__codelineno-72-1" href="#__codelineno-72-1"></a><span class="k">def</span> <span class="nf">array_traversal</span><span class="p">(</span><span class="n">nums</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">])</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
|
||
<a id="__codelineno-72-2" name="__codelineno-72-2" href="#__codelineno-72-2"></a><span class="w"> </span><span class="sd">"""线性阶(遍历数组)"""</span>
|
||
<a id="__codelineno-72-3" name="__codelineno-72-3" href="#__codelineno-72-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
|
||
<a id="__codelineno-72-4" name="__codelineno-72-4" href="#__codelineno-72-4"></a> <span class="c1"># 循环次数与数组长度成正比</span>
|
||
<a id="__codelineno-72-5" name="__codelineno-72-5" href="#__codelineno-72-5"></a> <span class="k">for</span> <span class="n">num</span> <span class="ow">in</span> <span class="n">nums</span><span class="p">:</span>
|
||
<a id="__codelineno-72-6" name="__codelineno-72-6" href="#__codelineno-72-6"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
|
||
<a id="__codelineno-72-7" name="__codelineno-72-7" href="#__codelineno-72-7"></a> <span class="k">return</span> <span class="n">count</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-73-1" name="__codelineno-73-1" href="#__codelineno-73-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
|
||
<a id="__codelineno-73-2" name="__codelineno-73-2" href="#__codelineno-73-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">arrayTraversal</span><span class="p">(</span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="o">&</span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-73-3" name="__codelineno-73-3" href="#__codelineno-73-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-73-4" name="__codelineno-73-4" href="#__codelineno-73-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
|
||
<a id="__codelineno-73-5" name="__codelineno-73-5" href="#__codelineno-73-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-73-6" name="__codelineno-73-6" href="#__codelineno-73-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-73-7" name="__codelineno-73-7" href="#__codelineno-73-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-73-8" name="__codelineno-73-8" href="#__codelineno-73-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-73-9" name="__codelineno-73-9" href="#__codelineno-73-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-74-1" name="__codelineno-74-1" href="#__codelineno-74-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
|
||
<a id="__codelineno-74-2" name="__codelineno-74-2" href="#__codelineno-74-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">arrayTraversal</span><span class="p">(</span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-74-3" name="__codelineno-74-3" href="#__codelineno-74-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-74-4" name="__codelineno-74-4" href="#__codelineno-74-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
|
||
<a id="__codelineno-74-5" name="__codelineno-74-5" href="#__codelineno-74-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="w"> </span><span class="p">:</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-74-6" name="__codelineno-74-6" href="#__codelineno-74-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-74-7" name="__codelineno-74-7" href="#__codelineno-74-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-74-8" name="__codelineno-74-8" href="#__codelineno-74-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-74-9" name="__codelineno-74-9" href="#__codelineno-74-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-75-1" name="__codelineno-75-1" href="#__codelineno-75-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
|
||
<a id="__codelineno-75-2" name="__codelineno-75-2" href="#__codelineno-75-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">ArrayTraversal</span><span class="p">(</span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-75-3" name="__codelineno-75-3" href="#__codelineno-75-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
|
||
<a id="__codelineno-75-4" name="__codelineno-75-4" href="#__codelineno-75-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
|
||
<a id="__codelineno-75-5" name="__codelineno-75-5" href="#__codelineno-75-5"></a><span class="w"> </span><span class="k">foreach</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-75-6" name="__codelineno-75-6" href="#__codelineno-75-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-75-7" name="__codelineno-75-7" href="#__codelineno-75-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-75-8" name="__codelineno-75-8" href="#__codelineno-75-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-75-9" name="__codelineno-75-9" href="#__codelineno-75-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-76-1" name="__codelineno-76-1" href="#__codelineno-76-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
|
||
<a id="__codelineno-76-2" name="__codelineno-76-2" href="#__codelineno-76-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">arrayTraversal</span><span class="p">(</span><span class="nx">nums</span><span class="w"> </span><span class="p">[]</span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-76-3" name="__codelineno-76-3" href="#__codelineno-76-3"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span>
|
||
<a id="__codelineno-76-4" name="__codelineno-76-4" href="#__codelineno-76-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
|
||
<a id="__codelineno-76-5" name="__codelineno-76-5" href="#__codelineno-76-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="k">range</span><span class="w"> </span><span class="nx">nums</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-76-6" name="__codelineno-76-6" href="#__codelineno-76-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span>
|
||
<a id="__codelineno-76-7" name="__codelineno-76-7" href="#__codelineno-76-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-76-8" name="__codelineno-76-8" href="#__codelineno-76-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
|
||
<a id="__codelineno-76-9" name="__codelineno-76-9" href="#__codelineno-76-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-77-1" name="__codelineno-77-1" href="#__codelineno-77-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
|
||
<a id="__codelineno-77-2" name="__codelineno-77-2" href="#__codelineno-77-2"></a><span class="kd">func</span> <span class="nf">arrayTraversal</span><span class="p">(</span><span class="n">nums</span><span class="p">:</span> <span class="p">[</span><span class="nb">Int</span><span class="p">])</span> <span class="p">-></span> <span class="nb">Int</span> <span class="p">{</span>
|
||
<a id="__codelineno-77-3" name="__codelineno-77-3" href="#__codelineno-77-3"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span>
|
||
<a id="__codelineno-77-4" name="__codelineno-77-4" href="#__codelineno-77-4"></a> <span class="c1">// 循环次数与数组长度成正比</span>
|
||
<a id="__codelineno-77-5" name="__codelineno-77-5" href="#__codelineno-77-5"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="n">nums</span> <span class="p">{</span>
|
||
<a id="__codelineno-77-6" name="__codelineno-77-6" href="#__codelineno-77-6"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">1</span>
|
||
<a id="__codelineno-77-7" name="__codelineno-77-7" href="#__codelineno-77-7"></a> <span class="p">}</span>
|
||
<a id="__codelineno-77-8" name="__codelineno-77-8" href="#__codelineno-77-8"></a> <span class="k">return</span> <span class="bp">count</span>
|
||
<a id="__codelineno-77-9" name="__codelineno-77-9" href="#__codelineno-77-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-78-1" name="__codelineno-78-1" href="#__codelineno-78-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
|
||
<a id="__codelineno-78-2" name="__codelineno-78-2" href="#__codelineno-78-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">arrayTraversal</span><span class="p">(</span><span class="nx">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-78-3" name="__codelineno-78-3" href="#__codelineno-78-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||
<a id="__codelineno-78-4" name="__codelineno-78-4" href="#__codelineno-78-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
|
||
<a id="__codelineno-78-5" name="__codelineno-78-5" href="#__codelineno-78-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">nums</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-78-6" name="__codelineno-78-6" href="#__codelineno-78-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-78-7" name="__codelineno-78-7" href="#__codelineno-78-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-78-8" name="__codelineno-78-8" href="#__codelineno-78-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
|
||
<a id="__codelineno-78-9" name="__codelineno-78-9" href="#__codelineno-78-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-79-1" name="__codelineno-79-1" href="#__codelineno-79-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
|
||
<a id="__codelineno-79-2" name="__codelineno-79-2" href="#__codelineno-79-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">arrayTraversal</span><span class="p">(</span><span class="nx">nums</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">[])</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-79-3" name="__codelineno-79-3" href="#__codelineno-79-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||
<a id="__codelineno-79-4" name="__codelineno-79-4" href="#__codelineno-79-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
|
||
<a id="__codelineno-79-5" name="__codelineno-79-5" href="#__codelineno-79-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">nums</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-79-6" name="__codelineno-79-6" href="#__codelineno-79-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-79-7" name="__codelineno-79-7" href="#__codelineno-79-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-79-8" name="__codelineno-79-8" href="#__codelineno-79-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
|
||
<a id="__codelineno-79-9" name="__codelineno-79-9" href="#__codelineno-79-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.dart</span><pre><span></span><code><a id="__codelineno-80-1" name="__codelineno-80-1" href="#__codelineno-80-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
|
||
<a id="__codelineno-80-2" name="__codelineno-80-2" href="#__codelineno-80-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">arrayTraversal</span><span class="p">(</span><span class="n">List</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-80-3" name="__codelineno-80-3" href="#__codelineno-80-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
|
||
<a id="__codelineno-80-4" name="__codelineno-80-4" href="#__codelineno-80-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
|
||
<a id="__codelineno-80-5" name="__codelineno-80-5" href="#__codelineno-80-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">var</span><span class="w"> </span><span class="n">_num</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-80-6" name="__codelineno-80-6" href="#__codelineno-80-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-80-7" name="__codelineno-80-7" href="#__codelineno-80-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-80-8" name="__codelineno-80-8" href="#__codelineno-80-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-80-9" name="__codelineno-80-9" href="#__codelineno-80-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.rs</span><pre><span></span><code><a id="__codelineno-81-1" name="__codelineno-81-1" href="#__codelineno-81-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
|
||
<a id="__codelineno-81-2" name="__codelineno-81-2" href="#__codelineno-81-2"></a><span class="k">fn</span> <span class="nf">array_traversal</span><span class="p">(</span><span class="n">nums</span>: <span class="kp">&</span><span class="p">[</span><span class="kt">i32</span><span class="p">])</span><span class="w"> </span>-> <span class="kt">i32</span> <span class="p">{</span>
|
||
<a id="__codelineno-81-3" name="__codelineno-81-3" href="#__codelineno-81-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-81-4" name="__codelineno-81-4" href="#__codelineno-81-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
|
||
<a id="__codelineno-81-5" name="__codelineno-81-5" href="#__codelineno-81-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">nums</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-81-6" name="__codelineno-81-6" href="#__codelineno-81-6"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-81-7" name="__codelineno-81-7" href="#__codelineno-81-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-81-8" name="__codelineno-81-8" href="#__codelineno-81-8"></a><span class="w"> </span><span class="n">count</span>
|
||
<a id="__codelineno-81-9" name="__codelineno-81-9" href="#__codelineno-81-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-82-1" name="__codelineno-82-1" href="#__codelineno-82-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
|
||
<a id="__codelineno-82-2" name="__codelineno-82-2" href="#__codelineno-82-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">arrayTraversal</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="n">nums</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-82-3" name="__codelineno-82-3" href="#__codelineno-82-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-82-4" name="__codelineno-82-4" href="#__codelineno-82-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
|
||
<a id="__codelineno-82-5" name="__codelineno-82-5" href="#__codelineno-82-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-82-6" name="__codelineno-82-6" href="#__codelineno-82-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-82-7" name="__codelineno-82-7" href="#__codelineno-82-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-82-8" name="__codelineno-82-8" href="#__codelineno-82-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-82-9" name="__codelineno-82-9" href="#__codelineno-82-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-83-1" name="__codelineno-83-1" href="#__codelineno-83-1"></a><span class="c1">// 线性阶(遍历数组)</span>
|
||
<a id="__codelineno-83-2" name="__codelineno-83-2" href="#__codelineno-83-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">arrayTraversal</span><span class="p">(</span><span class="n">nums</span><span class="o">:</span><span class="w"> </span><span class="p">[]</span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-83-3" name="__codelineno-83-3" href="#__codelineno-83-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-83-4" name="__codelineno-83-4" href="#__codelineno-83-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
|
||
<a id="__codelineno-83-5" name="__codelineno-83-5" href="#__codelineno-83-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="o">|</span><span class="n">_</span><span class="o">|</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-83-6" name="__codelineno-83-6" href="#__codelineno-83-6"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-83-7" name="__codelineno-83-7" href="#__codelineno-83-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-83-8" name="__codelineno-83-8" href="#__codelineno-83-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-83-9" name="__codelineno-83-9" href="#__codelineno-83-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<details class="pythontutor">
|
||
<summary>Code Visualization</summary>
|
||
<p><div style="height: 459px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20array_traversal%28nums%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%BA%BF%E6%80%A7%E9%98%B6%EF%BC%88%E9%81%8D%E5%8E%86%E6%95%B0%E7%BB%84%EF%BC%89%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20%23%20%E5%BE%AA%E7%8E%AF%E6%AC%A1%E6%95%B0%E4%B8%8E%E6%95%B0%E7%BB%84%E9%95%BF%E5%BA%A6%E6%88%90%E6%AD%A3%E6%AF%94%0A%20%20%20%20for%20num%20in%20nums%3A%0A%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20count%20%3D%20array_traversal%28%5B0%5D%20*%20n%29%0A%20%20%20%20print%28%22%E7%BA%BF%E6%80%A7%E9%98%B6%EF%BC%88%E9%81%8D%E5%8E%86%E6%95%B0%E7%BB%84%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B0%E9%87%8F%20%3D%22,%20count%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20array_traversal%28nums%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%BA%BF%E6%80%A7%E9%98%B6%EF%BC%88%E9%81%8D%E5%8E%86%E6%95%B0%E7%BB%84%EF%BC%89%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20%23%20%E5%BE%AA%E7%8E%AF%E6%AC%A1%E6%95%B0%E4%B8%8E%E6%95%B0%E7%BB%84%E9%95%BF%E5%BA%A6%E6%88%90%E6%AD%A3%E6%AF%94%0A%20%20%20%20for%20num%20in%20nums%3A%0A%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20count%20%3D%20array_traversal%28%5B0%5D%20*%20n%29%0A%20%20%20%20print%28%22%E7%BA%BF%E6%80%A7%E9%98%B6%EF%BC%88%E9%81%8D%E5%8E%86%E6%95%B0%E7%BB%84%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B0%E9%87%8F%20%3D%22,%20count%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen ></a></div></p>
|
||
</details>
|
||
<p>It's important to note that <strong>the input data size <span class="arithmatex">\(n\)</span> should be determined based on the type of input data</strong>. For example, in the first example, <span class="arithmatex">\(n\)</span> represents the input data size, while in the second example, the length of the array <span class="arithmatex">\(n\)</span> is the data size.</p>
|
||
<h3 id="3-quadratic-order-on2">3. Quadratic Order <span class="arithmatex">\(O(n^2)\)</span><a class="headerlink" href="#3-quadratic-order-on2" title="Permanent link">¶</a></h3>
|
||
<p>Quadratic order means the number of operations grows quadratically with the input data size <span class="arithmatex">\(n\)</span>. Quadratic order typically appears in nested loops, where both the outer and inner loops have a time complexity of <span class="arithmatex">\(O(n)\)</span>, resulting in an overall complexity of <span class="arithmatex">\(O(n^2)\)</span>:</p>
|
||
<div class="tabbed-set tabbed-alternate" data-tabs="8:12"><input checked="checked" id="__tabbed_8_1" name="__tabbed_8" type="radio" /><input id="__tabbed_8_2" name="__tabbed_8" type="radio" /><input id="__tabbed_8_3" name="__tabbed_8" type="radio" /><input id="__tabbed_8_4" name="__tabbed_8" type="radio" /><input id="__tabbed_8_5" name="__tabbed_8" type="radio" /><input id="__tabbed_8_6" name="__tabbed_8" type="radio" /><input id="__tabbed_8_7" name="__tabbed_8" type="radio" /><input id="__tabbed_8_8" name="__tabbed_8" type="radio" /><input id="__tabbed_8_9" name="__tabbed_8" type="radio" /><input id="__tabbed_8_10" name="__tabbed_8" type="radio" /><input id="__tabbed_8_11" name="__tabbed_8" type="radio" /><input id="__tabbed_8_12" name="__tabbed_8" type="radio" /><div class="tabbed-labels"><label for="__tabbed_8_1">Python</label><label for="__tabbed_8_2">C++</label><label for="__tabbed_8_3">Java</label><label for="__tabbed_8_4">C#</label><label for="__tabbed_8_5">Go</label><label for="__tabbed_8_6">Swift</label><label for="__tabbed_8_7">JS</label><label for="__tabbed_8_8">TS</label><label for="__tabbed_8_9">Dart</label><label for="__tabbed_8_10">Rust</label><label for="__tabbed_8_11">C</label><label for="__tabbed_8_12">Zig</label></div>
|
||
<div class="tabbed-content">
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-84-1" name="__codelineno-84-1" href="#__codelineno-84-1"></a><span class="k">def</span> <span class="nf">quadratic</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
|
||
<a id="__codelineno-84-2" name="__codelineno-84-2" href="#__codelineno-84-2"></a><span class="w"> </span><span class="sd">"""平方阶"""</span>
|
||
<a id="__codelineno-84-3" name="__codelineno-84-3" href="#__codelineno-84-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
|
||
<a id="__codelineno-84-4" name="__codelineno-84-4" href="#__codelineno-84-4"></a> <span class="c1"># 循环次数与数组长度成平方关系</span>
|
||
<a id="__codelineno-84-5" name="__codelineno-84-5" href="#__codelineno-84-5"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
|
||
<a id="__codelineno-84-6" name="__codelineno-84-6" href="#__codelineno-84-6"></a> <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
|
||
<a id="__codelineno-84-7" name="__codelineno-84-7" href="#__codelineno-84-7"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
|
||
<a id="__codelineno-84-8" name="__codelineno-84-8" href="#__codelineno-84-8"></a> <span class="k">return</span> <span class="n">count</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-85-1" name="__codelineno-85-1" href="#__codelineno-85-1"></a><span class="cm">/* 平方阶 */</span>
|
||
<a id="__codelineno-85-2" name="__codelineno-85-2" href="#__codelineno-85-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">quadratic</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-85-3" name="__codelineno-85-3" href="#__codelineno-85-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-85-4" name="__codelineno-85-4" href="#__codelineno-85-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
|
||
<a id="__codelineno-85-5" name="__codelineno-85-5" href="#__codelineno-85-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-85-6" name="__codelineno-85-6" href="#__codelineno-85-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-85-7" name="__codelineno-85-7" href="#__codelineno-85-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-85-8" name="__codelineno-85-8" href="#__codelineno-85-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-85-9" name="__codelineno-85-9" href="#__codelineno-85-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-85-10" name="__codelineno-85-10" href="#__codelineno-85-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-85-11" name="__codelineno-85-11" href="#__codelineno-85-11"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-86-1" name="__codelineno-86-1" href="#__codelineno-86-1"></a><span class="cm">/* 平方阶 */</span>
|
||
<a id="__codelineno-86-2" name="__codelineno-86-2" href="#__codelineno-86-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">quadratic</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-86-3" name="__codelineno-86-3" href="#__codelineno-86-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-86-4" name="__codelineno-86-4" href="#__codelineno-86-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
|
||
<a id="__codelineno-86-5" name="__codelineno-86-5" href="#__codelineno-86-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-86-6" name="__codelineno-86-6" href="#__codelineno-86-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-86-7" name="__codelineno-86-7" href="#__codelineno-86-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-86-8" name="__codelineno-86-8" href="#__codelineno-86-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-86-9" name="__codelineno-86-9" href="#__codelineno-86-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-86-10" name="__codelineno-86-10" href="#__codelineno-86-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-86-11" name="__codelineno-86-11" href="#__codelineno-86-11"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-87-1" name="__codelineno-87-1" href="#__codelineno-87-1"></a><span class="cm">/* 平方阶 */</span>
|
||
<a id="__codelineno-87-2" name="__codelineno-87-2" href="#__codelineno-87-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">Quadratic</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-87-3" name="__codelineno-87-3" href="#__codelineno-87-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
|
||
<a id="__codelineno-87-4" name="__codelineno-87-4" href="#__codelineno-87-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
|
||
<a id="__codelineno-87-5" name="__codelineno-87-5" href="#__codelineno-87-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-87-6" name="__codelineno-87-6" href="#__codelineno-87-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-87-7" name="__codelineno-87-7" href="#__codelineno-87-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-87-8" name="__codelineno-87-8" href="#__codelineno-87-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-87-9" name="__codelineno-87-9" href="#__codelineno-87-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-87-10" name="__codelineno-87-10" href="#__codelineno-87-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-87-11" name="__codelineno-87-11" href="#__codelineno-87-11"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-88-1" name="__codelineno-88-1" href="#__codelineno-88-1"></a><span class="cm">/* 平方阶 */</span>
|
||
<a id="__codelineno-88-2" name="__codelineno-88-2" href="#__codelineno-88-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">quadratic</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-88-3" name="__codelineno-88-3" href="#__codelineno-88-3"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span>
|
||
<a id="__codelineno-88-4" name="__codelineno-88-4" href="#__codelineno-88-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
|
||
<a id="__codelineno-88-5" name="__codelineno-88-5" href="#__codelineno-88-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-88-6" name="__codelineno-88-6" href="#__codelineno-88-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="p"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-88-7" name="__codelineno-88-7" href="#__codelineno-88-7"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span>
|
||
<a id="__codelineno-88-8" name="__codelineno-88-8" href="#__codelineno-88-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-88-9" name="__codelineno-88-9" href="#__codelineno-88-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-88-10" name="__codelineno-88-10" href="#__codelineno-88-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
|
||
<a id="__codelineno-88-11" name="__codelineno-88-11" href="#__codelineno-88-11"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-89-1" name="__codelineno-89-1" href="#__codelineno-89-1"></a><span class="cm">/* 平方阶 */</span>
|
||
<a id="__codelineno-89-2" name="__codelineno-89-2" href="#__codelineno-89-2"></a><span class="kd">func</span> <span class="nf">quadratic</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-></span> <span class="nb">Int</span> <span class="p">{</span>
|
||
<a id="__codelineno-89-3" name="__codelineno-89-3" href="#__codelineno-89-3"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span>
|
||
<a id="__codelineno-89-4" name="__codelineno-89-4" href="#__codelineno-89-4"></a> <span class="c1">// 循环次数与数组长度成平方关系</span>
|
||
<a id="__codelineno-89-5" name="__codelineno-89-5" href="#__codelineno-89-5"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o"><</span> <span class="n">n</span> <span class="p">{</span>
|
||
<a id="__codelineno-89-6" name="__codelineno-89-6" href="#__codelineno-89-6"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o"><</span> <span class="n">n</span> <span class="p">{</span>
|
||
<a id="__codelineno-89-7" name="__codelineno-89-7" href="#__codelineno-89-7"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">1</span>
|
||
<a id="__codelineno-89-8" name="__codelineno-89-8" href="#__codelineno-89-8"></a> <span class="p">}</span>
|
||
<a id="__codelineno-89-9" name="__codelineno-89-9" href="#__codelineno-89-9"></a> <span class="p">}</span>
|
||
<a id="__codelineno-89-10" name="__codelineno-89-10" href="#__codelineno-89-10"></a> <span class="k">return</span> <span class="bp">count</span>
|
||
<a id="__codelineno-89-11" name="__codelineno-89-11" href="#__codelineno-89-11"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-90-1" name="__codelineno-90-1" href="#__codelineno-90-1"></a><span class="cm">/* 平方阶 */</span>
|
||
<a id="__codelineno-90-2" name="__codelineno-90-2" href="#__codelineno-90-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">quadratic</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-90-3" name="__codelineno-90-3" href="#__codelineno-90-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||
<a id="__codelineno-90-4" name="__codelineno-90-4" href="#__codelineno-90-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
|
||
<a id="__codelineno-90-5" name="__codelineno-90-5" href="#__codelineno-90-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-90-6" name="__codelineno-90-6" href="#__codelineno-90-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-90-7" name="__codelineno-90-7" href="#__codelineno-90-7"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-90-8" name="__codelineno-90-8" href="#__codelineno-90-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-90-9" name="__codelineno-90-9" href="#__codelineno-90-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-90-10" name="__codelineno-90-10" href="#__codelineno-90-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
|
||
<a id="__codelineno-90-11" name="__codelineno-90-11" href="#__codelineno-90-11"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-91-1" name="__codelineno-91-1" href="#__codelineno-91-1"></a><span class="cm">/* 平方阶 */</span>
|
||
<a id="__codelineno-91-2" name="__codelineno-91-2" href="#__codelineno-91-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">quadratic</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-91-3" name="__codelineno-91-3" href="#__codelineno-91-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||
<a id="__codelineno-91-4" name="__codelineno-91-4" href="#__codelineno-91-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
|
||
<a id="__codelineno-91-5" name="__codelineno-91-5" href="#__codelineno-91-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-91-6" name="__codelineno-91-6" href="#__codelineno-91-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-91-7" name="__codelineno-91-7" href="#__codelineno-91-7"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-91-8" name="__codelineno-91-8" href="#__codelineno-91-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-91-9" name="__codelineno-91-9" href="#__codelineno-91-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-91-10" name="__codelineno-91-10" href="#__codelineno-91-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
|
||
<a id="__codelineno-91-11" name="__codelineno-91-11" href="#__codelineno-91-11"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.dart</span><pre><span></span><code><a id="__codelineno-92-1" name="__codelineno-92-1" href="#__codelineno-92-1"></a><span class="cm">/* 平方阶 */</span>
|
||
<a id="__codelineno-92-2" name="__codelineno-92-2" href="#__codelineno-92-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">quadratic</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-92-3" name="__codelineno-92-3" href="#__codelineno-92-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
|
||
<a id="__codelineno-92-4" name="__codelineno-92-4" href="#__codelineno-92-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
|
||
<a id="__codelineno-92-5" name="__codelineno-92-5" href="#__codelineno-92-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-92-6" name="__codelineno-92-6" href="#__codelineno-92-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-92-7" name="__codelineno-92-7" href="#__codelineno-92-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-92-8" name="__codelineno-92-8" href="#__codelineno-92-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-92-9" name="__codelineno-92-9" href="#__codelineno-92-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-92-10" name="__codelineno-92-10" href="#__codelineno-92-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-92-11" name="__codelineno-92-11" href="#__codelineno-92-11"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.rs</span><pre><span></span><code><a id="__codelineno-93-1" name="__codelineno-93-1" href="#__codelineno-93-1"></a><span class="cm">/* 平方阶 */</span>
|
||
<a id="__codelineno-93-2" name="__codelineno-93-2" href="#__codelineno-93-2"></a><span class="k">fn</span> <span class="nf">quadratic</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span>-> <span class="kt">i32</span> <span class="p">{</span>
|
||
<a id="__codelineno-93-3" name="__codelineno-93-3" href="#__codelineno-93-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-93-4" name="__codelineno-93-4" href="#__codelineno-93-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
|
||
<a id="__codelineno-93-5" name="__codelineno-93-5" href="#__codelineno-93-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-93-6" name="__codelineno-93-6" href="#__codelineno-93-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-93-7" name="__codelineno-93-7" href="#__codelineno-93-7"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-93-8" name="__codelineno-93-8" href="#__codelineno-93-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-93-9" name="__codelineno-93-9" href="#__codelineno-93-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-93-10" name="__codelineno-93-10" href="#__codelineno-93-10"></a><span class="w"> </span><span class="n">count</span>
|
||
<a id="__codelineno-93-11" name="__codelineno-93-11" href="#__codelineno-93-11"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-94-1" name="__codelineno-94-1" href="#__codelineno-94-1"></a><span class="cm">/* 平方阶 */</span>
|
||
<a id="__codelineno-94-2" name="__codelineno-94-2" href="#__codelineno-94-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">quadratic</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-94-3" name="__codelineno-94-3" href="#__codelineno-94-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-94-4" name="__codelineno-94-4" href="#__codelineno-94-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
|
||
<a id="__codelineno-94-5" name="__codelineno-94-5" href="#__codelineno-94-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-94-6" name="__codelineno-94-6" href="#__codelineno-94-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-94-7" name="__codelineno-94-7" href="#__codelineno-94-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-94-8" name="__codelineno-94-8" href="#__codelineno-94-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-94-9" name="__codelineno-94-9" href="#__codelineno-94-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-94-10" name="__codelineno-94-10" href="#__codelineno-94-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-94-11" name="__codelineno-94-11" href="#__codelineno-94-11"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-95-1" name="__codelineno-95-1" href="#__codelineno-95-1"></a><span class="c1">// 平方阶</span>
|
||
<a id="__codelineno-95-2" name="__codelineno-95-2" href="#__codelineno-95-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">quadratic</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-95-3" name="__codelineno-95-3" href="#__codelineno-95-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-95-4" name="__codelineno-95-4" href="#__codelineno-95-4"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">i</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-95-5" name="__codelineno-95-5" href="#__codelineno-95-5"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
|
||
<a id="__codelineno-95-6" name="__codelineno-95-6" href="#__codelineno-95-6"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-95-7" name="__codelineno-95-7" href="#__codelineno-95-7"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">j</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-95-8" name="__codelineno-95-8" href="#__codelineno-95-8"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">j</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-95-9" name="__codelineno-95-9" href="#__codelineno-95-9"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-95-10" name="__codelineno-95-10" href="#__codelineno-95-10"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-95-11" name="__codelineno-95-11" href="#__codelineno-95-11"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-95-12" name="__codelineno-95-12" href="#__codelineno-95-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-95-13" name="__codelineno-95-13" href="#__codelineno-95-13"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<details class="pythontutor">
|
||
<summary>Code Visualization</summary>
|
||
<p><div style="height: 477px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20quadratic%28n%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%B9%B3%E6%96%B9%E9%98%B6%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20%23%20%E5%BE%AA%E7%8E%AF%E6%AC%A1%E6%95%B0%E4%B8%8E%E6%95%B0%E7%BB%84%E9%95%BF%E5%BA%A6%E6%88%90%E5%B9%B3%E6%96%B9%E5%85%B3%E7%B3%BB%0A%20%20%20%20for%20i%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20for%20j%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20count%20%3D%20quadratic%28n%29%0A%20%20%20%20print%28%22%E5%B9%B3%E6%96%B9%E9%98%B6%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B0%E9%87%8F%20%3D%22,%20count%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20quadratic%28n%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%B9%B3%E6%96%B9%E9%98%B6%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20%23%20%E5%BE%AA%E7%8E%AF%E6%AC%A1%E6%95%B0%E4%B8%8E%E6%95%B0%E7%BB%84%E9%95%BF%E5%BA%A6%E6%88%90%E5%B9%B3%E6%96%B9%E5%85%B3%E7%B3%BB%0A%20%20%20%20for%20i%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20for%20j%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20count%20%3D%20quadratic%28n%29%0A%20%20%20%20print%28%22%E5%B9%B3%E6%96%B9%E9%98%B6%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B0%E9%87%8F%20%3D%22,%20count%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen ></a></div></p>
|
||
</details>
|
||
<p>The following image compares constant order, linear order, and quadratic order time complexities.</p>
|
||
<p><a class="glightbox" href="../time_complexity.assets/time_complexity_constant_linear_quadratic.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Constant, Linear, and Quadratic Order Time Complexities" class="animation-figure" src="../time_complexity.assets/time_complexity_constant_linear_quadratic.png" /></a></p>
|
||
<p align="center"> Figure 2-10 Constant, Linear, and Quadratic Order Time Complexities </p>
|
||
|
||
<p>For instance, in bubble sort, the outer loop runs <span class="arithmatex">\(n - 1\)</span> times, and the inner loop runs <span class="arithmatex">\(n-1\)</span>, <span class="arithmatex">\(n-2\)</span>, ..., <span class="arithmatex">\(2\)</span>, <span class="arithmatex">\(1\)</span> times, averaging <span class="arithmatex">\(n / 2\)</span> times, resulting in a time complexity of <span class="arithmatex">\(O((n - 1) n / 2) = O(n^2)\)</span>:</p>
|
||
<div class="tabbed-set tabbed-alternate" data-tabs="9:12"><input checked="checked" id="__tabbed_9_1" name="__tabbed_9" type="radio" /><input id="__tabbed_9_2" name="__tabbed_9" type="radio" /><input id="__tabbed_9_3" name="__tabbed_9" type="radio" /><input id="__tabbed_9_4" name="__tabbed_9" type="radio" /><input id="__tabbed_9_5" name="__tabbed_9" type="radio" /><input id="__tabbed_9_6" name="__tabbed_9" type="radio" /><input id="__tabbed_9_7" name="__tabbed_9" type="radio" /><input id="__tabbed_9_8" name="__tabbed_9" type="radio" /><input id="__tabbed_9_9" name="__tabbed_9" type="radio" /><input id="__tabbed_9_10" name="__tabbed_9" type="radio" /><input id="__tabbed_9_11" name="__tabbed_9" type="radio" /><input id="__tabbed_9_12" name="__tabbed_9" type="radio" /><div class="tabbed-labels"><label for="__tabbed_9_1">Python</label><label for="__tabbed_9_2">C++</label><label for="__tabbed_9_3">Java</label><label for="__tabbed_9_4">C#</label><label for="__tabbed_9_5">Go</label><label for="__tabbed_9_6">Swift</label><label for="__tabbed_9_7">JS</label><label for="__tabbed_9_8">TS</label><label for="__tabbed_9_9">Dart</label><label for="__tabbed_9_10">Rust</label><label for="__tabbed_9_11">C</label><label for="__tabbed_9_12">Zig</label></div>
|
||
<div class="tabbed-content">
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-96-1" name="__codelineno-96-1" href="#__codelineno-96-1"></a><span class="k">def</span> <span class="nf">bubble_sort</span><span class="p">(</span><span class="n">nums</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">])</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
|
||
<a id="__codelineno-96-2" name="__codelineno-96-2" href="#__codelineno-96-2"></a><span class="w"> </span><span class="sd">"""平方阶(冒泡排序)"""</span>
|
||
<a id="__codelineno-96-3" name="__codelineno-96-3" href="#__codelineno-96-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span> <span class="c1"># 计数器</span>
|
||
<a id="__codelineno-96-4" name="__codelineno-96-4" href="#__codelineno-96-4"></a> <span class="c1"># 外循环:未排序区间为 [0, i]</span>
|
||
<a id="__codelineno-96-5" name="__codelineno-96-5" href="#__codelineno-96-5"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">nums</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">):</span>
|
||
<a id="__codelineno-96-6" name="__codelineno-96-6" href="#__codelineno-96-6"></a> <span class="c1"># 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端</span>
|
||
<a id="__codelineno-96-7" name="__codelineno-96-7" href="#__codelineno-96-7"></a> <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">i</span><span class="p">):</span>
|
||
<a id="__codelineno-96-8" name="__codelineno-96-8" href="#__codelineno-96-8"></a> <span class="k">if</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span> <span class="o">></span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]:</span>
|
||
<a id="__codelineno-96-9" name="__codelineno-96-9" href="#__codelineno-96-9"></a> <span class="c1"># 交换 nums[j] 与 nums[j + 1]</span>
|
||
<a id="__codelineno-96-10" name="__codelineno-96-10" href="#__codelineno-96-10"></a> <span class="n">tmp</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span>
|
||
<a id="__codelineno-96-11" name="__codelineno-96-11" href="#__codelineno-96-11"></a> <span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span>
|
||
<a id="__codelineno-96-12" name="__codelineno-96-12" href="#__codelineno-96-12"></a> <span class="n">nums</span><span class="p">[</span><span class="n">j</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">tmp</span>
|
||
<a id="__codelineno-96-13" name="__codelineno-96-13" href="#__codelineno-96-13"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">3</span> <span class="c1"># 元素交换包含 3 个单元操作</span>
|
||
<a id="__codelineno-96-14" name="__codelineno-96-14" href="#__codelineno-96-14"></a> <span class="k">return</span> <span class="n">count</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-97-1" name="__codelineno-97-1" href="#__codelineno-97-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
|
||
<a id="__codelineno-97-2" name="__codelineno-97-2" href="#__codelineno-97-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">bubbleSort</span><span class="p">(</span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="o">&</span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-97-3" name="__codelineno-97-3" href="#__codelineno-97-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span>
|
||
<a id="__codelineno-97-4" name="__codelineno-97-4" href="#__codelineno-97-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
|
||
<a id="__codelineno-97-5" name="__codelineno-97-5" href="#__codelineno-97-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">size</span><span class="p">()</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-97-6" name="__codelineno-97-6" href="#__codelineno-97-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端</span>
|
||
<a id="__codelineno-97-7" name="__codelineno-97-7" href="#__codelineno-97-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">i</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-97-8" name="__codelineno-97-8" href="#__codelineno-97-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-97-9" name="__codelineno-97-9" href="#__codelineno-97-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
|
||
<a id="__codelineno-97-10" name="__codelineno-97-10" href="#__codelineno-97-10"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">];</span>
|
||
<a id="__codelineno-97-11" name="__codelineno-97-11" href="#__codelineno-97-11"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
|
||
<a id="__codelineno-97-12" name="__codelineno-97-12" href="#__codelineno-97-12"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
|
||
<a id="__codelineno-97-13" name="__codelineno-97-13" href="#__codelineno-97-13"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
|
||
<a id="__codelineno-97-14" name="__codelineno-97-14" href="#__codelineno-97-14"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-97-15" name="__codelineno-97-15" href="#__codelineno-97-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-97-16" name="__codelineno-97-16" href="#__codelineno-97-16"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-97-17" name="__codelineno-97-17" href="#__codelineno-97-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-97-18" name="__codelineno-97-18" href="#__codelineno-97-18"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-98-1" name="__codelineno-98-1" href="#__codelineno-98-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
|
||
<a id="__codelineno-98-2" name="__codelineno-98-2" href="#__codelineno-98-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">bubbleSort</span><span class="p">(</span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-98-3" name="__codelineno-98-3" href="#__codelineno-98-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span>
|
||
<a id="__codelineno-98-4" name="__codelineno-98-4" href="#__codelineno-98-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
|
||
<a id="__codelineno-98-5" name="__codelineno-98-5" href="#__codelineno-98-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="na">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-98-6" name="__codelineno-98-6" href="#__codelineno-98-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端</span>
|
||
<a id="__codelineno-98-7" name="__codelineno-98-7" href="#__codelineno-98-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">i</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-98-8" name="__codelineno-98-8" href="#__codelineno-98-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="o">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-98-9" name="__codelineno-98-9" href="#__codelineno-98-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
|
||
<a id="__codelineno-98-10" name="__codelineno-98-10" href="#__codelineno-98-10"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="o">]</span><span class="p">;</span>
|
||
<a id="__codelineno-98-11" name="__codelineno-98-11" href="#__codelineno-98-11"></a><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span>
|
||
<a id="__codelineno-98-12" name="__codelineno-98-12" href="#__codelineno-98-12"></a><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
|
||
<a id="__codelineno-98-13" name="__codelineno-98-13" href="#__codelineno-98-13"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
|
||
<a id="__codelineno-98-14" name="__codelineno-98-14" href="#__codelineno-98-14"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-98-15" name="__codelineno-98-15" href="#__codelineno-98-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-98-16" name="__codelineno-98-16" href="#__codelineno-98-16"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-98-17" name="__codelineno-98-17" href="#__codelineno-98-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-98-18" name="__codelineno-98-18" href="#__codelineno-98-18"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-99-1" name="__codelineno-99-1" href="#__codelineno-99-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
|
||
<a id="__codelineno-99-2" name="__codelineno-99-2" href="#__codelineno-99-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">BubbleSort</span><span class="p">(</span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-99-3" name="__codelineno-99-3" href="#__codelineno-99-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span>
|
||
<a id="__codelineno-99-4" name="__codelineno-99-4" href="#__codelineno-99-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
|
||
<a id="__codelineno-99-5" name="__codelineno-99-5" href="#__codelineno-99-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">Length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-99-6" name="__codelineno-99-6" href="#__codelineno-99-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 </span>
|
||
<a id="__codelineno-99-7" name="__codelineno-99-7" href="#__codelineno-99-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">i</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-99-8" name="__codelineno-99-8" href="#__codelineno-99-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-99-9" name="__codelineno-99-9" href="#__codelineno-99-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
|
||
<a id="__codelineno-99-10" name="__codelineno-99-10" href="#__codelineno-99-10"></a><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">],</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">])</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">],</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">]);</span>
|
||
<a id="__codelineno-99-11" name="__codelineno-99-11" href="#__codelineno-99-11"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="m">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
|
||
<a id="__codelineno-99-12" name="__codelineno-99-12" href="#__codelineno-99-12"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-99-13" name="__codelineno-99-13" href="#__codelineno-99-13"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-99-14" name="__codelineno-99-14" href="#__codelineno-99-14"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-99-15" name="__codelineno-99-15" href="#__codelineno-99-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-99-16" name="__codelineno-99-16" href="#__codelineno-99-16"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-100-1" name="__codelineno-100-1" href="#__codelineno-100-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
|
||
<a id="__codelineno-100-2" name="__codelineno-100-2" href="#__codelineno-100-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">bubbleSort</span><span class="p">(</span><span class="nx">nums</span><span class="w"> </span><span class="p">[]</span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-100-3" name="__codelineno-100-3" href="#__codelineno-100-3"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="c1">// 计数器</span>
|
||
<a id="__codelineno-100-4" name="__codelineno-100-4" href="#__codelineno-100-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
|
||
<a id="__codelineno-100-5" name="__codelineno-100-5" href="#__codelineno-100-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">len</span><span class="p">(</span><span class="nx">nums</span><span class="p">)</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">></span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">--</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-100-6" name="__codelineno-100-6" href="#__codelineno-100-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端</span>
|
||
<a id="__codelineno-100-7" name="__codelineno-100-7" href="#__codelineno-100-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="p"><</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-100-8" name="__codelineno-100-8" href="#__codelineno-100-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="p">></span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-100-9" name="__codelineno-100-9" href="#__codelineno-100-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
|
||
<a id="__codelineno-100-10" name="__codelineno-100-10" href="#__codelineno-100-10"></a><span class="w"> </span><span class="nx">tmp</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span>
|
||
<a id="__codelineno-100-11" name="__codelineno-100-11" href="#__codelineno-100-11"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span>
|
||
<a id="__codelineno-100-12" name="__codelineno-100-12" href="#__codelineno-100-12"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">tmp</span>
|
||
<a id="__codelineno-100-13" name="__codelineno-100-13" href="#__codelineno-100-13"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">3</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
|
||
<a id="__codelineno-100-14" name="__codelineno-100-14" href="#__codelineno-100-14"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-100-15" name="__codelineno-100-15" href="#__codelineno-100-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-100-16" name="__codelineno-100-16" href="#__codelineno-100-16"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-100-17" name="__codelineno-100-17" href="#__codelineno-100-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
|
||
<a id="__codelineno-100-18" name="__codelineno-100-18" href="#__codelineno-100-18"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-101-1" name="__codelineno-101-1" href="#__codelineno-101-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
|
||
<a id="__codelineno-101-2" name="__codelineno-101-2" href="#__codelineno-101-2"></a><span class="kd">func</span> <span class="nf">bubbleSort</span><span class="p">(</span><span class="n">nums</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[</span><span class="nb">Int</span><span class="p">])</span> <span class="p">-></span> <span class="nb">Int</span> <span class="p">{</span>
|
||
<a id="__codelineno-101-3" name="__codelineno-101-3" href="#__codelineno-101-3"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span> <span class="c1">// 计数器</span>
|
||
<a id="__codelineno-101-4" name="__codelineno-101-4" href="#__codelineno-101-4"></a> <span class="c1">// 外循环:未排序区间为 [0, i]</span>
|
||
<a id="__codelineno-101-5" name="__codelineno-101-5" href="#__codelineno-101-5"></a> <span class="k">for</span> <span class="n">i</span> <span class="k">in</span> <span class="bp">stride</span><span class="p">(</span><span class="n">from</span><span class="p">:</span> <span class="n">nums</span><span class="p">.</span><span class="bp">count</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">to</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span> <span class="n">by</span><span class="p">:</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="p">{</span>
|
||
<a id="__codelineno-101-6" name="__codelineno-101-6" href="#__codelineno-101-6"></a> <span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 </span>
|
||
<a id="__codelineno-101-7" name="__codelineno-101-7" href="#__codelineno-101-7"></a> <span class="k">for</span> <span class="n">j</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o"><</span> <span class="n">i</span> <span class="p">{</span>
|
||
<a id="__codelineno-101-8" name="__codelineno-101-8" href="#__codelineno-101-8"></a> <span class="k">if</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span> <span class="o">></span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span> <span class="p">{</span>
|
||
<a id="__codelineno-101-9" name="__codelineno-101-9" href="#__codelineno-101-9"></a> <span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
|
||
<a id="__codelineno-101-10" name="__codelineno-101-10" href="#__codelineno-101-10"></a> <span class="kd">let</span> <span class="nv">tmp</span> <span class="p">=</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span>
|
||
<a id="__codelineno-101-11" name="__codelineno-101-11" href="#__codelineno-101-11"></a> <span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span> <span class="p">=</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span>
|
||
<a id="__codelineno-101-12" name="__codelineno-101-12" href="#__codelineno-101-12"></a> <span class="n">nums</span><span class="p">[</span><span class="n">j</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span> <span class="p">=</span> <span class="n">tmp</span>
|
||
<a id="__codelineno-101-13" name="__codelineno-101-13" href="#__codelineno-101-13"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">3</span> <span class="c1">// 元素交换包含 3 个单元操作</span>
|
||
<a id="__codelineno-101-14" name="__codelineno-101-14" href="#__codelineno-101-14"></a> <span class="p">}</span>
|
||
<a id="__codelineno-101-15" name="__codelineno-101-15" href="#__codelineno-101-15"></a> <span class="p">}</span>
|
||
<a id="__codelineno-101-16" name="__codelineno-101-16" href="#__codelineno-101-16"></a> <span class="p">}</span>
|
||
<a id="__codelineno-101-17" name="__codelineno-101-17" href="#__codelineno-101-17"></a> <span class="k">return</span> <span class="bp">count</span>
|
||
<a id="__codelineno-101-18" name="__codelineno-101-18" href="#__codelineno-101-18"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-102-1" name="__codelineno-102-1" href="#__codelineno-102-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
|
||
<a id="__codelineno-102-2" name="__codelineno-102-2" href="#__codelineno-102-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">bubbleSort</span><span class="p">(</span><span class="nx">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-102-3" name="__codelineno-102-3" href="#__codelineno-102-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span>
|
||
<a id="__codelineno-102-4" name="__codelineno-102-4" href="#__codelineno-102-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
|
||
<a id="__codelineno-102-5" name="__codelineno-102-5" href="#__codelineno-102-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">.</span><span class="nx">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-102-6" name="__codelineno-102-6" href="#__codelineno-102-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端</span>
|
||
<a id="__codelineno-102-7" name="__codelineno-102-7" href="#__codelineno-102-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-102-8" name="__codelineno-102-8" href="#__codelineno-102-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-102-9" name="__codelineno-102-9" href="#__codelineno-102-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
|
||
<a id="__codelineno-102-10" name="__codelineno-102-10" href="#__codelineno-102-10"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">];</span>
|
||
<a id="__codelineno-102-11" name="__codelineno-102-11" href="#__codelineno-102-11"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">];</span>
|
||
<a id="__codelineno-102-12" name="__codelineno-102-12" href="#__codelineno-102-12"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">tmp</span><span class="p">;</span>
|
||
<a id="__codelineno-102-13" name="__codelineno-102-13" href="#__codelineno-102-13"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
|
||
<a id="__codelineno-102-14" name="__codelineno-102-14" href="#__codelineno-102-14"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-102-15" name="__codelineno-102-15" href="#__codelineno-102-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-102-16" name="__codelineno-102-16" href="#__codelineno-102-16"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-102-17" name="__codelineno-102-17" href="#__codelineno-102-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
|
||
<a id="__codelineno-102-18" name="__codelineno-102-18" href="#__codelineno-102-18"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-103-1" name="__codelineno-103-1" href="#__codelineno-103-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
|
||
<a id="__codelineno-103-2" name="__codelineno-103-2" href="#__codelineno-103-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">bubbleSort</span><span class="p">(</span><span class="nx">nums</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">[])</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-103-3" name="__codelineno-103-3" href="#__codelineno-103-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span>
|
||
<a id="__codelineno-103-4" name="__codelineno-103-4" href="#__codelineno-103-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
|
||
<a id="__codelineno-103-5" name="__codelineno-103-5" href="#__codelineno-103-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">.</span><span class="nx">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-103-6" name="__codelineno-103-6" href="#__codelineno-103-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端</span>
|
||
<a id="__codelineno-103-7" name="__codelineno-103-7" href="#__codelineno-103-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-103-8" name="__codelineno-103-8" href="#__codelineno-103-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-103-9" name="__codelineno-103-9" href="#__codelineno-103-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
|
||
<a id="__codelineno-103-10" name="__codelineno-103-10" href="#__codelineno-103-10"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">];</span>
|
||
<a id="__codelineno-103-11" name="__codelineno-103-11" href="#__codelineno-103-11"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">];</span>
|
||
<a id="__codelineno-103-12" name="__codelineno-103-12" href="#__codelineno-103-12"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">tmp</span><span class="p">;</span>
|
||
<a id="__codelineno-103-13" name="__codelineno-103-13" href="#__codelineno-103-13"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
|
||
<a id="__codelineno-103-14" name="__codelineno-103-14" href="#__codelineno-103-14"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-103-15" name="__codelineno-103-15" href="#__codelineno-103-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-103-16" name="__codelineno-103-16" href="#__codelineno-103-16"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-103-17" name="__codelineno-103-17" href="#__codelineno-103-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
|
||
<a id="__codelineno-103-18" name="__codelineno-103-18" href="#__codelineno-103-18"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.dart</span><pre><span></span><code><a id="__codelineno-104-1" name="__codelineno-104-1" href="#__codelineno-104-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
|
||
<a id="__codelineno-104-2" name="__codelineno-104-2" href="#__codelineno-104-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">bubbleSort</span><span class="p">(</span><span class="n">List</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-104-3" name="__codelineno-104-3" href="#__codelineno-104-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span>
|
||
<a id="__codelineno-104-4" name="__codelineno-104-4" href="#__codelineno-104-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
|
||
<a id="__codelineno-104-5" name="__codelineno-104-5" href="#__codelineno-104-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">var</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-104-6" name="__codelineno-104-6" href="#__codelineno-104-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端</span>
|
||
<a id="__codelineno-104-7" name="__codelineno-104-7" href="#__codelineno-104-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">var</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">i</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-104-8" name="__codelineno-104-8" href="#__codelineno-104-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-104-9" name="__codelineno-104-9" href="#__codelineno-104-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
|
||
<a id="__codelineno-104-10" name="__codelineno-104-10" href="#__codelineno-104-10"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">];</span>
|
||
<a id="__codelineno-104-11" name="__codelineno-104-11" href="#__codelineno-104-11"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">];</span>
|
||
<a id="__codelineno-104-12" name="__codelineno-104-12" href="#__codelineno-104-12"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
|
||
<a id="__codelineno-104-13" name="__codelineno-104-13" href="#__codelineno-104-13"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="m">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
|
||
<a id="__codelineno-104-14" name="__codelineno-104-14" href="#__codelineno-104-14"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-104-15" name="__codelineno-104-15" href="#__codelineno-104-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-104-16" name="__codelineno-104-16" href="#__codelineno-104-16"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-104-17" name="__codelineno-104-17" href="#__codelineno-104-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-104-18" name="__codelineno-104-18" href="#__codelineno-104-18"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.rs</span><pre><span></span><code><a id="__codelineno-105-1" name="__codelineno-105-1" href="#__codelineno-105-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
|
||
<a id="__codelineno-105-2" name="__codelineno-105-2" href="#__codelineno-105-2"></a><span class="k">fn</span> <span class="nf">bubble_sort</span><span class="p">(</span><span class="n">nums</span>: <span class="kp">&</span><span class="nc">mut</span><span class="w"> </span><span class="p">[</span><span class="kt">i32</span><span class="p">])</span><span class="w"> </span>-> <span class="kt">i32</span> <span class="p">{</span>
|
||
<a id="__codelineno-105-3" name="__codelineno-105-3" href="#__codelineno-105-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span>
|
||
<a id="__codelineno-105-4" name="__codelineno-105-4" href="#__codelineno-105-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
|
||
<a id="__codelineno-105-5" name="__codelineno-105-5" href="#__codelineno-105-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="p">(</span><span class="mi">1</span><span class="o">..</span><span class="n">nums</span><span class="p">.</span><span class="n">len</span><span class="p">()).</span><span class="n">rev</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-105-6" name="__codelineno-105-6" href="#__codelineno-105-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 </span>
|
||
<a id="__codelineno-105-7" name="__codelineno-105-7" href="#__codelineno-105-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">i</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-105-8" name="__codelineno-105-8" href="#__codelineno-105-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-105-9" name="__codelineno-105-9" href="#__codelineno-105-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
|
||
<a id="__codelineno-105-10" name="__codelineno-105-10" href="#__codelineno-105-10"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">];</span>
|
||
<a id="__codelineno-105-11" name="__codelineno-105-11" href="#__codelineno-105-11"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
|
||
<a id="__codelineno-105-12" name="__codelineno-105-12" href="#__codelineno-105-12"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
|
||
<a id="__codelineno-105-13" name="__codelineno-105-13" href="#__codelineno-105-13"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
|
||
<a id="__codelineno-105-14" name="__codelineno-105-14" href="#__codelineno-105-14"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-105-15" name="__codelineno-105-15" href="#__codelineno-105-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-105-16" name="__codelineno-105-16" href="#__codelineno-105-16"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-105-17" name="__codelineno-105-17" href="#__codelineno-105-17"></a><span class="w"> </span><span class="n">count</span>
|
||
<a id="__codelineno-105-18" name="__codelineno-105-18" href="#__codelineno-105-18"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-106-1" name="__codelineno-106-1" href="#__codelineno-106-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
|
||
<a id="__codelineno-106-2" name="__codelineno-106-2" href="#__codelineno-106-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">bubbleSort</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="n">nums</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-106-3" name="__codelineno-106-3" href="#__codelineno-106-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span>
|
||
<a id="__codelineno-106-4" name="__codelineno-106-4" href="#__codelineno-106-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
|
||
<a id="__codelineno-106-5" name="__codelineno-106-5" href="#__codelineno-106-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-106-6" name="__codelineno-106-6" href="#__codelineno-106-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端</span>
|
||
<a id="__codelineno-106-7" name="__codelineno-106-7" href="#__codelineno-106-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">i</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-106-8" name="__codelineno-106-8" href="#__codelineno-106-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-106-9" name="__codelineno-106-9" href="#__codelineno-106-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
|
||
<a id="__codelineno-106-10" name="__codelineno-106-10" href="#__codelineno-106-10"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">];</span>
|
||
<a id="__codelineno-106-11" name="__codelineno-106-11" href="#__codelineno-106-11"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
|
||
<a id="__codelineno-106-12" name="__codelineno-106-12" href="#__codelineno-106-12"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
|
||
<a id="__codelineno-106-13" name="__codelineno-106-13" href="#__codelineno-106-13"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
|
||
<a id="__codelineno-106-14" name="__codelineno-106-14" href="#__codelineno-106-14"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-106-15" name="__codelineno-106-15" href="#__codelineno-106-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-106-16" name="__codelineno-106-16" href="#__codelineno-106-16"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-106-17" name="__codelineno-106-17" href="#__codelineno-106-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-106-18" name="__codelineno-106-18" href="#__codelineno-106-18"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-107-1" name="__codelineno-107-1" href="#__codelineno-107-1"></a><span class="c1">// 平方阶(冒泡排序)</span>
|
||
<a id="__codelineno-107-2" name="__codelineno-107-2" href="#__codelineno-107-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">bubbleSort</span><span class="p">(</span><span class="n">nums</span><span class="o">:</span><span class="w"> </span><span class="p">[]</span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-107-3" name="__codelineno-107-3" href="#__codelineno-107-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器 </span>
|
||
<a id="__codelineno-107-4" name="__codelineno-107-4" href="#__codelineno-107-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
|
||
<a id="__codelineno-107-5" name="__codelineno-107-5" href="#__codelineno-107-5"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">i</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">@as</span><span class="p">(</span><span class="kt">i32</span><span class="p">,</span><span class="w"> </span><span class="nb">@intCast</span><span class="p">(</span><span class="n">nums</span><span class="p">.</span><span class="n">len</span><span class="p">))</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-107-6" name="__codelineno-107-6" href="#__codelineno-107-6"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">-=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-107-7" name="__codelineno-107-7" href="#__codelineno-107-7"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">j</span><span class="o">:</span><span class="w"> </span><span class="kt">usize</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-107-8" name="__codelineno-107-8" href="#__codelineno-107-8"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 </span>
|
||
<a id="__codelineno-107-9" name="__codelineno-107-9" href="#__codelineno-107-9"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">i</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">j</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-107-10" name="__codelineno-107-10" href="#__codelineno-107-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-107-11" name="__codelineno-107-11" href="#__codelineno-107-11"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
|
||
<a id="__codelineno-107-12" name="__codelineno-107-12" href="#__codelineno-107-12"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">];</span>
|
||
<a id="__codelineno-107-13" name="__codelineno-107-13" href="#__codelineno-107-13"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
|
||
<a id="__codelineno-107-14" name="__codelineno-107-14" href="#__codelineno-107-14"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
|
||
<a id="__codelineno-107-15" name="__codelineno-107-15" href="#__codelineno-107-15"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
|
||
<a id="__codelineno-107-16" name="__codelineno-107-16" href="#__codelineno-107-16"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-107-17" name="__codelineno-107-17" href="#__codelineno-107-17"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-107-18" name="__codelineno-107-18" href="#__codelineno-107-18"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-107-19" name="__codelineno-107-19" href="#__codelineno-107-19"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-107-20" name="__codelineno-107-20" href="#__codelineno-107-20"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<details class="pythontutor">
|
||
<summary>Code Visualization</summary>
|
||
<p><div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20bubble_sort%28nums%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%B9%B3%E6%96%B9%E9%98%B6%EF%BC%88%E5%86%92%E6%B3%A1%E6%8E%92%E5%BA%8F%EF%BC%89%22%22%22%0A%20%20%20%20count%20%3D%200%20%20%23%20%E8%AE%A1%E6%95%B0%E5%99%A8%0A%20%20%20%20%23%20%E5%A4%96%E5%BE%AA%E7%8E%AF%EF%BC%9A%E6%9C%AA%E6%8E%92%E5%BA%8F%E5%8C%BA%E9%97%B4%E4%B8%BA%20%5B0,%20i%5D%0A%20%20%20%20for%20i%20in%20range%28len%28nums%29%20-%201,%200,%20-1%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E5%86%85%E5%BE%AA%E7%8E%AF%EF%BC%9A%E5%B0%86%E6%9C%AA%E6%8E%92%E5%BA%8F%E5%8C%BA%E9%97%B4%20%5B0,%20i%5D%20%E4%B8%AD%E7%9A%84%E6%9C%80%E5%A4%A7%E5%85%83%E7%B4%A0%E4%BA%A4%E6%8D%A2%E8%87%B3%E8%AF%A5%E5%8C%BA%E9%97%B4%E7%9A%84%E6%9C%80%E5%8F%B3%E7%AB%AF%0A%20%20%20%20%20%20%20%20for%20j%20in%20range%28i%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20nums%5Bj%5D%20%3E%20nums%5Bj%20%2B%201%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E4%BA%A4%E6%8D%A2%20nums%5Bj%5D%20%E4%B8%8E%20nums%5Bj%20%2B%201%5D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20tmp%20%3D%20nums%5Bj%5D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20nums%5Bj%5D%20%3D%20nums%5Bj%20%2B%201%5D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20nums%5Bj%20%2B%201%5D%20%3D%20tmp%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20count%20%2B%3D%203%20%20%23%20%E5%85%83%E7%B4%A0%E4%BA%A4%E6%8D%A2%E5%8C%85%E5%90%AB%203%20%E4%B8%AA%E5%8D%95%E5%85%83%E6%93%8D%E4%BD%9C%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20nums%20%3D%20%5Bi%20for%20i%20in%20range%28n,%200,%20-1%29%5D%20%20%23%20%5Bn,%20n-1,%20...,%202,%201%5D%0A%20%20%20%20count%20%3D%20bubble_sort%28nums%29%0A%20%20%20%20print%28%22%E5%B9%B3%E6%96%B9%E9%98%B6%EF%BC%88%E5%86%92%E6%B3%A1%E6%8E%92%E5%BA%8F%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B0%E9%87%8F%20%3D%22,%20count%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20bubble_sort%28nums%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%B9%B3%E6%96%B9%E9%98%B6%EF%BC%88%E5%86%92%E6%B3%A1%E6%8E%92%E5%BA%8F%EF%BC%89%22%22%22%0A%20%20%20%20count%20%3D%200%20%20%23%20%E8%AE%A1%E6%95%B0%E5%99%A8%0A%20%20%20%20%23%20%E5%A4%96%E5%BE%AA%E7%8E%AF%EF%BC%9A%E6%9C%AA%E6%8E%92%E5%BA%8F%E5%8C%BA%E9%97%B4%E4%B8%BA%20%5B0,%20i%5D%0A%20%20%20%20for%20i%20in%20range%28len%28nums%29%20-%201,%200,%20-1%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E5%86%85%E5%BE%AA%E7%8E%AF%EF%BC%9A%E5%B0%86%E6%9C%AA%E6%8E%92%E5%BA%8F%E5%8C%BA%E9%97%B4%20%5B0,%20i%5D%20%E4%B8%AD%E7%9A%84%E6%9C%80%E5%A4%A7%E5%85%83%E7%B4%A0%E4%BA%A4%E6%8D%A2%E8%87%B3%E8%AF%A5%E5%8C%BA%E9%97%B4%E7%9A%84%E6%9C%80%E5%8F%B3%E7%AB%AF%0A%20%20%20%20%20%20%20%20for%20j%20in%20range%28i%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20nums%5Bj%5D%20%3E%20nums%5Bj%20%2B%201%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E4%BA%A4%E6%8D%A2%20nums%5Bj%5D%20%E4%B8%8E%20nums%5Bj%20%2B%201%5D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20tmp%20%3D%20nums%5Bj%5D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20nums%5Bj%5D%20%3D%20nums%5Bj%20%2B%201%5D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20nums%5Bj%20%2B%201%5D%20%3D%20tmp%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20count%20%2B%3D%203%20%20%23%20%E5%85%83%E7%B4%A0%E4%BA%A4%E6%8D%A2%E5%8C%85%E5%90%AB%203%20%E4%B8%AA%E5%8D%95%E5%85%83%E6%93%8D%E4%BD%9C%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20nums%20%3D%20%5Bi%20for%20i%20in%20range%28n,%200,%20-1%29%5D%20%20%23%20%5Bn,%20n-1,%20...,%202,%201%5D%0A%20%20%20%20count%20%3D%20bubble_sort%28nums%29%0A%20%20%20%20print%28%22%E5%B9%B3%E6%96%B9%E9%98%B6%EF%BC%88%E5%86%92%E6%B3%A1%E6%8E%92%E5%BA%8F%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B0%E9%87%8F%20%3D%22,%20count%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen ></a></div></p>
|
||
</details>
|
||
<h3 id="4-exponential-order-o2n">4. Exponential Order <span class="arithmatex">\(O(2^n)\)</span><a class="headerlink" href="#4-exponential-order-o2n" title="Permanent link">¶</a></h3>
|
||
<p>Biological "cell division" is a classic example of exponential order growth: starting with one cell, it becomes two after one division, four after two divisions, and so on, resulting in <span class="arithmatex">\(2^n\)</span> cells after <span class="arithmatex">\(n\)</span> divisions.</p>
|
||
<p>The following image and code simulate the cell division process, with a time complexity of <span class="arithmatex">\(O(2^n)\)</span>:</p>
|
||
<div class="tabbed-set tabbed-alternate" data-tabs="10:12"><input checked="checked" id="__tabbed_10_1" name="__tabbed_10" type="radio" /><input id="__tabbed_10_2" name="__tabbed_10" type="radio" /><input id="__tabbed_10_3" name="__tabbed_10" type="radio" /><input id="__tabbed_10_4" name="__tabbed_10" type="radio" /><input id="__tabbed_10_5" name="__tabbed_10" type="radio" /><input id="__tabbed_10_6" name="__tabbed_10" type="radio" /><input id="__tabbed_10_7" name="__tabbed_10" type="radio" /><input id="__tabbed_10_8" name="__tabbed_10" type="radio" /><input id="__tabbed_10_9" name="__tabbed_10" type="radio" /><input id="__tabbed_10_10" name="__tabbed_10" type="radio" /><input id="__tabbed_10_11" name="__tabbed_10" type="radio" /><input id="__tabbed_10_12" name="__tabbed_10" type="radio" /><div class="tabbed-labels"><label for="__tabbed_10_1">Python</label><label for="__tabbed_10_2">C++</label><label for="__tabbed_10_3">Java</label><label for="__tabbed_10_4">C#</label><label for="__tabbed_10_5">Go</label><label for="__tabbed_10_6">Swift</label><label for="__tabbed_10_7">JS</label><label for="__tabbed_10_8">TS</label><label for="__tabbed_10_9">Dart</label><label for="__tabbed_10_10">Rust</label><label for="__tabbed_10_11">C</label><label for="__tabbed_10_12">Zig</label></div>
|
||
<div class="tabbed-content">
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-108-1" name="__codelineno-108-1" href="#__codelineno-108-1"></a><span class="k">def</span> <span class="nf">exponential</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
|
||
<a id="__codelineno-108-2" name="__codelineno-108-2" href="#__codelineno-108-2"></a><span class="w"> </span><span class="sd">"""指数阶(循环实现)"""</span>
|
||
<a id="__codelineno-108-3" name="__codelineno-108-3" href="#__codelineno-108-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
|
||
<a id="__codelineno-108-4" name="__codelineno-108-4" href="#__codelineno-108-4"></a> <span class="n">base</span> <span class="o">=</span> <span class="mi">1</span>
|
||
<a id="__codelineno-108-5" name="__codelineno-108-5" href="#__codelineno-108-5"></a> <span class="c1"># 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
|
||
<a id="__codelineno-108-6" name="__codelineno-108-6" href="#__codelineno-108-6"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
|
||
<a id="__codelineno-108-7" name="__codelineno-108-7" href="#__codelineno-108-7"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">base</span><span class="p">):</span>
|
||
<a id="__codelineno-108-8" name="__codelineno-108-8" href="#__codelineno-108-8"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
|
||
<a id="__codelineno-108-9" name="__codelineno-108-9" href="#__codelineno-108-9"></a> <span class="n">base</span> <span class="o">*=</span> <span class="mi">2</span>
|
||
<a id="__codelineno-108-10" name="__codelineno-108-10" href="#__codelineno-108-10"></a> <span class="c1"># count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
|
||
<a id="__codelineno-108-11" name="__codelineno-108-11" href="#__codelineno-108-11"></a> <span class="k">return</span> <span class="n">count</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-109-1" name="__codelineno-109-1" href="#__codelineno-109-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
|
||
<a id="__codelineno-109-2" name="__codelineno-109-2" href="#__codelineno-109-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">exponential</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-109-3" name="__codelineno-109-3" href="#__codelineno-109-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-109-4" name="__codelineno-109-4" href="#__codelineno-109-4"></a><span class="w"> </span><span class="c1">// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
|
||
<a id="__codelineno-109-5" name="__codelineno-109-5" href="#__codelineno-109-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-109-6" name="__codelineno-109-6" href="#__codelineno-109-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">base</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-109-7" name="__codelineno-109-7" href="#__codelineno-109-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-109-8" name="__codelineno-109-8" href="#__codelineno-109-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-109-9" name="__codelineno-109-9" href="#__codelineno-109-9"></a><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
|
||
<a id="__codelineno-109-10" name="__codelineno-109-10" href="#__codelineno-109-10"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-109-11" name="__codelineno-109-11" href="#__codelineno-109-11"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
|
||
<a id="__codelineno-109-12" name="__codelineno-109-12" href="#__codelineno-109-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-109-13" name="__codelineno-109-13" href="#__codelineno-109-13"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-110-1" name="__codelineno-110-1" href="#__codelineno-110-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
|
||
<a id="__codelineno-110-2" name="__codelineno-110-2" href="#__codelineno-110-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">exponential</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-110-3" name="__codelineno-110-3" href="#__codelineno-110-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-110-4" name="__codelineno-110-4" href="#__codelineno-110-4"></a><span class="w"> </span><span class="c1">// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
|
||
<a id="__codelineno-110-5" name="__codelineno-110-5" href="#__codelineno-110-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-110-6" name="__codelineno-110-6" href="#__codelineno-110-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">base</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-110-7" name="__codelineno-110-7" href="#__codelineno-110-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-110-8" name="__codelineno-110-8" href="#__codelineno-110-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-110-9" name="__codelineno-110-9" href="#__codelineno-110-9"></a><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
|
||
<a id="__codelineno-110-10" name="__codelineno-110-10" href="#__codelineno-110-10"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-110-11" name="__codelineno-110-11" href="#__codelineno-110-11"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
|
||
<a id="__codelineno-110-12" name="__codelineno-110-12" href="#__codelineno-110-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-110-13" name="__codelineno-110-13" href="#__codelineno-110-13"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-111-1" name="__codelineno-111-1" href="#__codelineno-111-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
|
||
<a id="__codelineno-111-2" name="__codelineno-111-2" href="#__codelineno-111-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">Exponential</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-111-3" name="__codelineno-111-3" href="#__codelineno-111-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">,</span><span class="w"> </span><span class="n">bas</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-111-4" name="__codelineno-111-4" href="#__codelineno-111-4"></a><span class="w"> </span><span class="c1">// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
|
||
<a id="__codelineno-111-5" name="__codelineno-111-5" href="#__codelineno-111-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-111-6" name="__codelineno-111-6" href="#__codelineno-111-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">bas</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-111-7" name="__codelineno-111-7" href="#__codelineno-111-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-111-8" name="__codelineno-111-8" href="#__codelineno-111-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-111-9" name="__codelineno-111-9" href="#__codelineno-111-9"></a><span class="w"> </span><span class="n">bas</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="m">2</span><span class="p">;</span>
|
||
<a id="__codelineno-111-10" name="__codelineno-111-10" href="#__codelineno-111-10"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-111-11" name="__codelineno-111-11" href="#__codelineno-111-11"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
|
||
<a id="__codelineno-111-12" name="__codelineno-111-12" href="#__codelineno-111-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-111-13" name="__codelineno-111-13" href="#__codelineno-111-13"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-112-1" name="__codelineno-112-1" href="#__codelineno-112-1"></a><span class="cm">/* 指数阶(循环实现)*/</span>
|
||
<a id="__codelineno-112-2" name="__codelineno-112-2" href="#__codelineno-112-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">exponential</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-112-3" name="__codelineno-112-3" href="#__codelineno-112-3"></a><span class="w"> </span><span class="nx">count</span><span class="p">,</span><span class="w"> </span><span class="nx">base</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="mi">1</span>
|
||
<a id="__codelineno-112-4" name="__codelineno-112-4" href="#__codelineno-112-4"></a><span class="w"> </span><span class="c1">// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
|
||
<a id="__codelineno-112-5" name="__codelineno-112-5" href="#__codelineno-112-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-112-6" name="__codelineno-112-6" href="#__codelineno-112-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="p"><</span><span class="w"> </span><span class="nx">base</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-112-7" name="__codelineno-112-7" href="#__codelineno-112-7"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span>
|
||
<a id="__codelineno-112-8" name="__codelineno-112-8" href="#__codelineno-112-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-112-9" name="__codelineno-112-9" href="#__codelineno-112-9"></a><span class="w"> </span><span class="nx">base</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mi">2</span>
|
||
<a id="__codelineno-112-10" name="__codelineno-112-10" href="#__codelineno-112-10"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-112-11" name="__codelineno-112-11" href="#__codelineno-112-11"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
|
||
<a id="__codelineno-112-12" name="__codelineno-112-12" href="#__codelineno-112-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
|
||
<a id="__codelineno-112-13" name="__codelineno-112-13" href="#__codelineno-112-13"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-113-1" name="__codelineno-113-1" href="#__codelineno-113-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
|
||
<a id="__codelineno-113-2" name="__codelineno-113-2" href="#__codelineno-113-2"></a><span class="kd">func</span> <span class="nf">exponential</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-></span> <span class="nb">Int</span> <span class="p">{</span>
|
||
<a id="__codelineno-113-3" name="__codelineno-113-3" href="#__codelineno-113-3"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span>
|
||
<a id="__codelineno-113-4" name="__codelineno-113-4" href="#__codelineno-113-4"></a> <span class="kd">var</span> <span class="nv">base</span> <span class="p">=</span> <span class="mi">1</span>
|
||
<a id="__codelineno-113-5" name="__codelineno-113-5" href="#__codelineno-113-5"></a> <span class="c1">// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
|
||
<a id="__codelineno-113-6" name="__codelineno-113-6" href="#__codelineno-113-6"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o"><</span> <span class="n">n</span> <span class="p">{</span>
|
||
<a id="__codelineno-113-7" name="__codelineno-113-7" href="#__codelineno-113-7"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o"><</span> <span class="n">base</span> <span class="p">{</span>
|
||
<a id="__codelineno-113-8" name="__codelineno-113-8" href="#__codelineno-113-8"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">1</span>
|
||
<a id="__codelineno-113-9" name="__codelineno-113-9" href="#__codelineno-113-9"></a> <span class="p">}</span>
|
||
<a id="__codelineno-113-10" name="__codelineno-113-10" href="#__codelineno-113-10"></a> <span class="n">base</span> <span class="o">*=</span> <span class="mi">2</span>
|
||
<a id="__codelineno-113-11" name="__codelineno-113-11" href="#__codelineno-113-11"></a> <span class="p">}</span>
|
||
<a id="__codelineno-113-12" name="__codelineno-113-12" href="#__codelineno-113-12"></a> <span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
|
||
<a id="__codelineno-113-13" name="__codelineno-113-13" href="#__codelineno-113-13"></a> <span class="k">return</span> <span class="bp">count</span>
|
||
<a id="__codelineno-113-14" name="__codelineno-113-14" href="#__codelineno-113-14"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-114-1" name="__codelineno-114-1" href="#__codelineno-114-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
|
||
<a id="__codelineno-114-2" name="__codelineno-114-2" href="#__codelineno-114-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">exponential</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-114-3" name="__codelineno-114-3" href="#__codelineno-114-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">,</span>
|
||
<a id="__codelineno-114-4" name="__codelineno-114-4" href="#__codelineno-114-4"></a><span class="w"> </span><span class="nx">base</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-114-5" name="__codelineno-114-5" href="#__codelineno-114-5"></a><span class="w"> </span><span class="c1">// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
|
||
<a id="__codelineno-114-6" name="__codelineno-114-6" href="#__codelineno-114-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-114-7" name="__codelineno-114-7" href="#__codelineno-114-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">base</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-114-8" name="__codelineno-114-8" href="#__codelineno-114-8"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-114-9" name="__codelineno-114-9" href="#__codelineno-114-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-114-10" name="__codelineno-114-10" href="#__codelineno-114-10"></a><span class="w"> </span><span class="nx">base</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span>
|
||
<a id="__codelineno-114-11" name="__codelineno-114-11" href="#__codelineno-114-11"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-114-12" name="__codelineno-114-12" href="#__codelineno-114-12"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
|
||
<a id="__codelineno-114-13" name="__codelineno-114-13" href="#__codelineno-114-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
|
||
<a id="__codelineno-114-14" name="__codelineno-114-14" href="#__codelineno-114-14"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-115-1" name="__codelineno-115-1" href="#__codelineno-115-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
|
||
<a id="__codelineno-115-2" name="__codelineno-115-2" href="#__codelineno-115-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">exponential</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-115-3" name="__codelineno-115-3" href="#__codelineno-115-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">,</span>
|
||
<a id="__codelineno-115-4" name="__codelineno-115-4" href="#__codelineno-115-4"></a><span class="w"> </span><span class="nx">base</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-115-5" name="__codelineno-115-5" href="#__codelineno-115-5"></a><span class="w"> </span><span class="c1">// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
|
||
<a id="__codelineno-115-6" name="__codelineno-115-6" href="#__codelineno-115-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-115-7" name="__codelineno-115-7" href="#__codelineno-115-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">base</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-115-8" name="__codelineno-115-8" href="#__codelineno-115-8"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-115-9" name="__codelineno-115-9" href="#__codelineno-115-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-115-10" name="__codelineno-115-10" href="#__codelineno-115-10"></a><span class="w"> </span><span class="nx">base</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span>
|
||
<a id="__codelineno-115-11" name="__codelineno-115-11" href="#__codelineno-115-11"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-115-12" name="__codelineno-115-12" href="#__codelineno-115-12"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
|
||
<a id="__codelineno-115-13" name="__codelineno-115-13" href="#__codelineno-115-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
|
||
<a id="__codelineno-115-14" name="__codelineno-115-14" href="#__codelineno-115-14"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.dart</span><pre><span></span><code><a id="__codelineno-116-1" name="__codelineno-116-1" href="#__codelineno-116-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
|
||
<a id="__codelineno-116-2" name="__codelineno-116-2" href="#__codelineno-116-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">exponential</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-116-3" name="__codelineno-116-3" href="#__codelineno-116-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">,</span><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-116-4" name="__codelineno-116-4" href="#__codelineno-116-4"></a><span class="w"> </span><span class="c1">// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
|
||
<a id="__codelineno-116-5" name="__codelineno-116-5" href="#__codelineno-116-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">var</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-116-6" name="__codelineno-116-6" href="#__codelineno-116-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">var</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">base</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-116-7" name="__codelineno-116-7" href="#__codelineno-116-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-116-8" name="__codelineno-116-8" href="#__codelineno-116-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-116-9" name="__codelineno-116-9" href="#__codelineno-116-9"></a><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="m">2</span><span class="p">;</span>
|
||
<a id="__codelineno-116-10" name="__codelineno-116-10" href="#__codelineno-116-10"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-116-11" name="__codelineno-116-11" href="#__codelineno-116-11"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
|
||
<a id="__codelineno-116-12" name="__codelineno-116-12" href="#__codelineno-116-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-116-13" name="__codelineno-116-13" href="#__codelineno-116-13"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.rs</span><pre><span></span><code><a id="__codelineno-117-1" name="__codelineno-117-1" href="#__codelineno-117-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
|
||
<a id="__codelineno-117-2" name="__codelineno-117-2" href="#__codelineno-117-2"></a><span class="k">fn</span> <span class="nf">exponential</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span>-> <span class="kt">i32</span> <span class="p">{</span>
|
||
<a id="__codelineno-117-3" name="__codelineno-117-3" href="#__codelineno-117-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-117-4" name="__codelineno-117-4" href="#__codelineno-117-4"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-117-5" name="__codelineno-117-5" href="#__codelineno-117-5"></a><span class="w"> </span><span class="c1">// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
|
||
<a id="__codelineno-117-6" name="__codelineno-117-6" href="#__codelineno-117-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-117-7" name="__codelineno-117-7" href="#__codelineno-117-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">base</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-117-8" name="__codelineno-117-8" href="#__codelineno-117-8"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span>
|
||
<a id="__codelineno-117-9" name="__codelineno-117-9" href="#__codelineno-117-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-117-10" name="__codelineno-117-10" href="#__codelineno-117-10"></a><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
|
||
<a id="__codelineno-117-11" name="__codelineno-117-11" href="#__codelineno-117-11"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-117-12" name="__codelineno-117-12" href="#__codelineno-117-12"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
|
||
<a id="__codelineno-117-13" name="__codelineno-117-13" href="#__codelineno-117-13"></a><span class="w"> </span><span class="n">count</span>
|
||
<a id="__codelineno-117-14" name="__codelineno-117-14" href="#__codelineno-117-14"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-118-1" name="__codelineno-118-1" href="#__codelineno-118-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
|
||
<a id="__codelineno-118-2" name="__codelineno-118-2" href="#__codelineno-118-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">exponential</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-118-3" name="__codelineno-118-3" href="#__codelineno-118-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-118-4" name="__codelineno-118-4" href="#__codelineno-118-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">bas</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-118-5" name="__codelineno-118-5" href="#__codelineno-118-5"></a><span class="w"> </span><span class="c1">// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
|
||
<a id="__codelineno-118-6" name="__codelineno-118-6" href="#__codelineno-118-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-118-7" name="__codelineno-118-7" href="#__codelineno-118-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">bas</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-118-8" name="__codelineno-118-8" href="#__codelineno-118-8"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-118-9" name="__codelineno-118-9" href="#__codelineno-118-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-118-10" name="__codelineno-118-10" href="#__codelineno-118-10"></a><span class="w"> </span><span class="n">bas</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
|
||
<a id="__codelineno-118-11" name="__codelineno-118-11" href="#__codelineno-118-11"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-118-12" name="__codelineno-118-12" href="#__codelineno-118-12"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
|
||
<a id="__codelineno-118-13" name="__codelineno-118-13" href="#__codelineno-118-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-118-14" name="__codelineno-118-14" href="#__codelineno-118-14"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-119-1" name="__codelineno-119-1" href="#__codelineno-119-1"></a><span class="c1">// 指数阶(循环实现)</span>
|
||
<a id="__codelineno-119-2" name="__codelineno-119-2" href="#__codelineno-119-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">exponential</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-119-3" name="__codelineno-119-3" href="#__codelineno-119-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-119-4" name="__codelineno-119-4" href="#__codelineno-119-4"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">bas</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-119-5" name="__codelineno-119-5" href="#__codelineno-119-5"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">i</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-119-6" name="__codelineno-119-6" href="#__codelineno-119-6"></a><span class="w"> </span><span class="c1">// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
|
||
<a id="__codelineno-119-7" name="__codelineno-119-7" href="#__codelineno-119-7"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-119-8" name="__codelineno-119-8" href="#__codelineno-119-8"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">j</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-119-9" name="__codelineno-119-9" href="#__codelineno-119-9"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">bas</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">j</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-119-10" name="__codelineno-119-10" href="#__codelineno-119-10"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-119-11" name="__codelineno-119-11" href="#__codelineno-119-11"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-119-12" name="__codelineno-119-12" href="#__codelineno-119-12"></a><span class="w"> </span><span class="n">bas</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
|
||
<a id="__codelineno-119-13" name="__codelineno-119-13" href="#__codelineno-119-13"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-119-14" name="__codelineno-119-14" href="#__codelineno-119-14"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
|
||
<a id="__codelineno-119-15" name="__codelineno-119-15" href="#__codelineno-119-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-119-16" name="__codelineno-119-16" href="#__codelineno-119-16"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<details class="pythontutor">
|
||
<summary>Code Visualization</summary>
|
||
<p><div style="height: 531px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20exponential%28n%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%8C%87%E6%95%B0%E9%98%B6%EF%BC%88%E5%BE%AA%E7%8E%AF%E5%AE%9E%E7%8E%B0%EF%BC%89%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20base%20%3D%201%0A%20%20%20%20%23%20%E7%BB%86%E8%83%9E%E6%AF%8F%E8%BD%AE%E4%B8%80%E5%88%86%E4%B8%BA%E4%BA%8C%EF%BC%8C%E5%BD%A2%E6%88%90%E6%95%B0%E5%88%97%201,%202,%204,%208,%20...,%202%5E%28n-1%29%0A%20%20%20%20for%20_%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20for%20_%20in%20range%28base%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20%20%20%20%20base%20*%3D%202%0A%20%20%20%20%23%20count%20%3D%201%20%2B%202%20%2B%204%20%2B%208%20%2B%20..%20%2B%202%5E%28n-1%29%20%3D%202%5En%20-%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20count%20%3D%20exponential%28n%29%0A%20%20%20%20print%28%22%E6%8C%87%E6%95%B0%E9%98%B6%EF%BC%88%E5%BE%AA%E7%8E%AF%E5%AE%9E%E7%8E%B0%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B0%E9%87%8F%20%3D%22,%20count%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20exponential%28n%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%8C%87%E6%95%B0%E9%98%B6%EF%BC%88%E5%BE%AA%E7%8E%AF%E5%AE%9E%E7%8E%B0%EF%BC%89%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20base%20%3D%201%0A%20%20%20%20%23%20%E7%BB%86%E8%83%9E%E6%AF%8F%E8%BD%AE%E4%B8%80%E5%88%86%E4%B8%BA%E4%BA%8C%EF%BC%8C%E5%BD%A2%E6%88%90%E6%95%B0%E5%88%97%201,%202,%204,%208,%20...,%202%5E%28n-1%29%0A%20%20%20%20for%20_%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20for%20_%20in%20range%28base%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20%20%20%20%20base%20*%3D%202%0A%20%20%20%20%23%20count%20%3D%201%20%2B%202%20%2B%204%20%2B%208%20%2B%20..%20%2B%202%5E%28n-1%29%20%3D%202%5En%20-%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20count%20%3D%20exponential%28n%29%0A%20%20%20%20print%28%22%E6%8C%87%E6%95%B0%E9%98%B6%EF%BC%88%E5%BE%AA%E7%8E%AF%E5%AE%9E%E7%8E%B0%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B0%E9%87%8F%20%3D%22,%20count%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen ></a></div></p>
|
||
</details>
|
||
<p><a class="glightbox" href="../time_complexity.assets/time_complexity_exponential.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Exponential Order Time Complexity" class="animation-figure" src="../time_complexity.assets/time_complexity_exponential.png" /></a></p>
|
||
<p align="center"> Figure 2-11 Exponential Order Time Complexity </p>
|
||
|
||
<p>In practice, exponential order often appears in recursive functions. For example, in the code below, it recursively splits into two halves, stopping after <span class="arithmatex">\(n\)</span> divisions:</p>
|
||
<div class="tabbed-set tabbed-alternate" data-tabs="11:12"><input checked="checked" id="__tabbed_11_1" name="__tabbed_11" type="radio" /><input id="__tabbed_11_2" name="__tabbed_11" type="radio" /><input id="__tabbed_11_3" name="__tabbed_11" type="radio" /><input id="__tabbed_11_4" name="__tabbed_11" type="radio" /><input id="__tabbed_11_5" name="__tabbed_11" type="radio" /><input id="__tabbed_11_6" name="__tabbed_11" type="radio" /><input id="__tabbed_11_7" name="__tabbed_11" type="radio" /><input id="__tabbed_11_8" name="__tabbed_11" type="radio" /><input id="__tabbed_11_9" name="__tabbed_11" type="radio" /><input id="__tabbed_11_10" name="__tabbed_11" type="radio" /><input id="__tabbed_11_11" name="__tabbed_11" type="radio" /><input id="__tabbed_11_12" name="__tabbed_11" type="radio" /><div class="tabbed-labels"><label for="__tabbed_11_1">Python</label><label for="__tabbed_11_2">C++</label><label for="__tabbed_11_3">Java</label><label for="__tabbed_11_4">C#</label><label for="__tabbed_11_5">Go</label><label for="__tabbed_11_6">Swift</label><label for="__tabbed_11_7">JS</label><label for="__tabbed_11_8">TS</label><label for="__tabbed_11_9">Dart</label><label for="__tabbed_11_10">Rust</label><label for="__tabbed_11_11">C</label><label for="__tabbed_11_12">Zig</label></div>
|
||
<div class="tabbed-content">
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-120-1" name="__codelineno-120-1" href="#__codelineno-120-1"></a><span class="k">def</span> <span class="nf">exp_recur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
|
||
<a id="__codelineno-120-2" name="__codelineno-120-2" href="#__codelineno-120-2"></a><span class="w"> </span><span class="sd">"""指数阶(递归实现)"""</span>
|
||
<a id="__codelineno-120-3" name="__codelineno-120-3" href="#__codelineno-120-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
|
||
<a id="__codelineno-120-4" name="__codelineno-120-4" href="#__codelineno-120-4"></a> <span class="k">return</span> <span class="mi">1</span>
|
||
<a id="__codelineno-120-5" name="__codelineno-120-5" href="#__codelineno-120-5"></a> <span class="k">return</span> <span class="n">exp_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="n">exp_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-121-1" name="__codelineno-121-1" href="#__codelineno-121-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
|
||
<a id="__codelineno-121-2" name="__codelineno-121-2" href="#__codelineno-121-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">expRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-121-3" name="__codelineno-121-3" href="#__codelineno-121-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
|
||
<a id="__codelineno-121-4" name="__codelineno-121-4" href="#__codelineno-121-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-121-5" name="__codelineno-121-5" href="#__codelineno-121-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-121-6" name="__codelineno-121-6" href="#__codelineno-121-6"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-122-1" name="__codelineno-122-1" href="#__codelineno-122-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
|
||
<a id="__codelineno-122-2" name="__codelineno-122-2" href="#__codelineno-122-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">expRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-122-3" name="__codelineno-122-3" href="#__codelineno-122-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
|
||
<a id="__codelineno-122-4" name="__codelineno-122-4" href="#__codelineno-122-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-122-5" name="__codelineno-122-5" href="#__codelineno-122-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-122-6" name="__codelineno-122-6" href="#__codelineno-122-6"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-123-1" name="__codelineno-123-1" href="#__codelineno-123-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
|
||
<a id="__codelineno-123-2" name="__codelineno-123-2" href="#__codelineno-123-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">ExpRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-123-3" name="__codelineno-123-3" href="#__codelineno-123-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-123-4" name="__codelineno-123-4" href="#__codelineno-123-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nf">ExpRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">ExpRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-123-5" name="__codelineno-123-5" href="#__codelineno-123-5"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-124-1" name="__codelineno-124-1" href="#__codelineno-124-1"></a><span class="cm">/* 指数阶(递归实现)*/</span>
|
||
<a id="__codelineno-124-2" name="__codelineno-124-2" href="#__codelineno-124-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-124-3" name="__codelineno-124-3" href="#__codelineno-124-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-124-4" name="__codelineno-124-4" href="#__codelineno-124-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span>
|
||
<a id="__codelineno-124-5" name="__codelineno-124-5" href="#__codelineno-124-5"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-124-6" name="__codelineno-124-6" href="#__codelineno-124-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span>
|
||
<a id="__codelineno-124-7" name="__codelineno-124-7" href="#__codelineno-124-7"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-125-1" name="__codelineno-125-1" href="#__codelineno-125-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
|
||
<a id="__codelineno-125-2" name="__codelineno-125-2" href="#__codelineno-125-2"></a><span class="kd">func</span> <span class="nf">expRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-></span> <span class="nb">Int</span> <span class="p">{</span>
|
||
<a id="__codelineno-125-3" name="__codelineno-125-3" href="#__codelineno-125-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="p">==</span> <span class="mi">1</span> <span class="p">{</span>
|
||
<a id="__codelineno-125-4" name="__codelineno-125-4" href="#__codelineno-125-4"></a> <span class="k">return</span> <span class="mi">1</span>
|
||
<a id="__codelineno-125-5" name="__codelineno-125-5" href="#__codelineno-125-5"></a> <span class="p">}</span>
|
||
<a id="__codelineno-125-6" name="__codelineno-125-6" href="#__codelineno-125-6"></a> <span class="k">return</span> <span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span>
|
||
<a id="__codelineno-125-7" name="__codelineno-125-7" href="#__codelineno-125-7"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-126-1" name="__codelineno-126-1" href="#__codelineno-126-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
|
||
<a id="__codelineno-126-2" name="__codelineno-126-2" href="#__codelineno-126-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-126-3" name="__codelineno-126-3" href="#__codelineno-126-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-126-4" name="__codelineno-126-4" href="#__codelineno-126-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-126-5" name="__codelineno-126-5" href="#__codelineno-126-5"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-127-1" name="__codelineno-127-1" href="#__codelineno-127-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
|
||
<a id="__codelineno-127-2" name="__codelineno-127-2" href="#__codelineno-127-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-127-3" name="__codelineno-127-3" href="#__codelineno-127-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-127-4" name="__codelineno-127-4" href="#__codelineno-127-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-127-5" name="__codelineno-127-5" href="#__codelineno-127-5"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.dart</span><pre><span></span><code><a id="__codelineno-128-1" name="__codelineno-128-1" href="#__codelineno-128-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
|
||
<a id="__codelineno-128-2" name="__codelineno-128-2" href="#__codelineno-128-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-128-3" name="__codelineno-128-3" href="#__codelineno-128-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-128-4" name="__codelineno-128-4" href="#__codelineno-128-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-128-5" name="__codelineno-128-5" href="#__codelineno-128-5"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.rs</span><pre><span></span><code><a id="__codelineno-129-1" name="__codelineno-129-1" href="#__codelineno-129-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
|
||
<a id="__codelineno-129-2" name="__codelineno-129-2" href="#__codelineno-129-2"></a><span class="k">fn</span> <span class="nf">exp_recur</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span>-> <span class="kt">i32</span> <span class="p">{</span>
|
||
<a id="__codelineno-129-3" name="__codelineno-129-3" href="#__codelineno-129-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-129-4" name="__codelineno-129-4" href="#__codelineno-129-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-129-5" name="__codelineno-129-5" href="#__codelineno-129-5"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-129-6" name="__codelineno-129-6" href="#__codelineno-129-6"></a><span class="w"> </span><span class="n">exp_recur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">exp_recur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span>
|
||
<a id="__codelineno-129-7" name="__codelineno-129-7" href="#__codelineno-129-7"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-130-1" name="__codelineno-130-1" href="#__codelineno-130-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
|
||
<a id="__codelineno-130-2" name="__codelineno-130-2" href="#__codelineno-130-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">expRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-130-3" name="__codelineno-130-3" href="#__codelineno-130-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
|
||
<a id="__codelineno-130-4" name="__codelineno-130-4" href="#__codelineno-130-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-130-5" name="__codelineno-130-5" href="#__codelineno-130-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-130-6" name="__codelineno-130-6" href="#__codelineno-130-6"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-131-1" name="__codelineno-131-1" href="#__codelineno-131-1"></a><span class="c1">// 指数阶(递归实现)</span>
|
||
<a id="__codelineno-131-2" name="__codelineno-131-2" href="#__codelineno-131-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-131-3" name="__codelineno-131-3" href="#__codelineno-131-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-131-4" name="__codelineno-131-4" href="#__codelineno-131-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-131-5" name="__codelineno-131-5" href="#__codelineno-131-5"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<details class="pythontutor">
|
||
<summary>Code Visualization</summary>
|
||
<p><div style="height: 423px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20exp_recur%28n%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%8C%87%E6%95%B0%E9%98%B6%EF%BC%88%E9%80%92%E5%BD%92%E5%AE%9E%E7%8E%B0%EF%BC%89%22%22%22%0A%20%20%20%20if%20n%20%3D%3D%201%3A%0A%20%20%20%20%20%20%20%20return%201%0A%20%20%20%20return%20exp_recur%28n%20-%201%29%20%2B%20exp_recur%28n%20-%201%29%20%2B%201%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%207%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20count%20%3D%20exp_recur%28n%29%0A%20%20%20%20print%28%22%E6%8C%87%E6%95%B0%E9%98%B6%EF%BC%88%E9%80%92%E5%BD%92%E5%AE%9E%E7%8E%B0%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B0%E9%87%8F%20%3D%22,%20count%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20exp_recur%28n%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%8C%87%E6%95%B0%E9%98%B6%EF%BC%88%E9%80%92%E5%BD%92%E5%AE%9E%E7%8E%B0%EF%BC%89%22%22%22%0A%20%20%20%20if%20n%20%3D%3D%201%3A%0A%20%20%20%20%20%20%20%20return%201%0A%20%20%20%20return%20exp_recur%28n%20-%201%29%20%2B%20exp_recur%28n%20-%201%29%20%2B%201%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%207%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20count%20%3D%20exp_recur%28n%29%0A%20%20%20%20print%28%22%E6%8C%87%E6%95%B0%E9%98%B6%EF%BC%88%E9%80%92%E5%BD%92%E5%AE%9E%E7%8E%B0%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B0%E9%87%8F%20%3D%22,%20count%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen ></a></div></p>
|
||
</details>
|
||
<p>Exponential order growth is extremely rapid and is commonly seen in exhaustive search methods (brute force, backtracking, etc.). For large-scale problems, exponential order is unacceptable, often requiring dynamic programming or greedy algorithms as solutions.</p>
|
||
<h3 id="5-logarithmic-order-olog-n">5. Logarithmic Order <span class="arithmatex">\(O(\log n)\)</span><a class="headerlink" href="#5-logarithmic-order-olog-n" title="Permanent link">¶</a></h3>
|
||
<p>In contrast to exponential order, logarithmic order reflects situations where "the size is halved each round." Given an input data size <span class="arithmatex">\(n\)</span>, since the size is halved each round, the number of iterations is <span class="arithmatex">\(\log_2 n\)</span>, the inverse function of <span class="arithmatex">\(2^n\)</span>.</p>
|
||
<p>The following image and code simulate the "halving each round" process, with a time complexity of <span class="arithmatex">\(O(\log_2 n)\)</span>, commonly abbreviated as <span class="arithmatex">\(O(\log n)\)</span>:</p>
|
||
<div class="tabbed-set tabbed-alternate" data-tabs="12:12"><input checked="checked" id="__tabbed_12_1" name="__tabbed_12" type="radio" /><input id="__tabbed_12_2" name="__tabbed_12" type="radio" /><input id="__tabbed_12_3" name="__tabbed_12" type="radio" /><input id="__tabbed_12_4" name="__tabbed_12" type="radio" /><input id="__tabbed_12_5" name="__tabbed_12" type="radio" /><input id="__tabbed_12_6" name="__tabbed_12" type="radio" /><input id="__tabbed_12_7" name="__tabbed_12" type="radio" /><input id="__tabbed_12_8" name="__tabbed_12" type="radio" /><input id="__tabbed_12_9" name="__tabbed_12" type="radio" /><input id="__tabbed_12_10" name="__tabbed_12" type="radio" /><input id="__tabbed_12_11" name="__tabbed_12" type="radio" /><input id="__tabbed_12_12" name="__tabbed_12" type="radio" /><div class="tabbed-labels"><label for="__tabbed_12_1">Python</label><label for="__tabbed_12_2">C++</label><label for="__tabbed_12_3">Java</label><label for="__tabbed_12_4">C#</label><label for="__tabbed_12_5">Go</label><label for="__tabbed_12_6">Swift</label><label for="__tabbed_12_7">JS</label><label for="__tabbed_12_8">TS</label><label for="__tabbed_12_9">Dart</label><label for="__tabbed_12_10">Rust</label><label for="__tabbed_12_11">C</label><label for="__tabbed_12_12">Zig</label></div>
|
||
<div class="tabbed-content">
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-132-1" name="__codelineno-132-1" href="#__codelineno-132-1"></a><span class="k">def</span> <span class="nf">logarithmic</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
|
||
<a id="__codelineno-132-2" name="__codelineno-132-2" href="#__codelineno-132-2"></a><span class="w"> </span><span class="sd">"""对数阶(循环实现)"""</span>
|
||
<a id="__codelineno-132-3" name="__codelineno-132-3" href="#__codelineno-132-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
|
||
<a id="__codelineno-132-4" name="__codelineno-132-4" href="#__codelineno-132-4"></a> <span class="k">while</span> <span class="n">n</span> <span class="o">></span> <span class="mi">1</span><span class="p">:</span>
|
||
<a id="__codelineno-132-5" name="__codelineno-132-5" href="#__codelineno-132-5"></a> <span class="n">n</span> <span class="o">=</span> <span class="n">n</span> <span class="o">/</span> <span class="mi">2</span>
|
||
<a id="__codelineno-132-6" name="__codelineno-132-6" href="#__codelineno-132-6"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
|
||
<a id="__codelineno-132-7" name="__codelineno-132-7" href="#__codelineno-132-7"></a> <span class="k">return</span> <span class="n">count</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-133-1" name="__codelineno-133-1" href="#__codelineno-133-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
|
||
<a id="__codelineno-133-2" name="__codelineno-133-2" href="#__codelineno-133-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logarithmic</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-133-3" name="__codelineno-133-3" href="#__codelineno-133-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-133-4" name="__codelineno-133-4" href="#__codelineno-133-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-133-5" name="__codelineno-133-5" href="#__codelineno-133-5"></a><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
|
||
<a id="__codelineno-133-6" name="__codelineno-133-6" href="#__codelineno-133-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-133-7" name="__codelineno-133-7" href="#__codelineno-133-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-133-8" name="__codelineno-133-8" href="#__codelineno-133-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-133-9" name="__codelineno-133-9" href="#__codelineno-133-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-134-1" name="__codelineno-134-1" href="#__codelineno-134-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
|
||
<a id="__codelineno-134-2" name="__codelineno-134-2" href="#__codelineno-134-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logarithmic</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-134-3" name="__codelineno-134-3" href="#__codelineno-134-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-134-4" name="__codelineno-134-4" href="#__codelineno-134-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-134-5" name="__codelineno-134-5" href="#__codelineno-134-5"></a><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
|
||
<a id="__codelineno-134-6" name="__codelineno-134-6" href="#__codelineno-134-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-134-7" name="__codelineno-134-7" href="#__codelineno-134-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-134-8" name="__codelineno-134-8" href="#__codelineno-134-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-134-9" name="__codelineno-134-9" href="#__codelineno-134-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-135-1" name="__codelineno-135-1" href="#__codelineno-135-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
|
||
<a id="__codelineno-135-2" name="__codelineno-135-2" href="#__codelineno-135-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">Logarithmic</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-135-3" name="__codelineno-135-3" href="#__codelineno-135-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
|
||
<a id="__codelineno-135-4" name="__codelineno-135-4" href="#__codelineno-135-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-135-5" name="__codelineno-135-5" href="#__codelineno-135-5"></a><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">/=</span><span class="w"> </span><span class="m">2</span><span class="p">;</span>
|
||
<a id="__codelineno-135-6" name="__codelineno-135-6" href="#__codelineno-135-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-135-7" name="__codelineno-135-7" href="#__codelineno-135-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-135-8" name="__codelineno-135-8" href="#__codelineno-135-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-135-9" name="__codelineno-135-9" href="#__codelineno-135-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-136-1" name="__codelineno-136-1" href="#__codelineno-136-1"></a><span class="cm">/* 对数阶(循环实现)*/</span>
|
||
<a id="__codelineno-136-2" name="__codelineno-136-2" href="#__codelineno-136-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">logarithmic</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">float64</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-136-3" name="__codelineno-136-3" href="#__codelineno-136-3"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span>
|
||
<a id="__codelineno-136-4" name="__codelineno-136-4" href="#__codelineno-136-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="p">></span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-136-5" name="__codelineno-136-5" href="#__codelineno-136-5"></a><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span>
|
||
<a id="__codelineno-136-6" name="__codelineno-136-6" href="#__codelineno-136-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span>
|
||
<a id="__codelineno-136-7" name="__codelineno-136-7" href="#__codelineno-136-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-136-8" name="__codelineno-136-8" href="#__codelineno-136-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
|
||
<a id="__codelineno-136-9" name="__codelineno-136-9" href="#__codelineno-136-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-137-1" name="__codelineno-137-1" href="#__codelineno-137-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
|
||
<a id="__codelineno-137-2" name="__codelineno-137-2" href="#__codelineno-137-2"></a><span class="kd">func</span> <span class="nf">logarithmic</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Double</span><span class="p">)</span> <span class="p">-></span> <span class="nb">Int</span> <span class="p">{</span>
|
||
<a id="__codelineno-137-3" name="__codelineno-137-3" href="#__codelineno-137-3"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span>
|
||
<a id="__codelineno-137-4" name="__codelineno-137-4" href="#__codelineno-137-4"></a> <span class="kd">var</span> <span class="nv">n</span> <span class="p">=</span> <span class="n">n</span>
|
||
<a id="__codelineno-137-5" name="__codelineno-137-5" href="#__codelineno-137-5"></a> <span class="k">while</span> <span class="n">n</span> <span class="o">></span> <span class="mi">1</span> <span class="p">{</span>
|
||
<a id="__codelineno-137-6" name="__codelineno-137-6" href="#__codelineno-137-6"></a> <span class="n">n</span> <span class="p">=</span> <span class="n">n</span> <span class="o">/</span> <span class="mi">2</span>
|
||
<a id="__codelineno-137-7" name="__codelineno-137-7" href="#__codelineno-137-7"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">1</span>
|
||
<a id="__codelineno-137-8" name="__codelineno-137-8" href="#__codelineno-137-8"></a> <span class="p">}</span>
|
||
<a id="__codelineno-137-9" name="__codelineno-137-9" href="#__codelineno-137-9"></a> <span class="k">return</span> <span class="bp">count</span>
|
||
<a id="__codelineno-137-10" name="__codelineno-137-10" href="#__codelineno-137-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-138-1" name="__codelineno-138-1" href="#__codelineno-138-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
|
||
<a id="__codelineno-138-2" name="__codelineno-138-2" href="#__codelineno-138-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">logarithmic</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-138-3" name="__codelineno-138-3" href="#__codelineno-138-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||
<a id="__codelineno-138-4" name="__codelineno-138-4" href="#__codelineno-138-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-138-5" name="__codelineno-138-5" href="#__codelineno-138-5"></a><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span>
|
||
<a id="__codelineno-138-6" name="__codelineno-138-6" href="#__codelineno-138-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-138-7" name="__codelineno-138-7" href="#__codelineno-138-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-138-8" name="__codelineno-138-8" href="#__codelineno-138-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
|
||
<a id="__codelineno-138-9" name="__codelineno-138-9" href="#__codelineno-138-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-139-1" name="__codelineno-139-1" href="#__codelineno-139-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
|
||
<a id="__codelineno-139-2" name="__codelineno-139-2" href="#__codelineno-139-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">logarithmic</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-139-3" name="__codelineno-139-3" href="#__codelineno-139-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||
<a id="__codelineno-139-4" name="__codelineno-139-4" href="#__codelineno-139-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-139-5" name="__codelineno-139-5" href="#__codelineno-139-5"></a><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span>
|
||
<a id="__codelineno-139-6" name="__codelineno-139-6" href="#__codelineno-139-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-139-7" name="__codelineno-139-7" href="#__codelineno-139-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-139-8" name="__codelineno-139-8" href="#__codelineno-139-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
|
||
<a id="__codelineno-139-9" name="__codelineno-139-9" href="#__codelineno-139-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.dart</span><pre><span></span><code><a id="__codelineno-140-1" name="__codelineno-140-1" href="#__codelineno-140-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
|
||
<a id="__codelineno-140-2" name="__codelineno-140-2" href="#__codelineno-140-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">logarithmic</span><span class="p">(</span><span class="kt">num</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-140-3" name="__codelineno-140-3" href="#__codelineno-140-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
|
||
<a id="__codelineno-140-4" name="__codelineno-140-4" href="#__codelineno-140-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-140-5" name="__codelineno-140-5" href="#__codelineno-140-5"></a><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="m">2</span><span class="p">;</span>
|
||
<a id="__codelineno-140-6" name="__codelineno-140-6" href="#__codelineno-140-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-140-7" name="__codelineno-140-7" href="#__codelineno-140-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-140-8" name="__codelineno-140-8" href="#__codelineno-140-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-140-9" name="__codelineno-140-9" href="#__codelineno-140-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.rs</span><pre><span></span><code><a id="__codelineno-141-1" name="__codelineno-141-1" href="#__codelineno-141-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
|
||
<a id="__codelineno-141-2" name="__codelineno-141-2" href="#__codelineno-141-2"></a><span class="k">fn</span> <span class="nf">logarithmic</span><span class="p">(</span><span class="k">mut</span><span class="w"> </span><span class="n">n</span>: <span class="kt">f32</span><span class="p">)</span><span class="w"> </span>-> <span class="kt">i32</span> <span class="p">{</span>
|
||
<a id="__codelineno-141-3" name="__codelineno-141-3" href="#__codelineno-141-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-141-4" name="__codelineno-141-4" href="#__codelineno-141-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="mf">1.0</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-141-5" name="__codelineno-141-5" href="#__codelineno-141-5"></a><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2.0</span><span class="p">;</span>
|
||
<a id="__codelineno-141-6" name="__codelineno-141-6" href="#__codelineno-141-6"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-141-7" name="__codelineno-141-7" href="#__codelineno-141-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-141-8" name="__codelineno-141-8" href="#__codelineno-141-8"></a><span class="w"> </span><span class="n">count</span>
|
||
<a id="__codelineno-141-9" name="__codelineno-141-9" href="#__codelineno-141-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-142-1" name="__codelineno-142-1" href="#__codelineno-142-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
|
||
<a id="__codelineno-142-2" name="__codelineno-142-2" href="#__codelineno-142-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logarithmic</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-142-3" name="__codelineno-142-3" href="#__codelineno-142-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-142-4" name="__codelineno-142-4" href="#__codelineno-142-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-142-5" name="__codelineno-142-5" href="#__codelineno-142-5"></a><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
|
||
<a id="__codelineno-142-6" name="__codelineno-142-6" href="#__codelineno-142-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-142-7" name="__codelineno-142-7" href="#__codelineno-142-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-142-8" name="__codelineno-142-8" href="#__codelineno-142-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-142-9" name="__codelineno-142-9" href="#__codelineno-142-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-143-1" name="__codelineno-143-1" href="#__codelineno-143-1"></a><span class="c1">// 对数阶(循环实现)</span>
|
||
<a id="__codelineno-143-2" name="__codelineno-143-2" href="#__codelineno-143-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">logarithmic</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">f32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-143-3" name="__codelineno-143-3" href="#__codelineno-143-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-143-4" name="__codelineno-143-4" href="#__codelineno-143-4"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">n_var</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
|
||
<a id="__codelineno-143-5" name="__codelineno-143-5" href="#__codelineno-143-5"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">n_var</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
|
||
<a id="__codelineno-143-6" name="__codelineno-143-6" href="#__codelineno-143-6"></a><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-143-7" name="__codelineno-143-7" href="#__codelineno-143-7"></a><span class="w"> </span><span class="n">n_var</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n_var</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
|
||
<a id="__codelineno-143-8" name="__codelineno-143-8" href="#__codelineno-143-8"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-143-9" name="__codelineno-143-9" href="#__codelineno-143-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-143-10" name="__codelineno-143-10" href="#__codelineno-143-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-143-11" name="__codelineno-143-11" href="#__codelineno-143-11"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<details class="pythontutor">
|
||
<summary>Code Visualization</summary>
|
||
<p><div style="height: 459px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20logarithmic%28n%3A%20float%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%AF%B9%E6%95%B0%E9%98%B6%EF%BC%88%E5%BE%AA%E7%8E%AF%E5%AE%9E%E7%8E%B0%EF%BC%89%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20while%20n%20%3E%201%3A%0A%20%20%20%20%20%20%20%20n%20%3D%20n%20/%202%0A%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20count%20%3D%20logarithmic%28n%29%0A%20%20%20%20print%28%22%E5%AF%B9%E6%95%B0%E9%98%B6%EF%BC%88%E5%BE%AA%E7%8E%AF%E5%AE%9E%E7%8E%B0%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B0%E9%87%8F%20%3D%22,%20count%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20logarithmic%28n%3A%20float%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%AF%B9%E6%95%B0%E9%98%B6%EF%BC%88%E5%BE%AA%E7%8E%AF%E5%AE%9E%E7%8E%B0%EF%BC%89%22%22%22%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20while%20n%20%3E%201%3A%0A%20%20%20%20%20%20%20%20n%20%3D%20n%20/%202%0A%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20count%20%3D%20logarithmic%28n%29%0A%20%20%20%20print%28%22%E5%AF%B9%E6%95%B0%E9%98%B6%EF%BC%88%E5%BE%AA%E7%8E%AF%E5%AE%9E%E7%8E%B0%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B0%E9%87%8F%20%3D%22,%20count%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen ></a></div></p>
|
||
</details>
|
||
<p><a class="glightbox" href="../time_complexity.assets/time_complexity_logarithmic.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Logarithmic Order Time Complexity" class="animation-figure" src="../time_complexity.assets/time_complexity_logarithmic.png" /></a></p>
|
||
<p align="center"> Figure 2-12 Logarithmic Order Time Complexity </p>
|
||
|
||
<p>Like exponential order, logarithmic order also frequently appears in recursive functions. The code below forms a recursive tree of height <span class="arithmatex">\(\log_2 n\)</span>:</p>
|
||
<div class="tabbed-set tabbed-alternate" data-tabs="13:12"><input checked="checked" id="__tabbed_13_1" name="__tabbed_13" type="radio" /><input id="__tabbed_13_2" name="__tabbed_13" type="radio" /><input id="__tabbed_13_3" name="__tabbed_13" type="radio" /><input id="__tabbed_13_4" name="__tabbed_13" type="radio" /><input id="__tabbed_13_5" name="__tabbed_13" type="radio" /><input id="__tabbed_13_6" name="__tabbed_13" type="radio" /><input id="__tabbed_13_7" name="__tabbed_13" type="radio" /><input id="__tabbed_13_8" name="__tabbed_13" type="radio" /><input id="__tabbed_13_9" name="__tabbed_13" type="radio" /><input id="__tabbed_13_10" name="__tabbed_13" type="radio" /><input id="__tabbed_13_11" name="__tabbed_13" type="radio" /><input id="__tabbed_13_12" name="__tabbed_13" type="radio" /><div class="tabbed-labels"><label for="__tabbed_13_1">Python</label><label for="__tabbed_13_2">C++</label><label for="__tabbed_13_3">Java</label><label for="__tabbed_13_4">C#</label><label for="__tabbed_13_5">Go</label><label for="__tabbed_13_6">Swift</label><label for="__tabbed_13_7">JS</label><label for="__tabbed_13_8">TS</label><label for="__tabbed_13_9">Dart</label><label for="__tabbed_13_10">Rust</label><label for="__tabbed_13_11">C</label><label for="__tabbed_13_12">Zig</label></div>
|
||
<div class="tabbed-content">
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-144-1" name="__codelineno-144-1" href="#__codelineno-144-1"></a><span class="k">def</span> <span class="nf">log_recur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
|
||
<a id="__codelineno-144-2" name="__codelineno-144-2" href="#__codelineno-144-2"></a><span class="w"> </span><span class="sd">"""对数阶(递归实现)"""</span>
|
||
<a id="__codelineno-144-3" name="__codelineno-144-3" href="#__codelineno-144-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o"><=</span> <span class="mi">1</span><span class="p">:</span>
|
||
<a id="__codelineno-144-4" name="__codelineno-144-4" href="#__codelineno-144-4"></a> <span class="k">return</span> <span class="mi">0</span>
|
||
<a id="__codelineno-144-5" name="__codelineno-144-5" href="#__codelineno-144-5"></a> <span class="k">return</span> <span class="n">log_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-145-1" name="__codelineno-145-1" href="#__codelineno-145-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
|
||
<a id="__codelineno-145-2" name="__codelineno-145-2" href="#__codelineno-145-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-145-3" name="__codelineno-145-3" href="#__codelineno-145-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
|
||
<a id="__codelineno-145-4" name="__codelineno-145-4" href="#__codelineno-145-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-145-5" name="__codelineno-145-5" href="#__codelineno-145-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">logRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-145-6" name="__codelineno-145-6" href="#__codelineno-145-6"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-146-1" name="__codelineno-146-1" href="#__codelineno-146-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
|
||
<a id="__codelineno-146-2" name="__codelineno-146-2" href="#__codelineno-146-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-146-3" name="__codelineno-146-3" href="#__codelineno-146-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
|
||
<a id="__codelineno-146-4" name="__codelineno-146-4" href="#__codelineno-146-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-146-5" name="__codelineno-146-5" href="#__codelineno-146-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">logRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-146-6" name="__codelineno-146-6" href="#__codelineno-146-6"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-147-1" name="__codelineno-147-1" href="#__codelineno-147-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
|
||
<a id="__codelineno-147-2" name="__codelineno-147-2" href="#__codelineno-147-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">LogRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-147-3" name="__codelineno-147-3" href="#__codelineno-147-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
|
||
<a id="__codelineno-147-4" name="__codelineno-147-4" href="#__codelineno-147-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nf">LogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="m">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-147-5" name="__codelineno-147-5" href="#__codelineno-147-5"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-148-1" name="__codelineno-148-1" href="#__codelineno-148-1"></a><span class="cm">/* 对数阶(递归实现)*/</span>
|
||
<a id="__codelineno-148-2" name="__codelineno-148-2" href="#__codelineno-148-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">logRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">float64</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-148-3" name="__codelineno-148-3" href="#__codelineno-148-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-148-4" name="__codelineno-148-4" href="#__codelineno-148-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span>
|
||
<a id="__codelineno-148-5" name="__codelineno-148-5" href="#__codelineno-148-5"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-148-6" name="__codelineno-148-6" href="#__codelineno-148-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">logRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">/</span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span>
|
||
<a id="__codelineno-148-7" name="__codelineno-148-7" href="#__codelineno-148-7"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-149-1" name="__codelineno-149-1" href="#__codelineno-149-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
|
||
<a id="__codelineno-149-2" name="__codelineno-149-2" href="#__codelineno-149-2"></a><span class="kd">func</span> <span class="nf">logRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Double</span><span class="p">)</span> <span class="p">-></span> <span class="nb">Int</span> <span class="p">{</span>
|
||
<a id="__codelineno-149-3" name="__codelineno-149-3" href="#__codelineno-149-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o"><=</span> <span class="mi">1</span> <span class="p">{</span>
|
||
<a id="__codelineno-149-4" name="__codelineno-149-4" href="#__codelineno-149-4"></a> <span class="k">return</span> <span class="mi">0</span>
|
||
<a id="__codelineno-149-5" name="__codelineno-149-5" href="#__codelineno-149-5"></a> <span class="p">}</span>
|
||
<a id="__codelineno-149-6" name="__codelineno-149-6" href="#__codelineno-149-6"></a> <span class="k">return</span> <span class="n">logRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="n">n</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span>
|
||
<a id="__codelineno-149-7" name="__codelineno-149-7" href="#__codelineno-149-7"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-150-1" name="__codelineno-150-1" href="#__codelineno-150-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
|
||
<a id="__codelineno-150-2" name="__codelineno-150-2" href="#__codelineno-150-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">logRecur</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-150-3" name="__codelineno-150-3" href="#__codelineno-150-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||
<a id="__codelineno-150-4" name="__codelineno-150-4" href="#__codelineno-150-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">logRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-150-5" name="__codelineno-150-5" href="#__codelineno-150-5"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-151-1" name="__codelineno-151-1" href="#__codelineno-151-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
|
||
<a id="__codelineno-151-2" name="__codelineno-151-2" href="#__codelineno-151-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">logRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-151-3" name="__codelineno-151-3" href="#__codelineno-151-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||
<a id="__codelineno-151-4" name="__codelineno-151-4" href="#__codelineno-151-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">logRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-151-5" name="__codelineno-151-5" href="#__codelineno-151-5"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.dart</span><pre><span></span><code><a id="__codelineno-152-1" name="__codelineno-152-1" href="#__codelineno-152-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
|
||
<a id="__codelineno-152-2" name="__codelineno-152-2" href="#__codelineno-152-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">logRecur</span><span class="p">(</span><span class="kt">num</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-152-3" name="__codelineno-152-3" href="#__codelineno-152-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
|
||
<a id="__codelineno-152-4" name="__codelineno-152-4" href="#__codelineno-152-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">logRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="m">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-152-5" name="__codelineno-152-5" href="#__codelineno-152-5"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.rs</span><pre><span></span><code><a id="__codelineno-153-1" name="__codelineno-153-1" href="#__codelineno-153-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
|
||
<a id="__codelineno-153-2" name="__codelineno-153-2" href="#__codelineno-153-2"></a><span class="k">fn</span> <span class="nf">log_recur</span><span class="p">(</span><span class="n">n</span>: <span class="kt">f32</span><span class="p">)</span><span class="w"> </span>-> <span class="kt">i32</span> <span class="p">{</span>
|
||
<a id="__codelineno-153-3" name="__codelineno-153-3" href="#__codelineno-153-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="mf">1.0</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-153-4" name="__codelineno-153-4" href="#__codelineno-153-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-153-5" name="__codelineno-153-5" href="#__codelineno-153-5"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-153-6" name="__codelineno-153-6" href="#__codelineno-153-6"></a><span class="w"> </span><span class="n">log_recur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2.0</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span>
|
||
<a id="__codelineno-153-7" name="__codelineno-153-7" href="#__codelineno-153-7"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-154-1" name="__codelineno-154-1" href="#__codelineno-154-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
|
||
<a id="__codelineno-154-2" name="__codelineno-154-2" href="#__codelineno-154-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-154-3" name="__codelineno-154-3" href="#__codelineno-154-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
|
||
<a id="__codelineno-154-4" name="__codelineno-154-4" href="#__codelineno-154-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-154-5" name="__codelineno-154-5" href="#__codelineno-154-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">logRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-154-6" name="__codelineno-154-6" href="#__codelineno-154-6"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-155-1" name="__codelineno-155-1" href="#__codelineno-155-1"></a><span class="c1">// 对数阶(递归实现)</span>
|
||
<a id="__codelineno-155-2" name="__codelineno-155-2" href="#__codelineno-155-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">logRecur</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">f32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-155-3" name="__codelineno-155-3" href="#__codelineno-155-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-155-4" name="__codelineno-155-4" href="#__codelineno-155-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">logRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-155-5" name="__codelineno-155-5" href="#__codelineno-155-5"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<details class="pythontutor">
|
||
<summary>Code Visualization</summary>
|
||
<p><div style="height: 423px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20log_recur%28n%3A%20float%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%AF%B9%E6%95%B0%E9%98%B6%EF%BC%88%E9%80%92%E5%BD%92%E5%AE%9E%E7%8E%B0%EF%BC%89%22%22%22%0A%20%20%20%20if%20n%20%3C%3D%201%3A%0A%20%20%20%20%20%20%20%20return%200%0A%20%20%20%20return%20log_recur%28n%20/%202%29%20%2B%201%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20count%20%3D%20log_recur%28n%29%0A%20%20%20%20print%28%22%E5%AF%B9%E6%95%B0%E9%98%B6%EF%BC%88%E9%80%92%E5%BD%92%E5%AE%9E%E7%8E%B0%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B0%E9%87%8F%20%3D%22,%20count%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20log_recur%28n%3A%20float%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%AF%B9%E6%95%B0%E9%98%B6%EF%BC%88%E9%80%92%E5%BD%92%E5%AE%9E%E7%8E%B0%EF%BC%89%22%22%22%0A%20%20%20%20if%20n%20%3C%3D%201%3A%0A%20%20%20%20%20%20%20%20return%200%0A%20%20%20%20return%20log_recur%28n%20/%202%29%20%2B%201%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20count%20%3D%20log_recur%28n%29%0A%20%20%20%20print%28%22%E5%AF%B9%E6%95%B0%E9%98%B6%EF%BC%88%E9%80%92%E5%BD%92%E5%AE%9E%E7%8E%B0%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B0%E9%87%8F%20%3D%22,%20count%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen ></a></div></p>
|
||
</details>
|
||
<p>Logarithmic order is typical in algorithms based on the divide-and-conquer strategy, embodying the "split into many" and "simplify complex problems" approach. It's slow-growing and is the most ideal time complexity after constant order.</p>
|
||
<div class="admonition tip">
|
||
<p class="admonition-title">What is the base of <span class="arithmatex">\(O(\log n)\)</span>?</p>
|
||
<p>Technically, "splitting into <span class="arithmatex">\(m\)</span>" corresponds to a time complexity of <span class="arithmatex">\(O(\log_m n)\)</span>. Using the logarithm base change formula, we can equate different logarithmic complexities:</p>
|
||
<div class="arithmatex">\[
|
||
O(\log_m n) = O(\log_k n / \log_k m) = O(\log_k n)
|
||
\]</div>
|
||
<p>This means the base <span class="arithmatex">\(m\)</span> can be changed without affecting the complexity. Therefore, we often omit the base <span class="arithmatex">\(m\)</span> and simply denote logarithmic order as <span class="arithmatex">\(O(\log n)\)</span>.</p>
|
||
</div>
|
||
<h3 id="6-linear-logarithmic-order-on-log-n">6. Linear-Logarithmic Order <span class="arithmatex">\(O(n \log n)\)</span><a class="headerlink" href="#6-linear-logarithmic-order-on-log-n" title="Permanent link">¶</a></h3>
|
||
<p>Linear-logarithmic order often appears in nested loops, with the complexities of the two loops being <span class="arithmatex">\(O(\log n)\)</span> and <span class="arithmatex">\(O(n)\)</span> respectively. The related code is as follows:</p>
|
||
<div class="tabbed-set tabbed-alternate" data-tabs="14:12"><input checked="checked" id="__tabbed_14_1" name="__tabbed_14" type="radio" /><input id="__tabbed_14_2" name="__tabbed_14" type="radio" /><input id="__tabbed_14_3" name="__tabbed_14" type="radio" /><input id="__tabbed_14_4" name="__tabbed_14" type="radio" /><input id="__tabbed_14_5" name="__tabbed_14" type="radio" /><input id="__tabbed_14_6" name="__tabbed_14" type="radio" /><input id="__tabbed_14_7" name="__tabbed_14" type="radio" /><input id="__tabbed_14_8" name="__tabbed_14" type="radio" /><input id="__tabbed_14_9" name="__tabbed_14" type="radio" /><input id="__tabbed_14_10" name="__tabbed_14" type="radio" /><input id="__tabbed_14_11" name="__tabbed_14" type="radio" /><input id="__tabbed_14_12" name="__tabbed_14" type="radio" /><div class="tabbed-labels"><label for="__tabbed_14_1">Python</label><label for="__tabbed_14_2">C++</label><label for="__tabbed_14_3">Java</label><label for="__tabbed_14_4">C#</label><label for="__tabbed_14_5">Go</label><label for="__tabbed_14_6">Swift</label><label for="__tabbed_14_7">JS</label><label for="__tabbed_14_8">TS</label><label for="__tabbed_14_9">Dart</label><label for="__tabbed_14_10">Rust</label><label for="__tabbed_14_11">C</label><label for="__tabbed_14_12">Zig</label></div>
|
||
<div class="tabbed-content">
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-156-1" name="__codelineno-156-1" href="#__codelineno-156-1"></a><span class="k">def</span> <span class="nf">linear_log_recur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
|
||
<a id="__codelineno-156-2" name="__codelineno-156-2" href="#__codelineno-156-2"></a><span class="w"> </span><span class="sd">"""线性对数阶"""</span>
|
||
<a id="__codelineno-156-3" name="__codelineno-156-3" href="#__codelineno-156-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o"><=</span> <span class="mi">1</span><span class="p">:</span>
|
||
<a id="__codelineno-156-4" name="__codelineno-156-4" href="#__codelineno-156-4"></a> <span class="k">return</span> <span class="mi">1</span>
|
||
<a id="__codelineno-156-5" name="__codelineno-156-5" href="#__codelineno-156-5"></a> <span class="n">count</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="n">linear_log_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">//</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">linear_log_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">//</span> <span class="mi">2</span><span class="p">)</span>
|
||
<a id="__codelineno-156-6" name="__codelineno-156-6" href="#__codelineno-156-6"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
|
||
<a id="__codelineno-156-7" name="__codelineno-156-7" href="#__codelineno-156-7"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
|
||
<a id="__codelineno-156-8" name="__codelineno-156-8" href="#__codelineno-156-8"></a> <span class="k">return</span> <span class="n">count</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-157-1" name="__codelineno-157-1" href="#__codelineno-157-1"></a><span class="cm">/* 线性对数阶 */</span>
|
||
<a id="__codelineno-157-2" name="__codelineno-157-2" href="#__codelineno-157-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linearLogRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-157-3" name="__codelineno-157-3" href="#__codelineno-157-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
|
||
<a id="__codelineno-157-4" name="__codelineno-157-4" href="#__codelineno-157-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-157-5" name="__codelineno-157-5" href="#__codelineno-157-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">);</span>
|
||
<a id="__codelineno-157-6" name="__codelineno-157-6" href="#__codelineno-157-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-157-7" name="__codelineno-157-7" href="#__codelineno-157-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-157-8" name="__codelineno-157-8" href="#__codelineno-157-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-157-9" name="__codelineno-157-9" href="#__codelineno-157-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-157-10" name="__codelineno-157-10" href="#__codelineno-157-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-158-1" name="__codelineno-158-1" href="#__codelineno-158-1"></a><span class="cm">/* 线性对数阶 */</span>
|
||
<a id="__codelineno-158-2" name="__codelineno-158-2" href="#__codelineno-158-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linearLogRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-158-3" name="__codelineno-158-3" href="#__codelineno-158-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
|
||
<a id="__codelineno-158-4" name="__codelineno-158-4" href="#__codelineno-158-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-158-5" name="__codelineno-158-5" href="#__codelineno-158-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">);</span>
|
||
<a id="__codelineno-158-6" name="__codelineno-158-6" href="#__codelineno-158-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-158-7" name="__codelineno-158-7" href="#__codelineno-158-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-158-8" name="__codelineno-158-8" href="#__codelineno-158-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-158-9" name="__codelineno-158-9" href="#__codelineno-158-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-158-10" name="__codelineno-158-10" href="#__codelineno-158-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-159-1" name="__codelineno-159-1" href="#__codelineno-159-1"></a><span class="cm">/* 线性对数阶 */</span>
|
||
<a id="__codelineno-159-2" name="__codelineno-159-2" href="#__codelineno-159-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">LinearLogRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-159-3" name="__codelineno-159-3" href="#__codelineno-159-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-159-4" name="__codelineno-159-4" href="#__codelineno-159-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">LinearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="m">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">LinearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="m">2</span><span class="p">);</span>
|
||
<a id="__codelineno-159-5" name="__codelineno-159-5" href="#__codelineno-159-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-159-6" name="__codelineno-159-6" href="#__codelineno-159-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-159-7" name="__codelineno-159-7" href="#__codelineno-159-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-159-8" name="__codelineno-159-8" href="#__codelineno-159-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-159-9" name="__codelineno-159-9" href="#__codelineno-159-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-160-1" name="__codelineno-160-1" href="#__codelineno-160-1"></a><span class="cm">/* 线性对数阶 */</span>
|
||
<a id="__codelineno-160-2" name="__codelineno-160-2" href="#__codelineno-160-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">float64</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-160-3" name="__codelineno-160-3" href="#__codelineno-160-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-160-4" name="__codelineno-160-4" href="#__codelineno-160-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span>
|
||
<a id="__codelineno-160-5" name="__codelineno-160-5" href="#__codelineno-160-5"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-160-6" name="__codelineno-160-6" href="#__codelineno-160-6"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">/</span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">/</span><span class="mi">2</span><span class="p">)</span>
|
||
<a id="__codelineno-160-7" name="__codelineno-160-7" href="#__codelineno-160-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mf">0.0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-160-8" name="__codelineno-160-8" href="#__codelineno-160-8"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span>
|
||
<a id="__codelineno-160-9" name="__codelineno-160-9" href="#__codelineno-160-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-160-10" name="__codelineno-160-10" href="#__codelineno-160-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
|
||
<a id="__codelineno-160-11" name="__codelineno-160-11" href="#__codelineno-160-11"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-161-1" name="__codelineno-161-1" href="#__codelineno-161-1"></a><span class="cm">/* 线性对数阶 */</span>
|
||
<a id="__codelineno-161-2" name="__codelineno-161-2" href="#__codelineno-161-2"></a><span class="kd">func</span> <span class="nf">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Double</span><span class="p">)</span> <span class="p">-></span> <span class="nb">Int</span> <span class="p">{</span>
|
||
<a id="__codelineno-161-3" name="__codelineno-161-3" href="#__codelineno-161-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o"><=</span> <span class="mi">1</span> <span class="p">{</span>
|
||
<a id="__codelineno-161-4" name="__codelineno-161-4" href="#__codelineno-161-4"></a> <span class="k">return</span> <span class="mi">1</span>
|
||
<a id="__codelineno-161-5" name="__codelineno-161-5" href="#__codelineno-161-5"></a> <span class="p">}</span>
|
||
<a id="__codelineno-161-6" name="__codelineno-161-6" href="#__codelineno-161-6"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="n">n</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="n">n</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span>
|
||
<a id="__codelineno-161-7" name="__codelineno-161-7" href="#__codelineno-161-7"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="bp">stride</span><span class="p">(</span><span class="n">from</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span> <span class="n">to</span><span class="p">:</span> <span class="n">n</span><span class="p">,</span> <span class="n">by</span><span class="p">:</span> <span class="mi">1</span><span class="p">)</span> <span class="p">{</span>
|
||
<a id="__codelineno-161-8" name="__codelineno-161-8" href="#__codelineno-161-8"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">1</span>
|
||
<a id="__codelineno-161-9" name="__codelineno-161-9" href="#__codelineno-161-9"></a> <span class="p">}</span>
|
||
<a id="__codelineno-161-10" name="__codelineno-161-10" href="#__codelineno-161-10"></a> <span class="k">return</span> <span class="bp">count</span>
|
||
<a id="__codelineno-161-11" name="__codelineno-161-11" href="#__codelineno-161-11"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-162-1" name="__codelineno-162-1" href="#__codelineno-162-1"></a><span class="cm">/* 线性对数阶 */</span>
|
||
<a id="__codelineno-162-2" name="__codelineno-162-2" href="#__codelineno-162-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-162-3" name="__codelineno-162-3" href="#__codelineno-162-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-162-4" name="__codelineno-162-4" href="#__codelineno-162-4"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">);</span>
|
||
<a id="__codelineno-162-5" name="__codelineno-162-5" href="#__codelineno-162-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-162-6" name="__codelineno-162-6" href="#__codelineno-162-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-162-7" name="__codelineno-162-7" href="#__codelineno-162-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-162-8" name="__codelineno-162-8" href="#__codelineno-162-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
|
||
<a id="__codelineno-162-9" name="__codelineno-162-9" href="#__codelineno-162-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-163-1" name="__codelineno-163-1" href="#__codelineno-163-1"></a><span class="cm">/* 线性对数阶 */</span>
|
||
<a id="__codelineno-163-2" name="__codelineno-163-2" href="#__codelineno-163-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-163-3" name="__codelineno-163-3" href="#__codelineno-163-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-163-4" name="__codelineno-163-4" href="#__codelineno-163-4"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">);</span>
|
||
<a id="__codelineno-163-5" name="__codelineno-163-5" href="#__codelineno-163-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-163-6" name="__codelineno-163-6" href="#__codelineno-163-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-163-7" name="__codelineno-163-7" href="#__codelineno-163-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-163-8" name="__codelineno-163-8" href="#__codelineno-163-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
|
||
<a id="__codelineno-163-9" name="__codelineno-163-9" href="#__codelineno-163-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.dart</span><pre><span></span><code><a id="__codelineno-164-1" name="__codelineno-164-1" href="#__codelineno-164-1"></a><span class="cm">/* 线性对数阶 */</span>
|
||
<a id="__codelineno-164-2" name="__codelineno-164-2" href="#__codelineno-164-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="kt">num</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-164-3" name="__codelineno-164-3" href="#__codelineno-164-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-164-4" name="__codelineno-164-4" href="#__codelineno-164-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="m">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="m">2</span><span class="p">);</span>
|
||
<a id="__codelineno-164-5" name="__codelineno-164-5" href="#__codelineno-164-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">var</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-164-6" name="__codelineno-164-6" href="#__codelineno-164-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-164-7" name="__codelineno-164-7" href="#__codelineno-164-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-164-8" name="__codelineno-164-8" href="#__codelineno-164-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-164-9" name="__codelineno-164-9" href="#__codelineno-164-9"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.rs</span><pre><span></span><code><a id="__codelineno-165-1" name="__codelineno-165-1" href="#__codelineno-165-1"></a><span class="cm">/* 线性对数阶 */</span>
|
||
<a id="__codelineno-165-2" name="__codelineno-165-2" href="#__codelineno-165-2"></a><span class="k">fn</span> <span class="nf">linear_log_recur</span><span class="p">(</span><span class="n">n</span>: <span class="kt">f32</span><span class="p">)</span><span class="w"> </span>-> <span class="kt">i32</span> <span class="p">{</span>
|
||
<a id="__codelineno-165-3" name="__codelineno-165-3" href="#__codelineno-165-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="mf">1.0</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-165-4" name="__codelineno-165-4" href="#__codelineno-165-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-165-5" name="__codelineno-165-5" href="#__codelineno-165-5"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-165-6" name="__codelineno-165-6" href="#__codelineno-165-6"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">linear_log_recur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2.0</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">linear_log_recur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2.0</span><span class="p">);</span>
|
||
<a id="__codelineno-165-7" name="__codelineno-165-7" href="#__codelineno-165-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">..</span><span class="n">n</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-165-8" name="__codelineno-165-8" href="#__codelineno-165-8"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-165-9" name="__codelineno-165-9" href="#__codelineno-165-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-165-10" name="__codelineno-165-10" href="#__codelineno-165-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span>
|
||
<a id="__codelineno-165-11" name="__codelineno-165-11" href="#__codelineno-165-11"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-166-1" name="__codelineno-166-1" href="#__codelineno-166-1"></a><span class="cm">/* 线性对数阶 */</span>
|
||
<a id="__codelineno-166-2" name="__codelineno-166-2" href="#__codelineno-166-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linearLogRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-166-3" name="__codelineno-166-3" href="#__codelineno-166-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
|
||
<a id="__codelineno-166-4" name="__codelineno-166-4" href="#__codelineno-166-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-166-5" name="__codelineno-166-5" href="#__codelineno-166-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">);</span>
|
||
<a id="__codelineno-166-6" name="__codelineno-166-6" href="#__codelineno-166-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-166-7" name="__codelineno-166-7" href="#__codelineno-166-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
|
||
<a id="__codelineno-166-8" name="__codelineno-166-8" href="#__codelineno-166-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-166-9" name="__codelineno-166-9" href="#__codelineno-166-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-166-10" name="__codelineno-166-10" href="#__codelineno-166-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-167-1" name="__codelineno-167-1" href="#__codelineno-167-1"></a><span class="c1">// 线性对数阶</span>
|
||
<a id="__codelineno-167-2" name="__codelineno-167-2" href="#__codelineno-167-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">f32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-167-3" name="__codelineno-167-3" href="#__codelineno-167-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-167-4" name="__codelineno-167-4" href="#__codelineno-167-4"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">);</span>
|
||
<a id="__codelineno-167-5" name="__codelineno-167-5" href="#__codelineno-167-5"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">i</span><span class="o">:</span><span class="w"> </span><span class="kt">f32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-167-6" name="__codelineno-167-6" href="#__codelineno-167-6"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-167-7" name="__codelineno-167-7" href="#__codelineno-167-7"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-167-8" name="__codelineno-167-8" href="#__codelineno-167-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-167-9" name="__codelineno-167-9" href="#__codelineno-167-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-167-10" name="__codelineno-167-10" href="#__codelineno-167-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<details class="pythontutor">
|
||
<summary>Code Visualization</summary>
|
||
<p><div style="height: 477px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20linear_log_recur%28n%3A%20float%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%BA%BF%E6%80%A7%E5%AF%B9%E6%95%B0%E9%98%B6%22%22%22%0A%20%20%20%20if%20n%20%3C%3D%201%3A%0A%20%20%20%20%20%20%20%20return%201%0A%20%20%20%20count%20%3D%20linear_log_recur%28n%20//%202%29%20%2B%20linear_log_recur%28n%20//%202%29%0A%20%20%20%20for%20_%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20count%20%3D%20linear_log_recur%28n%29%0A%20%20%20%20print%28%22%E7%BA%BF%E6%80%A7%E5%AF%B9%E6%95%B0%E9%98%B6%EF%BC%88%E9%80%92%E5%BD%92%E5%AE%9E%E7%8E%B0%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B0%E9%87%8F%20%3D%22,%20count%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20linear_log_recur%28n%3A%20float%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%BA%BF%E6%80%A7%E5%AF%B9%E6%95%B0%E9%98%B6%22%22%22%0A%20%20%20%20if%20n%20%3C%3D%201%3A%0A%20%20%20%20%20%20%20%20return%201%0A%20%20%20%20count%20%3D%20linear_log_recur%28n%20//%202%29%20%2B%20linear_log_recur%28n%20//%202%29%0A%20%20%20%20for%20_%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20count%20%2B%3D%201%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20count%20%3D%20linear_log_recur%28n%29%0A%20%20%20%20print%28%22%E7%BA%BF%E6%80%A7%E5%AF%B9%E6%95%B0%E9%98%B6%EF%BC%88%E9%80%92%E5%BD%92%E5%AE%9E%E7%8E%B0%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B0%E9%87%8F%20%3D%22,%20count%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen ></a></div></p>
|
||
</details>
|
||
<p>The image below demonstrates how linear-logarithmic order is generated. Each level of a binary tree has <span class="arithmatex">\(n\)</span> operations, and the tree has <span class="arithmatex">\(\log_2 n + 1\)</span> levels, resulting in a time complexity of <span class="arithmatex">\(O(n \log n)\)</span>.</p>
|
||
<p><a class="glightbox" href="../time_complexity.assets/time_complexity_logarithmic_linear.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Linear-Logarithmic Order Time Complexity" class="animation-figure" src="../time_complexity.assets/time_complexity_logarithmic_linear.png" /></a></p>
|
||
<p align="center"> Figure 2-13 Linear-Logarithmic Order Time Complexity </p>
|
||
|
||
<p>Mainstream sorting algorithms typically have a time complexity of <span class="arithmatex">\(O(n \log n)\)</span>, such as quicksort, mergesort, and heapsort.</p>
|
||
<h3 id="7-factorial-order-on">7. Factorial Order <span class="arithmatex">\(O(n!)\)</span><a class="headerlink" href="#7-factorial-order-on" title="Permanent link">¶</a></h3>
|
||
<p>Factorial order corresponds to the mathematical problem of "full permutation." Given <span class="arithmatex">\(n\)</span> distinct elements, the total number of possible permutations is:</p>
|
||
<div class="arithmatex">\[
|
||
n! = n \times (n - 1) \times (n - 2) \times \dots \times 2 \times 1
|
||
\]</div>
|
||
<p>Factorials are typically implemented using recursion. As shown in the image and code below, the first level splits into <span class="arithmatex">\(n\)</span> branches, the second level into <span class="arithmatex">\(n - 1\)</span> branches, and so on, stopping after the <span class="arithmatex">\(n\)</span>th level:</p>
|
||
<div class="tabbed-set tabbed-alternate" data-tabs="15:12"><input checked="checked" id="__tabbed_15_1" name="__tabbed_15" type="radio" /><input id="__tabbed_15_2" name="__tabbed_15" type="radio" /><input id="__tabbed_15_3" name="__tabbed_15" type="radio" /><input id="__tabbed_15_4" name="__tabbed_15" type="radio" /><input id="__tabbed_15_5" name="__tabbed_15" type="radio" /><input id="__tabbed_15_6" name="__tabbed_15" type="radio" /><input id="__tabbed_15_7" name="__tabbed_15" type="radio" /><input id="__tabbed_15_8" name="__tabbed_15" type="radio" /><input id="__tabbed_15_9" name="__tabbed_15" type="radio" /><input id="__tabbed_15_10" name="__tabbed_15" type="radio" /><input id="__tabbed_15_11" name="__tabbed_15" type="radio" /><input id="__tabbed_15_12" name="__tabbed_15" type="radio" /><div class="tabbed-labels"><label for="__tabbed_15_1">Python</label><label for="__tabbed_15_2">C++</label><label for="__tabbed_15_3">Java</label><label for="__tabbed_15_4">C#</label><label for="__tabbed_15_5">Go</label><label for="__tabbed_15_6">Swift</label><label for="__tabbed_15_7">JS</label><label for="__tabbed_15_8">TS</label><label for="__tabbed_15_9">Dart</label><label for="__tabbed_15_10">Rust</label><label for="__tabbed_15_11">C</label><label for="__tabbed_15_12">Zig</label></div>
|
||
<div class="tabbed-content">
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-168-1" name="__codelineno-168-1" href="#__codelineno-168-1"></a><span class="k">def</span> <span class="nf">factorial_recur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
|
||
<a id="__codelineno-168-2" name="__codelineno-168-2" href="#__codelineno-168-2"></a><span class="w"> </span><span class="sd">"""阶乘阶(递归实现)"""</span>
|
||
<a id="__codelineno-168-3" name="__codelineno-168-3" href="#__codelineno-168-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
|
||
<a id="__codelineno-168-4" name="__codelineno-168-4" href="#__codelineno-168-4"></a> <span class="k">return</span> <span class="mi">1</span>
|
||
<a id="__codelineno-168-5" name="__codelineno-168-5" href="#__codelineno-168-5"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
|
||
<a id="__codelineno-168-6" name="__codelineno-168-6" href="#__codelineno-168-6"></a> <span class="c1"># 从 1 个分裂出 n 个</span>
|
||
<a id="__codelineno-168-7" name="__codelineno-168-7" href="#__codelineno-168-7"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
|
||
<a id="__codelineno-168-8" name="__codelineno-168-8" href="#__codelineno-168-8"></a> <span class="n">count</span> <span class="o">+=</span> <span class="n">factorial_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
|
||
<a id="__codelineno-168-9" name="__codelineno-168-9" href="#__codelineno-168-9"></a> <span class="k">return</span> <span class="n">count</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-169-1" name="__codelineno-169-1" href="#__codelineno-169-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
|
||
<a id="__codelineno-169-2" name="__codelineno-169-2" href="#__codelineno-169-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">factorialRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-169-3" name="__codelineno-169-3" href="#__codelineno-169-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span>
|
||
<a id="__codelineno-169-4" name="__codelineno-169-4" href="#__codelineno-169-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-169-5" name="__codelineno-169-5" href="#__codelineno-169-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-169-6" name="__codelineno-169-6" href="#__codelineno-169-6"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
|
||
<a id="__codelineno-169-7" name="__codelineno-169-7" href="#__codelineno-169-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-169-8" name="__codelineno-169-8" href="#__codelineno-169-8"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="n">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
|
||
<a id="__codelineno-169-9" name="__codelineno-169-9" href="#__codelineno-169-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-169-10" name="__codelineno-169-10" href="#__codelineno-169-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-169-11" name="__codelineno-169-11" href="#__codelineno-169-11"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-170-1" name="__codelineno-170-1" href="#__codelineno-170-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
|
||
<a id="__codelineno-170-2" name="__codelineno-170-2" href="#__codelineno-170-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">factorialRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-170-3" name="__codelineno-170-3" href="#__codelineno-170-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span>
|
||
<a id="__codelineno-170-4" name="__codelineno-170-4" href="#__codelineno-170-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-170-5" name="__codelineno-170-5" href="#__codelineno-170-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-170-6" name="__codelineno-170-6" href="#__codelineno-170-6"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
|
||
<a id="__codelineno-170-7" name="__codelineno-170-7" href="#__codelineno-170-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-170-8" name="__codelineno-170-8" href="#__codelineno-170-8"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="n">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
|
||
<a id="__codelineno-170-9" name="__codelineno-170-9" href="#__codelineno-170-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-170-10" name="__codelineno-170-10" href="#__codelineno-170-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-170-11" name="__codelineno-170-11" href="#__codelineno-170-11"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-171-1" name="__codelineno-171-1" href="#__codelineno-171-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
|
||
<a id="__codelineno-171-2" name="__codelineno-171-2" href="#__codelineno-171-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">FactorialRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-171-3" name="__codelineno-171-3" href="#__codelineno-171-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">0</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-171-4" name="__codelineno-171-4" href="#__codelineno-171-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
|
||
<a id="__codelineno-171-5" name="__codelineno-171-5" href="#__codelineno-171-5"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
|
||
<a id="__codelineno-171-6" name="__codelineno-171-6" href="#__codelineno-171-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-171-7" name="__codelineno-171-7" href="#__codelineno-171-7"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="n">FactorialRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">);</span>
|
||
<a id="__codelineno-171-8" name="__codelineno-171-8" href="#__codelineno-171-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-171-9" name="__codelineno-171-9" href="#__codelineno-171-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-171-10" name="__codelineno-171-10" href="#__codelineno-171-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-172-1" name="__codelineno-172-1" href="#__codelineno-172-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
|
||
<a id="__codelineno-172-2" name="__codelineno-172-2" href="#__codelineno-172-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">factorialRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-172-3" name="__codelineno-172-3" href="#__codelineno-172-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-172-4" name="__codelineno-172-4" href="#__codelineno-172-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span>
|
||
<a id="__codelineno-172-5" name="__codelineno-172-5" href="#__codelineno-172-5"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-172-6" name="__codelineno-172-6" href="#__codelineno-172-6"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span>
|
||
<a id="__codelineno-172-7" name="__codelineno-172-7" href="#__codelineno-172-7"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
|
||
<a id="__codelineno-172-8" name="__codelineno-172-8" href="#__codelineno-172-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-172-9" name="__codelineno-172-9" href="#__codelineno-172-9"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="nx">factorialRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
|
||
<a id="__codelineno-172-10" name="__codelineno-172-10" href="#__codelineno-172-10"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-172-11" name="__codelineno-172-11" href="#__codelineno-172-11"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
|
||
<a id="__codelineno-172-12" name="__codelineno-172-12" href="#__codelineno-172-12"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-173-1" name="__codelineno-173-1" href="#__codelineno-173-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
|
||
<a id="__codelineno-173-2" name="__codelineno-173-2" href="#__codelineno-173-2"></a><span class="kd">func</span> <span class="nf">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-></span> <span class="nb">Int</span> <span class="p">{</span>
|
||
<a id="__codelineno-173-3" name="__codelineno-173-3" href="#__codelineno-173-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="p">==</span> <span class="mi">0</span> <span class="p">{</span>
|
||
<a id="__codelineno-173-4" name="__codelineno-173-4" href="#__codelineno-173-4"></a> <span class="k">return</span> <span class="mi">1</span>
|
||
<a id="__codelineno-173-5" name="__codelineno-173-5" href="#__codelineno-173-5"></a> <span class="p">}</span>
|
||
<a id="__codelineno-173-6" name="__codelineno-173-6" href="#__codelineno-173-6"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span>
|
||
<a id="__codelineno-173-7" name="__codelineno-173-7" href="#__codelineno-173-7"></a> <span class="c1">// 从 1 个分裂出 n 个</span>
|
||
<a id="__codelineno-173-8" name="__codelineno-173-8" href="#__codelineno-173-8"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o"><</span> <span class="n">n</span> <span class="p">{</span>
|
||
<a id="__codelineno-173-9" name="__codelineno-173-9" href="#__codelineno-173-9"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="n">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
|
||
<a id="__codelineno-173-10" name="__codelineno-173-10" href="#__codelineno-173-10"></a> <span class="p">}</span>
|
||
<a id="__codelineno-173-11" name="__codelineno-173-11" href="#__codelineno-173-11"></a> <span class="k">return</span> <span class="bp">count</span>
|
||
<a id="__codelineno-173-12" name="__codelineno-173-12" href="#__codelineno-173-12"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-174-1" name="__codelineno-174-1" href="#__codelineno-174-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
|
||
<a id="__codelineno-174-2" name="__codelineno-174-2" href="#__codelineno-174-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">factorialRecur</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-174-3" name="__codelineno-174-3" href="#__codelineno-174-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-174-4" name="__codelineno-174-4" href="#__codelineno-174-4"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||
<a id="__codelineno-174-5" name="__codelineno-174-5" href="#__codelineno-174-5"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
|
||
<a id="__codelineno-174-6" name="__codelineno-174-6" href="#__codelineno-174-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-174-7" name="__codelineno-174-7" href="#__codelineno-174-7"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="nx">factorialRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">);</span>
|
||
<a id="__codelineno-174-8" name="__codelineno-174-8" href="#__codelineno-174-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-174-9" name="__codelineno-174-9" href="#__codelineno-174-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
|
||
<a id="__codelineno-174-10" name="__codelineno-174-10" href="#__codelineno-174-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-175-1" name="__codelineno-175-1" href="#__codelineno-175-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
|
||
<a id="__codelineno-175-2" name="__codelineno-175-2" href="#__codelineno-175-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">factorialRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-175-3" name="__codelineno-175-3" href="#__codelineno-175-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-175-4" name="__codelineno-175-4" href="#__codelineno-175-4"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||
<a id="__codelineno-175-5" name="__codelineno-175-5" href="#__codelineno-175-5"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
|
||
<a id="__codelineno-175-6" name="__codelineno-175-6" href="#__codelineno-175-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-175-7" name="__codelineno-175-7" href="#__codelineno-175-7"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="nx">factorialRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">);</span>
|
||
<a id="__codelineno-175-8" name="__codelineno-175-8" href="#__codelineno-175-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-175-9" name="__codelineno-175-9" href="#__codelineno-175-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
|
||
<a id="__codelineno-175-10" name="__codelineno-175-10" href="#__codelineno-175-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.dart</span><pre><span></span><code><a id="__codelineno-176-1" name="__codelineno-176-1" href="#__codelineno-176-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
|
||
<a id="__codelineno-176-2" name="__codelineno-176-2" href="#__codelineno-176-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">factorialRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-176-3" name="__codelineno-176-3" href="#__codelineno-176-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">0</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-176-4" name="__codelineno-176-4" href="#__codelineno-176-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
|
||
<a id="__codelineno-176-5" name="__codelineno-176-5" href="#__codelineno-176-5"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
|
||
<a id="__codelineno-176-6" name="__codelineno-176-6" href="#__codelineno-176-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">var</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-176-7" name="__codelineno-176-7" href="#__codelineno-176-7"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="n">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">);</span>
|
||
<a id="__codelineno-176-8" name="__codelineno-176-8" href="#__codelineno-176-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-176-9" name="__codelineno-176-9" href="#__codelineno-176-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-176-10" name="__codelineno-176-10" href="#__codelineno-176-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.rs</span><pre><span></span><code><a id="__codelineno-177-1" name="__codelineno-177-1" href="#__codelineno-177-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
|
||
<a id="__codelineno-177-2" name="__codelineno-177-2" href="#__codelineno-177-2"></a><span class="k">fn</span> <span class="nf">factorial_recur</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span>-> <span class="kt">i32</span> <span class="p">{</span>
|
||
<a id="__codelineno-177-3" name="__codelineno-177-3" href="#__codelineno-177-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-177-4" name="__codelineno-177-4" href="#__codelineno-177-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-177-5" name="__codelineno-177-5" href="#__codelineno-177-5"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-177-6" name="__codelineno-177-6" href="#__codelineno-177-6"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-177-7" name="__codelineno-177-7" href="#__codelineno-177-7"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
|
||
<a id="__codelineno-177-8" name="__codelineno-177-8" href="#__codelineno-177-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-177-9" name="__codelineno-177-9" href="#__codelineno-177-9"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="n">factorial_recur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
|
||
<a id="__codelineno-177-10" name="__codelineno-177-10" href="#__codelineno-177-10"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-177-11" name="__codelineno-177-11" href="#__codelineno-177-11"></a><span class="w"> </span><span class="n">count</span>
|
||
<a id="__codelineno-177-12" name="__codelineno-177-12" href="#__codelineno-177-12"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-178-1" name="__codelineno-178-1" href="#__codelineno-178-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
|
||
<a id="__codelineno-178-2" name="__codelineno-178-2" href="#__codelineno-178-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">factorialRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-178-3" name="__codelineno-178-3" href="#__codelineno-178-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span>
|
||
<a id="__codelineno-178-4" name="__codelineno-178-4" href="#__codelineno-178-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-178-5" name="__codelineno-178-5" href="#__codelineno-178-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-178-6" name="__codelineno-178-6" href="#__codelineno-178-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-178-7" name="__codelineno-178-7" href="#__codelineno-178-7"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="n">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
|
||
<a id="__codelineno-178-8" name="__codelineno-178-8" href="#__codelineno-178-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-178-9" name="__codelineno-178-9" href="#__codelineno-178-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-178-10" name="__codelineno-178-10" href="#__codelineno-178-10"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-179-1" name="__codelineno-179-1" href="#__codelineno-179-1"></a><span class="c1">// 阶乘阶(递归实现)</span>
|
||
<a id="__codelineno-179-2" name="__codelineno-179-2" href="#__codelineno-179-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-179-3" name="__codelineno-179-3" href="#__codelineno-179-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-179-4" name="__codelineno-179-4" href="#__codelineno-179-4"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-179-5" name="__codelineno-179-5" href="#__codelineno-179-5"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">i</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-179-6" name="__codelineno-179-6" href="#__codelineno-179-6"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
|
||
<a id="__codelineno-179-7" name="__codelineno-179-7" href="#__codelineno-179-7"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-179-8" name="__codelineno-179-8" href="#__codelineno-179-8"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="n">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
|
||
<a id="__codelineno-179-9" name="__codelineno-179-9" href="#__codelineno-179-9"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-179-10" name="__codelineno-179-10" href="#__codelineno-179-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
|
||
<a id="__codelineno-179-11" name="__codelineno-179-11" href="#__codelineno-179-11"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<details class="pythontutor">
|
||
<summary>Code Visualization</summary>
|
||
<p><div style="height: 495px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20factorial_recur%28n%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E9%98%B6%E4%B9%98%E9%98%B6%EF%BC%88%E9%80%92%E5%BD%92%E5%AE%9E%E7%8E%B0%EF%BC%89%22%22%22%0A%20%20%20%20if%20n%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20return%201%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20%23%20%E4%BB%8E%201%20%E4%B8%AA%E5%88%86%E8%A3%82%E5%87%BA%20n%20%E4%B8%AA%0A%20%20%20%20for%20_%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20count%20%2B%3D%20factorial_recur%28n%20-%201%29%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%204%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20count%20%3D%20factorial_recur%28n%29%0A%20%20%20%20print%28%22%E9%98%B6%E4%B9%98%E9%98%B6%EF%BC%88%E9%80%92%E5%BD%92%E5%AE%9E%E7%8E%B0%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B0%E9%87%8F%20%3D%22,%20count%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20factorial_recur%28n%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E9%98%B6%E4%B9%98%E9%98%B6%EF%BC%88%E9%80%92%E5%BD%92%E5%AE%9E%E7%8E%B0%EF%BC%89%22%22%22%0A%20%20%20%20if%20n%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20return%201%0A%20%20%20%20count%20%3D%200%0A%20%20%20%20%23%20%E4%BB%8E%201%20%E4%B8%AA%E5%88%86%E8%A3%82%E5%87%BA%20n%20%E4%B8%AA%0A%20%20%20%20for%20_%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20count%20%2B%3D%20factorial_recur%28n%20-%201%29%0A%20%20%20%20return%20count%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%204%0A%20%20%20%20print%28%22%E8%BE%93%E5%85%A5%E6%95%B0%E6%8D%AE%E5%A4%A7%E5%B0%8F%20n%20%3D%22,%20n%29%0A%0A%20%20%20%20count%20%3D%20factorial_recur%28n%29%0A%20%20%20%20print%28%22%E9%98%B6%E4%B9%98%E9%98%B6%EF%BC%88%E9%80%92%E5%BD%92%E5%AE%9E%E7%8E%B0%EF%BC%89%E7%9A%84%E6%93%8D%E4%BD%9C%E6%95%B0%E9%87%8F%20%3D%22,%20count%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=3&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen ></a></div></p>
|
||
</details>
|
||
<p><a class="glightbox" href="../time_complexity.assets/time_complexity_factorial.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Factorial Order Time Complexity" class="animation-figure" src="../time_complexity.assets/time_complexity_factorial.png" /></a></p>
|
||
<p align="center"> Figure 2-14 Factorial Order Time Complexity </p>
|
||
|
||
<p>Note that factorial order grows even faster than exponential order; it's unacceptable for larger <span class="arithmatex">\(n\)</span> values.</p>
|
||
<h2 id="235-worst-best-and-average-time-complexities">2.3.5 Worst, Best, and Average Time Complexities<a class="headerlink" href="#235-worst-best-and-average-time-complexities" title="Permanent link">¶</a></h2>
|
||
<p><strong>The time efficiency of an algorithm is often not fixed but depends on the distribution of the input data</strong>. Assume we have an array <code>nums</code> of length <span class="arithmatex">\(n\)</span>, consisting of numbers from <span class="arithmatex">\(1\)</span> to <span class="arithmatex">\(n\)</span>, each appearing only once, but in a randomly shuffled order. The task is to return the index of the element <span class="arithmatex">\(1\)</span>. We can draw the following conclusions:</p>
|
||
<ul>
|
||
<li>When <code>nums = [?, ?, ..., 1]</code>, that is, when the last element is <span class="arithmatex">\(1\)</span>, it requires a complete traversal of the array, <strong>achieving the worst-case time complexity of <span class="arithmatex">\(O(n)\)</span></strong>.</li>
|
||
<li>When <code>nums = [1, ?, ?, ...]</code>, that is, when the first element is <span class="arithmatex">\(1\)</span>, no matter the length of the array, no further traversal is needed, <strong>achieving the best-case time complexity of <span class="arithmatex">\(\Omega(1)\)</span></strong>.</li>
|
||
</ul>
|
||
<p>The "worst-case time complexity" corresponds to the asymptotic upper bound, denoted by the big <span class="arithmatex">\(O\)</span> notation. Correspondingly, the "best-case time complexity" corresponds to the asymptotic lower bound, denoted by <span class="arithmatex">\(\Omega\)</span>:</p>
|
||
<div class="tabbed-set tabbed-alternate" data-tabs="16:12"><input checked="checked" id="__tabbed_16_1" name="__tabbed_16" type="radio" /><input id="__tabbed_16_2" name="__tabbed_16" type="radio" /><input id="__tabbed_16_3" name="__tabbed_16" type="radio" /><input id="__tabbed_16_4" name="__tabbed_16" type="radio" /><input id="__tabbed_16_5" name="__tabbed_16" type="radio" /><input id="__tabbed_16_6" name="__tabbed_16" type="radio" /><input id="__tabbed_16_7" name="__tabbed_16" type="radio" /><input id="__tabbed_16_8" name="__tabbed_16" type="radio" /><input id="__tabbed_16_9" name="__tabbed_16" type="radio" /><input id="__tabbed_16_10" name="__tabbed_16" type="radio" /><input id="__tabbed_16_11" name="__tabbed_16" type="radio" /><input id="__tabbed_16_12" name="__tabbed_16" type="radio" /><div class="tabbed-labels"><label for="__tabbed_16_1">Python</label><label for="__tabbed_16_2">C++</label><label for="__tabbed_16_3">Java</label><label for="__tabbed_16_4">C#</label><label for="__tabbed_16_5">Go</label><label for="__tabbed_16_6">Swift</label><label for="__tabbed_16_7">JS</label><label for="__tabbed_16_8">TS</label><label for="__tabbed_16_9">Dart</label><label for="__tabbed_16_10">Rust</label><label for="__tabbed_16_11">C</label><label for="__tabbed_16_12">Zig</label></div>
|
||
<div class="tabbed-content">
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">worst_best_time_complexity.py</span><pre><span></span><code><a id="__codelineno-180-1" name="__codelineno-180-1" href="#__codelineno-180-1"></a><span class="k">def</span> <span class="nf">random_numbers</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-></span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">]:</span>
|
||
<a id="__codelineno-180-2" name="__codelineno-180-2" href="#__codelineno-180-2"></a><span class="w"> </span><span class="sd">"""生成一个数组,元素为: 1, 2, ..., n ,顺序被打乱"""</span>
|
||
<a id="__codelineno-180-3" name="__codelineno-180-3" href="#__codelineno-180-3"></a> <span class="c1"># 生成数组 nums =: 1, 2, 3, ..., n</span>
|
||
<a id="__codelineno-180-4" name="__codelineno-180-4" href="#__codelineno-180-4"></a> <span class="n">nums</span> <span class="o">=</span> <span class="p">[</span><span class="n">i</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)]</span>
|
||
<a id="__codelineno-180-5" name="__codelineno-180-5" href="#__codelineno-180-5"></a> <span class="c1"># 随机打乱数组元素</span>
|
||
<a id="__codelineno-180-6" name="__codelineno-180-6" href="#__codelineno-180-6"></a> <span class="n">random</span><span class="o">.</span><span class="n">shuffle</span><span class="p">(</span><span class="n">nums</span><span class="p">)</span>
|
||
<a id="__codelineno-180-7" name="__codelineno-180-7" href="#__codelineno-180-7"></a> <span class="k">return</span> <span class="n">nums</span>
|
||
<a id="__codelineno-180-8" name="__codelineno-180-8" href="#__codelineno-180-8"></a>
|
||
<a id="__codelineno-180-9" name="__codelineno-180-9" href="#__codelineno-180-9"></a><span class="k">def</span> <span class="nf">find_one</span><span class="p">(</span><span class="n">nums</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">])</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
|
||
<a id="__codelineno-180-10" name="__codelineno-180-10" href="#__codelineno-180-10"></a><span class="w"> </span><span class="sd">"""查找数组 nums 中数字 1 所在索引"""</span>
|
||
<a id="__codelineno-180-11" name="__codelineno-180-11" href="#__codelineno-180-11"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">nums</span><span class="p">)):</span>
|
||
<a id="__codelineno-180-12" name="__codelineno-180-12" href="#__codelineno-180-12"></a> <span class="c1"># 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
|
||
<a id="__codelineno-180-13" name="__codelineno-180-13" href="#__codelineno-180-13"></a> <span class="c1"># 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
|
||
<a id="__codelineno-180-14" name="__codelineno-180-14" href="#__codelineno-180-14"></a> <span class="k">if</span> <span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
|
||
<a id="__codelineno-180-15" name="__codelineno-180-15" href="#__codelineno-180-15"></a> <span class="k">return</span> <span class="n">i</span>
|
||
<a id="__codelineno-180-16" name="__codelineno-180-16" href="#__codelineno-180-16"></a> <span class="k">return</span> <span class="o">-</span><span class="mi">1</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">worst_best_time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-181-1" name="__codelineno-181-1" href="#__codelineno-181-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
|
||
<a id="__codelineno-181-2" name="__codelineno-181-2" href="#__codelineno-181-2"></a><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="n">randomNumbers</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-181-3" name="__codelineno-181-3" href="#__codelineno-181-3"></a><span class="w"> </span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="n">nums</span><span class="p">(</span><span class="n">n</span><span class="p">);</span>
|
||
<a id="__codelineno-181-4" name="__codelineno-181-4" href="#__codelineno-181-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
|
||
<a id="__codelineno-181-5" name="__codelineno-181-5" href="#__codelineno-181-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-181-6" name="__codelineno-181-6" href="#__codelineno-181-6"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-181-7" name="__codelineno-181-7" href="#__codelineno-181-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-181-8" name="__codelineno-181-8" href="#__codelineno-181-8"></a><span class="w"> </span><span class="c1">// 使用系统时间生成随机种子</span>
|
||
<a id="__codelineno-181-9" name="__codelineno-181-9" href="#__codelineno-181-9"></a><span class="w"> </span><span class="kt">unsigned</span><span class="w"> </span><span class="n">seed</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">chrono</span><span class="o">::</span><span class="n">system_clock</span><span class="o">::</span><span class="n">now</span><span class="p">().</span><span class="n">time_since_epoch</span><span class="p">().</span><span class="n">count</span><span class="p">();</span>
|
||
<a id="__codelineno-181-10" name="__codelineno-181-10" href="#__codelineno-181-10"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
|
||
<a id="__codelineno-181-11" name="__codelineno-181-11" href="#__codelineno-181-11"></a><span class="w"> </span><span class="n">shuffle</span><span class="p">(</span><span class="n">nums</span><span class="p">.</span><span class="n">begin</span><span class="p">(),</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">end</span><span class="p">(),</span><span class="w"> </span><span class="n">default_random_engine</span><span class="p">(</span><span class="n">seed</span><span class="p">));</span>
|
||
<a id="__codelineno-181-12" name="__codelineno-181-12" href="#__codelineno-181-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">nums</span><span class="p">;</span>
|
||
<a id="__codelineno-181-13" name="__codelineno-181-13" href="#__codelineno-181-13"></a><span class="p">}</span>
|
||
<a id="__codelineno-181-14" name="__codelineno-181-14" href="#__codelineno-181-14"></a>
|
||
<a id="__codelineno-181-15" name="__codelineno-181-15" href="#__codelineno-181-15"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
|
||
<a id="__codelineno-181-16" name="__codelineno-181-16" href="#__codelineno-181-16"></a><span class="kt">int</span><span class="w"> </span><span class="n">findOne</span><span class="p">(</span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="o">&</span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-181-17" name="__codelineno-181-17" href="#__codelineno-181-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">size</span><span class="p">();</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-181-18" name="__codelineno-181-18" href="#__codelineno-181-18"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
|
||
<a id="__codelineno-181-19" name="__codelineno-181-19" href="#__codelineno-181-19"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
|
||
<a id="__codelineno-181-20" name="__codelineno-181-20" href="#__codelineno-181-20"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
|
||
<a id="__codelineno-181-21" name="__codelineno-181-21" href="#__codelineno-181-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">i</span><span class="p">;</span>
|
||
<a id="__codelineno-181-22" name="__codelineno-181-22" href="#__codelineno-181-22"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-181-23" name="__codelineno-181-23" href="#__codelineno-181-23"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">-1</span><span class="p">;</span>
|
||
<a id="__codelineno-181-24" name="__codelineno-181-24" href="#__codelineno-181-24"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">worst_best_time_complexity.java</span><pre><span></span><code><a id="__codelineno-182-1" name="__codelineno-182-1" href="#__codelineno-182-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
|
||
<a id="__codelineno-182-2" name="__codelineno-182-2" href="#__codelineno-182-2"></a><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="nf">randomNumbers</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-182-3" name="__codelineno-182-3" href="#__codelineno-182-3"></a><span class="w"> </span><span class="n">Integer</span><span class="o">[]</span><span class="w"> </span><span class="n">nums</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">Integer</span><span class="o">[</span><span class="n">n</span><span class="o">]</span><span class="p">;</span>
|
||
<a id="__codelineno-182-4" name="__codelineno-182-4" href="#__codelineno-182-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
|
||
<a id="__codelineno-182-5" name="__codelineno-182-5" href="#__codelineno-182-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-182-6" name="__codelineno-182-6" href="#__codelineno-182-6"></a><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-182-7" name="__codelineno-182-7" href="#__codelineno-182-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-182-8" name="__codelineno-182-8" href="#__codelineno-182-8"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
|
||
<a id="__codelineno-182-9" name="__codelineno-182-9" href="#__codelineno-182-9"></a><span class="w"> </span><span class="n">Collections</span><span class="p">.</span><span class="na">shuffle</span><span class="p">(</span><span class="n">Arrays</span><span class="p">.</span><span class="na">asList</span><span class="p">(</span><span class="n">nums</span><span class="p">));</span>
|
||
<a id="__codelineno-182-10" name="__codelineno-182-10" href="#__codelineno-182-10"></a><span class="w"> </span><span class="c1">// Integer[] -> int[]</span>
|
||
<a id="__codelineno-182-11" name="__codelineno-182-11" href="#__codelineno-182-11"></a><span class="w"> </span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="o">[</span><span class="n">n</span><span class="o">]</span><span class="p">;</span>
|
||
<a id="__codelineno-182-12" name="__codelineno-182-12" href="#__codelineno-182-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-182-13" name="__codelineno-182-13" href="#__codelineno-182-13"></a><span class="w"> </span><span class="n">res</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="p">;</span>
|
||
<a id="__codelineno-182-14" name="__codelineno-182-14" href="#__codelineno-182-14"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-182-15" name="__codelineno-182-15" href="#__codelineno-182-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
|
||
<a id="__codelineno-182-16" name="__codelineno-182-16" href="#__codelineno-182-16"></a><span class="p">}</span>
|
||
<a id="__codelineno-182-17" name="__codelineno-182-17" href="#__codelineno-182-17"></a>
|
||
<a id="__codelineno-182-18" name="__codelineno-182-18" href="#__codelineno-182-18"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
|
||
<a id="__codelineno-182-19" name="__codelineno-182-19" href="#__codelineno-182-19"></a><span class="kt">int</span><span class="w"> </span><span class="nf">findOne</span><span class="p">(</span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-182-20" name="__codelineno-182-20" href="#__codelineno-182-20"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="na">length</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-182-21" name="__codelineno-182-21" href="#__codelineno-182-21"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
|
||
<a id="__codelineno-182-22" name="__codelineno-182-22" href="#__codelineno-182-22"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
|
||
<a id="__codelineno-182-23" name="__codelineno-182-23" href="#__codelineno-182-23"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
|
||
<a id="__codelineno-182-24" name="__codelineno-182-24" href="#__codelineno-182-24"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">i</span><span class="p">;</span>
|
||
<a id="__codelineno-182-25" name="__codelineno-182-25" href="#__codelineno-182-25"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-182-26" name="__codelineno-182-26" href="#__codelineno-182-26"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-182-27" name="__codelineno-182-27" href="#__codelineno-182-27"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">worst_best_time_complexity.cs</span><pre><span></span><code><a id="__codelineno-183-1" name="__codelineno-183-1" href="#__codelineno-183-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
|
||
<a id="__codelineno-183-2" name="__codelineno-183-2" href="#__codelineno-183-2"></a><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="nf">RandomNumbers</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-183-3" name="__codelineno-183-3" href="#__codelineno-183-3"></a><span class="w"> </span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">nums</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="p">[</span><span class="n">n</span><span class="p">];</span>
|
||
<a id="__codelineno-183-4" name="__codelineno-183-4" href="#__codelineno-183-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
|
||
<a id="__codelineno-183-5" name="__codelineno-183-5" href="#__codelineno-183-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-183-6" name="__codelineno-183-6" href="#__codelineno-183-6"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-183-7" name="__codelineno-183-7" href="#__codelineno-183-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-183-8" name="__codelineno-183-8" href="#__codelineno-183-8"></a>
|
||
<a id="__codelineno-183-9" name="__codelineno-183-9" href="#__codelineno-183-9"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
|
||
<a id="__codelineno-183-10" name="__codelineno-183-10" href="#__codelineno-183-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">Length</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-183-11" name="__codelineno-183-11" href="#__codelineno-183-11"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">index</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">Random</span><span class="p">().</span><span class="n">Next</span><span class="p">(</span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">Length</span><span class="p">);</span>
|
||
<a id="__codelineno-183-12" name="__codelineno-183-12" href="#__codelineno-183-12"></a><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">],</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">index</span><span class="p">])</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">index</span><span class="p">],</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]);</span>
|
||
<a id="__codelineno-183-13" name="__codelineno-183-13" href="#__codelineno-183-13"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-183-14" name="__codelineno-183-14" href="#__codelineno-183-14"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">nums</span><span class="p">;</span>
|
||
<a id="__codelineno-183-15" name="__codelineno-183-15" href="#__codelineno-183-15"></a><span class="p">}</span>
|
||
<a id="__codelineno-183-16" name="__codelineno-183-16" href="#__codelineno-183-16"></a>
|
||
<a id="__codelineno-183-17" name="__codelineno-183-17" href="#__codelineno-183-17"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
|
||
<a id="__codelineno-183-18" name="__codelineno-183-18" href="#__codelineno-183-18"></a><span class="kt">int</span><span class="w"> </span><span class="nf">FindOne</span><span class="p">(</span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-183-19" name="__codelineno-183-19" href="#__codelineno-183-19"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">Length</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-183-20" name="__codelineno-183-20" href="#__codelineno-183-20"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
|
||
<a id="__codelineno-183-21" name="__codelineno-183-21" href="#__codelineno-183-21"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
|
||
<a id="__codelineno-183-22" name="__codelineno-183-22" href="#__codelineno-183-22"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">1</span><span class="p">)</span>
|
||
<a id="__codelineno-183-23" name="__codelineno-183-23" href="#__codelineno-183-23"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">i</span><span class="p">;</span>
|
||
<a id="__codelineno-183-24" name="__codelineno-183-24" href="#__codelineno-183-24"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-183-25" name="__codelineno-183-25" href="#__codelineno-183-25"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-183-26" name="__codelineno-183-26" href="#__codelineno-183-26"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">worst_best_time_complexity.go</span><pre><span></span><code><a id="__codelineno-184-1" name="__codelineno-184-1" href="#__codelineno-184-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
|
||
<a id="__codelineno-184-2" name="__codelineno-184-2" href="#__codelineno-184-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">randomNumbers</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">[]</span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-184-3" name="__codelineno-184-3" href="#__codelineno-184-3"></a><span class="w"> </span><span class="nx">nums</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span>
|
||
<a id="__codelineno-184-4" name="__codelineno-184-4" href="#__codelineno-184-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
|
||
<a id="__codelineno-184-5" name="__codelineno-184-5" href="#__codelineno-184-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-184-6" name="__codelineno-184-6" href="#__codelineno-184-6"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span>
|
||
<a id="__codelineno-184-7" name="__codelineno-184-7" href="#__codelineno-184-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-184-8" name="__codelineno-184-8" href="#__codelineno-184-8"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
|
||
<a id="__codelineno-184-9" name="__codelineno-184-9" href="#__codelineno-184-9"></a><span class="w"> </span><span class="nx">rand</span><span class="p">.</span><span class="nx">Shuffle</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="nx">nums</span><span class="p">),</span><span class="w"> </span><span class="kd">func</span><span class="p">(</span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-184-10" name="__codelineno-184-10" href="#__codelineno-184-10"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">],</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">],</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span>
|
||
<a id="__codelineno-184-11" name="__codelineno-184-11" href="#__codelineno-184-11"></a><span class="w"> </span><span class="p">})</span>
|
||
<a id="__codelineno-184-12" name="__codelineno-184-12" href="#__codelineno-184-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">nums</span>
|
||
<a id="__codelineno-184-13" name="__codelineno-184-13" href="#__codelineno-184-13"></a><span class="p">}</span>
|
||
<a id="__codelineno-184-14" name="__codelineno-184-14" href="#__codelineno-184-14"></a>
|
||
<a id="__codelineno-184-15" name="__codelineno-184-15" href="#__codelineno-184-15"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
|
||
<a id="__codelineno-184-16" name="__codelineno-184-16" href="#__codelineno-184-16"></a><span class="kd">func</span><span class="w"> </span><span class="nx">findOne</span><span class="p">(</span><span class="nx">nums</span><span class="w"> </span><span class="p">[]</span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-184-17" name="__codelineno-184-17" href="#__codelineno-184-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p"><</span><span class="w"> </span><span class="nb">len</span><span class="p">(</span><span class="nx">nums</span><span class="p">);</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-184-18" name="__codelineno-184-18" href="#__codelineno-184-18"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
|
||
<a id="__codelineno-184-19" name="__codelineno-184-19" href="#__codelineno-184-19"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
|
||
<a id="__codelineno-184-20" name="__codelineno-184-20" href="#__codelineno-184-20"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-184-21" name="__codelineno-184-21" href="#__codelineno-184-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">i</span>
|
||
<a id="__codelineno-184-22" name="__codelineno-184-22" href="#__codelineno-184-22"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-184-23" name="__codelineno-184-23" href="#__codelineno-184-23"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-184-24" name="__codelineno-184-24" href="#__codelineno-184-24"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span>
|
||
<a id="__codelineno-184-25" name="__codelineno-184-25" href="#__codelineno-184-25"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">worst_best_time_complexity.swift</span><pre><span></span><code><a id="__codelineno-185-1" name="__codelineno-185-1" href="#__codelineno-185-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
|
||
<a id="__codelineno-185-2" name="__codelineno-185-2" href="#__codelineno-185-2"></a><span class="kd">func</span> <span class="nf">randomNumbers</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-></span> <span class="p">[</span><span class="nb">Int</span><span class="p">]</span> <span class="p">{</span>
|
||
<a id="__codelineno-185-3" name="__codelineno-185-3" href="#__codelineno-185-3"></a> <span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
|
||
<a id="__codelineno-185-4" name="__codelineno-185-4" href="#__codelineno-185-4"></a> <span class="kd">var</span> <span class="nv">nums</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="mi">1</span> <span class="p">...</span> <span class="n">n</span><span class="p">)</span>
|
||
<a id="__codelineno-185-5" name="__codelineno-185-5" href="#__codelineno-185-5"></a> <span class="c1">// 随机打乱数组元素</span>
|
||
<a id="__codelineno-185-6" name="__codelineno-185-6" href="#__codelineno-185-6"></a> <span class="n">nums</span><span class="p">.</span><span class="n">shuffle</span><span class="p">()</span>
|
||
<a id="__codelineno-185-7" name="__codelineno-185-7" href="#__codelineno-185-7"></a> <span class="k">return</span> <span class="n">nums</span>
|
||
<a id="__codelineno-185-8" name="__codelineno-185-8" href="#__codelineno-185-8"></a><span class="p">}</span>
|
||
<a id="__codelineno-185-9" name="__codelineno-185-9" href="#__codelineno-185-9"></a>
|
||
<a id="__codelineno-185-10" name="__codelineno-185-10" href="#__codelineno-185-10"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
|
||
<a id="__codelineno-185-11" name="__codelineno-185-11" href="#__codelineno-185-11"></a><span class="kd">func</span> <span class="nf">findOne</span><span class="p">(</span><span class="n">nums</span><span class="p">:</span> <span class="p">[</span><span class="nb">Int</span><span class="p">])</span> <span class="p">-></span> <span class="nb">Int</span> <span class="p">{</span>
|
||
<a id="__codelineno-185-12" name="__codelineno-185-12" href="#__codelineno-185-12"></a> <span class="k">for</span> <span class="n">i</span> <span class="k">in</span> <span class="n">nums</span><span class="p">.</span><span class="bp">indices</span> <span class="p">{</span>
|
||
<a id="__codelineno-185-13" name="__codelineno-185-13" href="#__codelineno-185-13"></a> <span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
|
||
<a id="__codelineno-185-14" name="__codelineno-185-14" href="#__codelineno-185-14"></a> <span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
|
||
<a id="__codelineno-185-15" name="__codelineno-185-15" href="#__codelineno-185-15"></a> <span class="k">if</span> <span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="p">==</span> <span class="mi">1</span> <span class="p">{</span>
|
||
<a id="__codelineno-185-16" name="__codelineno-185-16" href="#__codelineno-185-16"></a> <span class="k">return</span> <span class="n">i</span>
|
||
<a id="__codelineno-185-17" name="__codelineno-185-17" href="#__codelineno-185-17"></a> <span class="p">}</span>
|
||
<a id="__codelineno-185-18" name="__codelineno-185-18" href="#__codelineno-185-18"></a> <span class="p">}</span>
|
||
<a id="__codelineno-185-19" name="__codelineno-185-19" href="#__codelineno-185-19"></a> <span class="k">return</span> <span class="o">-</span><span class="mi">1</span>
|
||
<a id="__codelineno-185-20" name="__codelineno-185-20" href="#__codelineno-185-20"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">worst_best_time_complexity.js</span><pre><span></span><code><a id="__codelineno-186-1" name="__codelineno-186-1" href="#__codelineno-186-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
|
||
<a id="__codelineno-186-2" name="__codelineno-186-2" href="#__codelineno-186-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">randomNumbers</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-186-3" name="__codelineno-186-3" href="#__codelineno-186-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">nums</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">);</span>
|
||
<a id="__codelineno-186-4" name="__codelineno-186-4" href="#__codelineno-186-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
|
||
<a id="__codelineno-186-5" name="__codelineno-186-5" href="#__codelineno-186-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-186-6" name="__codelineno-186-6" href="#__codelineno-186-6"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-186-7" name="__codelineno-186-7" href="#__codelineno-186-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-186-8" name="__codelineno-186-8" href="#__codelineno-186-8"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
|
||
<a id="__codelineno-186-9" name="__codelineno-186-9" href="#__codelineno-186-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-186-10" name="__codelineno-186-10" href="#__codelineno-186-10"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">r</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">floor</span><span class="p">(</span><span class="nb">Math</span><span class="p">.</span><span class="nx">random</span><span class="p">()</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">));</span>
|
||
<a id="__codelineno-186-11" name="__codelineno-186-11" href="#__codelineno-186-11"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">temp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">];</span>
|
||
<a id="__codelineno-186-12" name="__codelineno-186-12" href="#__codelineno-186-12"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">r</span><span class="p">];</span>
|
||
<a id="__codelineno-186-13" name="__codelineno-186-13" href="#__codelineno-186-13"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">r</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">temp</span><span class="p">;</span>
|
||
<a id="__codelineno-186-14" name="__codelineno-186-14" href="#__codelineno-186-14"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-186-15" name="__codelineno-186-15" href="#__codelineno-186-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">nums</span><span class="p">;</span>
|
||
<a id="__codelineno-186-16" name="__codelineno-186-16" href="#__codelineno-186-16"></a><span class="p">}</span>
|
||
<a id="__codelineno-186-17" name="__codelineno-186-17" href="#__codelineno-186-17"></a>
|
||
<a id="__codelineno-186-18" name="__codelineno-186-18" href="#__codelineno-186-18"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
|
||
<a id="__codelineno-186-19" name="__codelineno-186-19" href="#__codelineno-186-19"></a><span class="kd">function</span><span class="w"> </span><span class="nx">findOne</span><span class="p">(</span><span class="nx">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-186-20" name="__codelineno-186-20" href="#__codelineno-186-20"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">nums</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-186-21" name="__codelineno-186-21" href="#__codelineno-186-21"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
|
||
<a id="__codelineno-186-22" name="__codelineno-186-22" href="#__codelineno-186-22"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
|
||
<a id="__codelineno-186-23" name="__codelineno-186-23" href="#__codelineno-186-23"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-186-24" name="__codelineno-186-24" href="#__codelineno-186-24"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span>
|
||
<a id="__codelineno-186-25" name="__codelineno-186-25" href="#__codelineno-186-25"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-186-26" name="__codelineno-186-26" href="#__codelineno-186-26"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-186-27" name="__codelineno-186-27" href="#__codelineno-186-27"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-186-28" name="__codelineno-186-28" href="#__codelineno-186-28"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">worst_best_time_complexity.ts</span><pre><span></span><code><a id="__codelineno-187-1" name="__codelineno-187-1" href="#__codelineno-187-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
|
||
<a id="__codelineno-187-2" name="__codelineno-187-2" href="#__codelineno-187-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">randomNumbers</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">[]</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-187-3" name="__codelineno-187-3" href="#__codelineno-187-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">nums</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">);</span>
|
||
<a id="__codelineno-187-4" name="__codelineno-187-4" href="#__codelineno-187-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
|
||
<a id="__codelineno-187-5" name="__codelineno-187-5" href="#__codelineno-187-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-187-6" name="__codelineno-187-6" href="#__codelineno-187-6"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-187-7" name="__codelineno-187-7" href="#__codelineno-187-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-187-8" name="__codelineno-187-8" href="#__codelineno-187-8"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
|
||
<a id="__codelineno-187-9" name="__codelineno-187-9" href="#__codelineno-187-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-187-10" name="__codelineno-187-10" href="#__codelineno-187-10"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">r</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">floor</span><span class="p">(</span><span class="nb">Math</span><span class="p">.</span><span class="nx">random</span><span class="p">()</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">));</span>
|
||
<a id="__codelineno-187-11" name="__codelineno-187-11" href="#__codelineno-187-11"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">temp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">];</span>
|
||
<a id="__codelineno-187-12" name="__codelineno-187-12" href="#__codelineno-187-12"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">r</span><span class="p">];</span>
|
||
<a id="__codelineno-187-13" name="__codelineno-187-13" href="#__codelineno-187-13"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">r</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">temp</span><span class="p">;</span>
|
||
<a id="__codelineno-187-14" name="__codelineno-187-14" href="#__codelineno-187-14"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-187-15" name="__codelineno-187-15" href="#__codelineno-187-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">nums</span><span class="p">;</span>
|
||
<a id="__codelineno-187-16" name="__codelineno-187-16" href="#__codelineno-187-16"></a><span class="p">}</span>
|
||
<a id="__codelineno-187-17" name="__codelineno-187-17" href="#__codelineno-187-17"></a>
|
||
<a id="__codelineno-187-18" name="__codelineno-187-18" href="#__codelineno-187-18"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
|
||
<a id="__codelineno-187-19" name="__codelineno-187-19" href="#__codelineno-187-19"></a><span class="kd">function</span><span class="w"> </span><span class="nx">findOne</span><span class="p">(</span><span class="nx">nums</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">[])</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-187-20" name="__codelineno-187-20" href="#__codelineno-187-20"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">nums</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-187-21" name="__codelineno-187-21" href="#__codelineno-187-21"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
|
||
<a id="__codelineno-187-22" name="__codelineno-187-22" href="#__codelineno-187-22"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
|
||
<a id="__codelineno-187-23" name="__codelineno-187-23" href="#__codelineno-187-23"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-187-24" name="__codelineno-187-24" href="#__codelineno-187-24"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span>
|
||
<a id="__codelineno-187-25" name="__codelineno-187-25" href="#__codelineno-187-25"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-187-26" name="__codelineno-187-26" href="#__codelineno-187-26"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-187-27" name="__codelineno-187-27" href="#__codelineno-187-27"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-187-28" name="__codelineno-187-28" href="#__codelineno-187-28"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">worst_best_time_complexity.dart</span><pre><span></span><code><a id="__codelineno-188-1" name="__codelineno-188-1" href="#__codelineno-188-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
|
||
<a id="__codelineno-188-2" name="__codelineno-188-2" href="#__codelineno-188-2"></a><span class="n">List</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="n">randomNumbers</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-188-3" name="__codelineno-188-3" href="#__codelineno-188-3"></a><span class="w"> </span><span class="kd">final</span><span class="w"> </span><span class="n">nums</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">List</span><span class="p">.</span><span class="n">filled</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="m">0</span><span class="p">);</span>
|
||
<a id="__codelineno-188-4" name="__codelineno-188-4" href="#__codelineno-188-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
|
||
<a id="__codelineno-188-5" name="__codelineno-188-5" href="#__codelineno-188-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">var</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-188-6" name="__codelineno-188-6" href="#__codelineno-188-6"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-188-7" name="__codelineno-188-7" href="#__codelineno-188-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-188-8" name="__codelineno-188-8" href="#__codelineno-188-8"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
|
||
<a id="__codelineno-188-9" name="__codelineno-188-9" href="#__codelineno-188-9"></a><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">shuffle</span><span class="p">();</span>
|
||
<a id="__codelineno-188-10" name="__codelineno-188-10" href="#__codelineno-188-10"></a>
|
||
<a id="__codelineno-188-11" name="__codelineno-188-11" href="#__codelineno-188-11"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">nums</span><span class="p">;</span>
|
||
<a id="__codelineno-188-12" name="__codelineno-188-12" href="#__codelineno-188-12"></a><span class="p">}</span>
|
||
<a id="__codelineno-188-13" name="__codelineno-188-13" href="#__codelineno-188-13"></a>
|
||
<a id="__codelineno-188-14" name="__codelineno-188-14" href="#__codelineno-188-14"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
|
||
<a id="__codelineno-188-15" name="__codelineno-188-15" href="#__codelineno-188-15"></a><span class="kt">int</span><span class="w"> </span><span class="n">findOne</span><span class="p">(</span><span class="n">List</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-188-16" name="__codelineno-188-16" href="#__codelineno-188-16"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">var</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">length</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-188-17" name="__codelineno-188-17" href="#__codelineno-188-17"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
|
||
<a id="__codelineno-188-18" name="__codelineno-188-18" href="#__codelineno-188-18"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
|
||
<a id="__codelineno-188-19" name="__codelineno-188-19" href="#__codelineno-188-19"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">i</span><span class="p">;</span>
|
||
<a id="__codelineno-188-20" name="__codelineno-188-20" href="#__codelineno-188-20"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-188-21" name="__codelineno-188-21" href="#__codelineno-188-21"></a>
|
||
<a id="__codelineno-188-22" name="__codelineno-188-22" href="#__codelineno-188-22"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-188-23" name="__codelineno-188-23" href="#__codelineno-188-23"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">worst_best_time_complexity.rs</span><pre><span></span><code><a id="__codelineno-189-1" name="__codelineno-189-1" href="#__codelineno-189-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
|
||
<a id="__codelineno-189-2" name="__codelineno-189-2" href="#__codelineno-189-2"></a><span class="k">fn</span> <span class="nf">random_numbers</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span>-> <span class="nb">Vec</span><span class="o"><</span><span class="kt">i32</span><span class="o">></span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-189-3" name="__codelineno-189-3" href="#__codelineno-189-3"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
|
||
<a id="__codelineno-189-4" name="__codelineno-189-4" href="#__codelineno-189-4"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">nums</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="mi">1</span><span class="o">..=</span><span class="n">n</span><span class="p">).</span><span class="n">collect</span>::<span class="o"><</span><span class="nb">Vec</span><span class="o"><</span><span class="kt">i32</span><span class="o">>></span><span class="p">();</span>
|
||
<a id="__codelineno-189-5" name="__codelineno-189-5" href="#__codelineno-189-5"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
|
||
<a id="__codelineno-189-6" name="__codelineno-189-6" href="#__codelineno-189-6"></a><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">shuffle</span><span class="p">(</span><span class="o">&</span><span class="k">mut</span><span class="w"> </span><span class="n">thread_rng</span><span class="p">());</span>
|
||
<a id="__codelineno-189-7" name="__codelineno-189-7" href="#__codelineno-189-7"></a><span class="w"> </span><span class="n">nums</span>
|
||
<a id="__codelineno-189-8" name="__codelineno-189-8" href="#__codelineno-189-8"></a><span class="p">}</span>
|
||
<a id="__codelineno-189-9" name="__codelineno-189-9" href="#__codelineno-189-9"></a>
|
||
<a id="__codelineno-189-10" name="__codelineno-189-10" href="#__codelineno-189-10"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
|
||
<a id="__codelineno-189-11" name="__codelineno-189-11" href="#__codelineno-189-11"></a><span class="k">fn</span> <span class="nf">find_one</span><span class="p">(</span><span class="n">nums</span>: <span class="kp">&</span><span class="p">[</span><span class="kt">i32</span><span class="p">])</span><span class="w"> </span>-> <span class="nb">Option</span><span class="o"><</span><span class="kt">usize</span><span class="o">></span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-189-12" name="__codelineno-189-12" href="#__codelineno-189-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">nums</span><span class="p">.</span><span class="n">len</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-189-13" name="__codelineno-189-13" href="#__codelineno-189-13"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
|
||
<a id="__codelineno-189-14" name="__codelineno-189-14" href="#__codelineno-189-14"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
|
||
<a id="__codelineno-189-15" name="__codelineno-189-15" href="#__codelineno-189-15"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-189-16" name="__codelineno-189-16" href="#__codelineno-189-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nb">Some</span><span class="p">(</span><span class="n">i</span><span class="p">);</span>
|
||
<a id="__codelineno-189-17" name="__codelineno-189-17" href="#__codelineno-189-17"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-189-18" name="__codelineno-189-18" href="#__codelineno-189-18"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-189-19" name="__codelineno-189-19" href="#__codelineno-189-19"></a><span class="w"> </span><span class="nb">None</span>
|
||
<a id="__codelineno-189-20" name="__codelineno-189-20" href="#__codelineno-189-20"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">worst_best_time_complexity.c</span><pre><span></span><code><a id="__codelineno-190-1" name="__codelineno-190-1" href="#__codelineno-190-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
|
||
<a id="__codelineno-190-2" name="__codelineno-190-2" href="#__codelineno-190-2"></a><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="nf">randomNumbers</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-190-3" name="__codelineno-190-3" href="#__codelineno-190-3"></a><span class="w"> </span><span class="c1">// 分配堆区内存(创建一维可变长数组:数组中元素数量为 n ,元素类型为 int )</span>
|
||
<a id="__codelineno-190-4" name="__codelineno-190-4" href="#__codelineno-190-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="n">nums</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="n">malloc</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="k">sizeof</span><span class="p">(</span><span class="kt">int</span><span class="p">));</span>
|
||
<a id="__codelineno-190-5" name="__codelineno-190-5" href="#__codelineno-190-5"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
|
||
<a id="__codelineno-190-6" name="__codelineno-190-6" href="#__codelineno-190-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-190-7" name="__codelineno-190-7" href="#__codelineno-190-7"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-190-8" name="__codelineno-190-8" href="#__codelineno-190-8"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-190-9" name="__codelineno-190-9" href="#__codelineno-190-9"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
|
||
<a id="__codelineno-190-10" name="__codelineno-190-10" href="#__codelineno-190-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-190-11" name="__codelineno-190-11" href="#__codelineno-190-11"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">rand</span><span class="p">()</span><span class="w"> </span><span class="o">%</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
|
||
<a id="__codelineno-190-12" name="__codelineno-190-12" href="#__codelineno-190-12"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">temp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">];</span>
|
||
<a id="__codelineno-190-13" name="__codelineno-190-13" href="#__codelineno-190-13"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">];</span>
|
||
<a id="__codelineno-190-14" name="__codelineno-190-14" href="#__codelineno-190-14"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">temp</span><span class="p">;</span>
|
||
<a id="__codelineno-190-15" name="__codelineno-190-15" href="#__codelineno-190-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-190-16" name="__codelineno-190-16" href="#__codelineno-190-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">nums</span><span class="p">;</span>
|
||
<a id="__codelineno-190-17" name="__codelineno-190-17" href="#__codelineno-190-17"></a><span class="p">}</span>
|
||
<a id="__codelineno-190-18" name="__codelineno-190-18" href="#__codelineno-190-18"></a>
|
||
<a id="__codelineno-190-19" name="__codelineno-190-19" href="#__codelineno-190-19"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
|
||
<a id="__codelineno-190-20" name="__codelineno-190-20" href="#__codelineno-190-20"></a><span class="kt">int</span><span class="w"> </span><span class="nf">findOne</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="n">nums</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-190-21" name="__codelineno-190-21" href="#__codelineno-190-21"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-190-22" name="__codelineno-190-22" href="#__codelineno-190-22"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
|
||
<a id="__codelineno-190-23" name="__codelineno-190-23" href="#__codelineno-190-23"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
|
||
<a id="__codelineno-190-24" name="__codelineno-190-24" href="#__codelineno-190-24"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
|
||
<a id="__codelineno-190-25" name="__codelineno-190-25" href="#__codelineno-190-25"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">i</span><span class="p">;</span>
|
||
<a id="__codelineno-190-26" name="__codelineno-190-26" href="#__codelineno-190-26"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-190-27" name="__codelineno-190-27" href="#__codelineno-190-27"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">-1</span><span class="p">;</span>
|
||
<a id="__codelineno-190-28" name="__codelineno-190-28" href="#__codelineno-190-28"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">worst_best_time_complexity.zig</span><pre><span></span><code><a id="__codelineno-191-1" name="__codelineno-191-1" href="#__codelineno-191-1"></a><span class="c1">// 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱</span>
|
||
<a id="__codelineno-191-2" name="__codelineno-191-2" href="#__codelineno-191-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">randomNumbers</span><span class="p">(</span><span class="kr">comptime</span><span class="w"> </span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">usize</span><span class="p">)</span><span class="w"> </span><span class="p">[</span><span class="n">n</span><span class="p">]</span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-191-3" name="__codelineno-191-3" href="#__codelineno-191-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">nums</span><span class="o">:</span><span class="w"> </span><span class="p">[</span><span class="n">n</span><span class="p">]</span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">undefined</span><span class="p">;</span>
|
||
<a id="__codelineno-191-4" name="__codelineno-191-4" href="#__codelineno-191-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
|
||
<a id="__codelineno-191-5" name="__codelineno-191-5" href="#__codelineno-191-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="o">&</span><span class="n">nums</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">..)</span><span class="w"> </span><span class="o">|*</span><span class="n">num</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="o">|</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-191-6" name="__codelineno-191-6" href="#__codelineno-191-6"></a><span class="w"> </span><span class="n">num</span><span class="p">.</span><span class="o">*</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">@as</span><span class="p">(</span><span class="kt">i32</span><span class="p">,</span><span class="w"> </span><span class="nb">@intCast</span><span class="p">(</span><span class="n">i</span><span class="p">))</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-191-7" name="__codelineno-191-7" href="#__codelineno-191-7"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-191-8" name="__codelineno-191-8" href="#__codelineno-191-8"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
|
||
<a id="__codelineno-191-9" name="__codelineno-191-9" href="#__codelineno-191-9"></a><span class="w"> </span><span class="kr">const</span><span class="w"> </span><span class="n">rand</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">std</span><span class="p">.</span><span class="n">crypto</span><span class="p">.</span><span class="n">random</span><span class="p">;</span>
|
||
<a id="__codelineno-191-10" name="__codelineno-191-10" href="#__codelineno-191-10"></a><span class="w"> </span><span class="n">rand</span><span class="p">.</span><span class="n">shuffle</span><span class="p">(</span><span class="kt">i32</span><span class="p">,</span><span class="w"> </span><span class="o">&</span><span class="n">nums</span><span class="p">);</span>
|
||
<a id="__codelineno-191-11" name="__codelineno-191-11" href="#__codelineno-191-11"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">nums</span><span class="p">;</span>
|
||
<a id="__codelineno-191-12" name="__codelineno-191-12" href="#__codelineno-191-12"></a><span class="p">}</span>
|
||
<a id="__codelineno-191-13" name="__codelineno-191-13" href="#__codelineno-191-13"></a>
|
||
<a id="__codelineno-191-14" name="__codelineno-191-14" href="#__codelineno-191-14"></a><span class="c1">// 查找数组 nums 中数字 1 所在索引</span>
|
||
<a id="__codelineno-191-15" name="__codelineno-191-15" href="#__codelineno-191-15"></a><span class="k">fn</span><span class="w"> </span><span class="n">findOne</span><span class="p">(</span><span class="n">nums</span><span class="o">:</span><span class="w"> </span><span class="p">[]</span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-191-16" name="__codelineno-191-16" href="#__codelineno-191-16"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">..)</span><span class="w"> </span><span class="o">|</span><span class="n">num</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="o">|</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-191-17" name="__codelineno-191-17" href="#__codelineno-191-17"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
|
||
<a id="__codelineno-191-18" name="__codelineno-191-18" href="#__codelineno-191-18"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
|
||
<a id="__codelineno-191-19" name="__codelineno-191-19" href="#__codelineno-191-19"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">num</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nb">@intCast</span><span class="p">(</span><span class="n">i</span><span class="p">);</span>
|
||
<a id="__codelineno-191-20" name="__codelineno-191-20" href="#__codelineno-191-20"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-191-21" name="__codelineno-191-21" href="#__codelineno-191-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-191-22" name="__codelineno-191-22" href="#__codelineno-191-22"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<details class="pythontutor">
|
||
<summary>Code Visualization</summary>
|
||
<p><div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=import%20random%0A%0Adef%20random_numbers%28n%3A%20int%29%20-%3E%20list%5Bint%5D%3A%0A%20%20%20%20%22%22%22%E7%94%9F%E6%88%90%E4%B8%80%E4%B8%AA%E6%95%B0%E7%BB%84%EF%BC%8C%E5%85%83%E7%B4%A0%E4%B8%BA%3A%201,%202,%20...,%20n%20%EF%BC%8C%E9%A1%BA%E5%BA%8F%E8%A2%AB%E6%89%93%E4%B9%B1%22%22%22%0A%20%20%20%20%23%20%E7%94%9F%E6%88%90%E6%95%B0%E7%BB%84%20nums%20%3D%3A%201,%202,%203,%20...,%20n%0A%20%20%20%20nums%20%3D%20%5Bi%20for%20i%20in%20range%281,%20n%20%2B%201%29%5D%0A%20%20%20%20%23%20%E9%9A%8F%E6%9C%BA%E6%89%93%E4%B9%B1%E6%95%B0%E7%BB%84%E5%85%83%E7%B4%A0%0A%20%20%20%20random.shuffle%28nums%29%0A%20%20%20%20return%20nums%0A%0Adef%20find_one%28nums%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%9F%A5%E6%89%BE%E6%95%B0%E7%BB%84%20nums%20%E4%B8%AD%E6%95%B0%E5%AD%97%201%20%E6%89%80%E5%9C%A8%E7%B4%A2%E5%BC%95%22%22%22%0A%20%20%20%20for%20i%20in%20range%28len%28nums%29%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E5%BD%93%E5%85%83%E7%B4%A0%201%20%E5%9C%A8%E6%95%B0%E7%BB%84%E5%A4%B4%E9%83%A8%E6%97%B6%EF%BC%8C%E8%BE%BE%E5%88%B0%E6%9C%80%E4%BD%B3%E6%97%B6%E9%97%B4%E5%A4%8D%E6%9D%82%E5%BA%A6%20O%281%29%0A%20%20%20%20%20%20%20%20%23%20%E5%BD%93%E5%85%83%E7%B4%A0%201%20%E5%9C%A8%E6%95%B0%E7%BB%84%E5%B0%BE%E9%83%A8%E6%97%B6%EF%BC%8C%E8%BE%BE%E5%88%B0%E6%9C%80%E5%B7%AE%E6%97%B6%E9%97%B4%E5%A4%8D%E6%9D%82%E5%BA%A6%20O%28n%29%0A%20%20%20%20%20%20%20%20if%20nums%5Bi%5D%20%3D%3D%201%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%20i%0A%20%20%20%20return%20-1%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%2010%0A%20%20%20%20nums%20%3D%20random_numbers%28n%29%0A%20%20%20%20index%20%3D%20find_one%28nums%29%0A%20%20%20%20print%28%22%5Cn%E6%95%B0%E7%BB%84%20%5B%201,%202,%20...,%20n%20%5D%20%E8%A2%AB%E6%89%93%E4%B9%B1%E5%90%8E%20%3D%22,%20nums%29%0A%20%20%20%20print%28%22%E6%95%B0%E5%AD%97%201%20%E7%9A%84%E7%B4%A2%E5%BC%95%E4%B8%BA%22,%20index%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=25&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=import%20random%0A%0Adef%20random_numbers%28n%3A%20int%29%20-%3E%20list%5Bint%5D%3A%0A%20%20%20%20%22%22%22%E7%94%9F%E6%88%90%E4%B8%80%E4%B8%AA%E6%95%B0%E7%BB%84%EF%BC%8C%E5%85%83%E7%B4%A0%E4%B8%BA%3A%201,%202,%20...,%20n%20%EF%BC%8C%E9%A1%BA%E5%BA%8F%E8%A2%AB%E6%89%93%E4%B9%B1%22%22%22%0A%20%20%20%20%23%20%E7%94%9F%E6%88%90%E6%95%B0%E7%BB%84%20nums%20%3D%3A%201,%202,%203,%20...,%20n%0A%20%20%20%20nums%20%3D%20%5Bi%20for%20i%20in%20range%281,%20n%20%2B%201%29%5D%0A%20%20%20%20%23%20%E9%9A%8F%E6%9C%BA%E6%89%93%E4%B9%B1%E6%95%B0%E7%BB%84%E5%85%83%E7%B4%A0%0A%20%20%20%20random.shuffle%28nums%29%0A%20%20%20%20return%20nums%0A%0Adef%20find_one%28nums%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%9F%A5%E6%89%BE%E6%95%B0%E7%BB%84%20nums%20%E4%B8%AD%E6%95%B0%E5%AD%97%201%20%E6%89%80%E5%9C%A8%E7%B4%A2%E5%BC%95%22%22%22%0A%20%20%20%20for%20i%20in%20range%28len%28nums%29%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E5%BD%93%E5%85%83%E7%B4%A0%201%20%E5%9C%A8%E6%95%B0%E7%BB%84%E5%A4%B4%E9%83%A8%E6%97%B6%EF%BC%8C%E8%BE%BE%E5%88%B0%E6%9C%80%E4%BD%B3%E6%97%B6%E9%97%B4%E5%A4%8D%E6%9D%82%E5%BA%A6%20O%281%29%0A%20%20%20%20%20%20%20%20%23%20%E5%BD%93%E5%85%83%E7%B4%A0%201%20%E5%9C%A8%E6%95%B0%E7%BB%84%E5%B0%BE%E9%83%A8%E6%97%B6%EF%BC%8C%E8%BE%BE%E5%88%B0%E6%9C%80%E5%B7%AE%E6%97%B6%E9%97%B4%E5%A4%8D%E6%9D%82%E5%BA%A6%20O%28n%29%0A%20%20%20%20%20%20%20%20if%20nums%5Bi%5D%20%3D%3D%201%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%20i%0A%20%20%20%20return%20-1%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%2010%0A%20%20%20%20nums%20%3D%20random_numbers%28n%29%0A%20%20%20%20index%20%3D%20find_one%28nums%29%0A%20%20%20%20print%28%22%5Cn%E6%95%B0%E7%BB%84%20%5B%201,%202,%20...,%20n%20%5D%20%E8%A2%AB%E6%89%93%E4%B9%B1%E5%90%8E%20%3D%22,%20nums%29%0A%20%20%20%20print%28%22%E6%95%B0%E5%AD%97%201%20%E7%9A%84%E7%B4%A2%E5%BC%95%E4%B8%BA%22,%20index%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=25&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen ></a></div></p>
|
||
</details>
|
||
<p>It's important to note that the best-case time complexity is rarely used in practice, as it is usually only achievable under very low probabilities and might be misleading. <strong>The worst-case time complexity is more practical as it provides a safety value for efficiency</strong>, allowing us to confidently use the algorithm.</p>
|
||
<p>From the above example, it's clear that both the worst-case and best-case time complexities only occur under "special data distributions," which may have a small probability of occurrence and may not accurately reflect the algorithm's run efficiency. In contrast, <strong>the average time complexity can reflect the algorithm's efficiency under random input data</strong>, denoted by the <span class="arithmatex">\(\Theta\)</span> notation.</p>
|
||
<p>For some algorithms, we can simply estimate the average case under a random data distribution. For example, in the aforementioned example, since the input array is shuffled, the probability of element <span class="arithmatex">\(1\)</span> appearing at any index is equal. Therefore, the average number of loops for the algorithm is half the length of the array <span class="arithmatex">\(n / 2\)</span>, giving an average time complexity of <span class="arithmatex">\(\Theta(n / 2) = \Theta(n)\)</span>.</p>
|
||
<p>However, calculating the average time complexity for more complex algorithms can be quite difficult, as it's challenging to analyze the overall mathematical expectation under the data distribution. In such cases, we usually use the worst-case time complexity as the standard for judging the efficiency of the algorithm.</p>
|
||
<div class="admonition question">
|
||
<p class="admonition-title">Why is the <span class="arithmatex">\(\Theta\)</span> symbol rarely seen?</p>
|
||
<p>Possibly because the <span class="arithmatex">\(O\)</span> notation is more commonly spoken, it is often used to represent the average time complexity. However, strictly speaking, this practice is not accurate. In this book and other materials, if you encounter statements like "average time complexity <span class="arithmatex">\(O(n)\)</span>", please understand it directly as <span class="arithmatex">\(\Theta(n)\)</span>.</p>
|
||
</div>
|
||
|
||
<!-- Source file information -->
|
||
|
||
|
||
<!-- Was this page helpful? -->
|
||
|
||
|
||
|
||
|
||
<!-- Previous and next pages link -->
|
||
<nav
|
||
class="md-footer__inner md-grid"
|
||
aria-label="Footer"
|
||
|
||
>
|
||
|
||
<!-- Link to previous page -->
|
||
|
||
|
||
<a
|
||
href="../iteration_and_recursion/"
|
||
class="md-footer__link md-footer__link--prev"
|
||
aria-label="Previous: 2.2 Iteration and Recursion"
|
||
rel="prev"
|
||
>
|
||
<div class="md-footer__button md-icon">
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
|
||
</div>
|
||
<div class="md-footer__title">
|
||
<span class="md-footer__direction">
|
||
Previous
|
||
</span>
|
||
<div class="md-ellipsis">
|
||
2.2 Iteration and Recursion
|
||
</div>
|
||
</div>
|
||
</a>
|
||
|
||
|
||
<!-- Link to next page -->
|
||
|
||
|
||
<a
|
||
href="../space_complexity/"
|
||
class="md-footer__link md-footer__link--next"
|
||
aria-label="Next: 2.4 Space Complexity"
|
||
rel="next"
|
||
>
|
||
<div class="md-footer__title">
|
||
<span class="md-footer__direction">
|
||
Next
|
||
</span>
|
||
<div class="md-ellipsis">
|
||
2.4 Space Complexity
|
||
</div>
|
||
</div>
|
||
<div class="md-footer__button md-icon">
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
|
||
</div>
|
||
</a>
|
||
|
||
</nav>
|
||
|
||
<!-- Comment system -->
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<h5 align="center" id="__comments">Feel free to drop your insights, questions or suggestions</h5>
|
||
|
||
<!-- Insert generated snippet here -->
|
||
<script
|
||
src="https://giscus.app/client.js"
|
||
data-repo="krahets/hello-algo"
|
||
data-repo-id="R_kgDOIXtSqw"
|
||
data-category="Announcements"
|
||
data-category-id="DIC_kwDOIXtSq84CSZk_"
|
||
data-mapping="pathname"
|
||
data-strict="1"
|
||
data-reactions-enabled="1"
|
||
data-emit-metadata="0"
|
||
data-input-position="top"
|
||
data-theme="light"
|
||
data-lang="en"
|
||
crossorigin="anonymous"
|
||
async
|
||
>
|
||
</script>
|
||
<!-- Synchronize Giscus theme with palette -->
|
||
<script>
|
||
var giscus = document.querySelector("script[src*=giscus]")
|
||
|
||
/* Set palette on initial load */
|
||
var palette = __md_get("__palette")
|
||
if (palette && typeof palette.color === "object") {
|
||
var theme = palette.color.scheme === "slate" ? "dark_dimmed" : "light"
|
||
giscus.setAttribute("data-theme", theme)
|
||
}
|
||
|
||
/* Register event handlers after documented loaded */
|
||
document.addEventListener("DOMContentLoaded", function() {
|
||
var ref = document.querySelector("[data-md-component=palette]")
|
||
ref.addEventListener("change", function() {
|
||
var palette = __md_get("__palette")
|
||
if (palette && typeof palette.color === "object") {
|
||
var theme = palette.color.scheme === "slate" ? "dark_dimmed" : "light"
|
||
|
||
/* Instruct Giscus to change theme */
|
||
var frame = document.querySelector(".giscus-frame")
|
||
frame.contentWindow.postMessage(
|
||
{ giscus: { setConfig: { theme } } },
|
||
"https://giscus.app"
|
||
)
|
||
}
|
||
})
|
||
})
|
||
</script>
|
||
|
||
|
||
</article>
|
||
</div>
|
||
|
||
|
||
<script>var tabs=__md_get("__tabs");if(Array.isArray(tabs))e:for(var set of document.querySelectorAll(".tabbed-set")){var tab,labels=set.querySelector(".tabbed-labels");for(tab of tabs)for(var label of labels.getElementsByTagName("label"))if(label.innerText.trim()===tab){var input=document.getElementById(label.htmlFor);input.checked=!0;continue e}}</script>
|
||
|
||
<script>var target=document.getElementById(location.hash.slice(1));target&&target.name&&(target.checked=target.name.startsWith("__tabbed_"))</script>
|
||
</div>
|
||
|
||
<button type="button" class="md-top md-icon" data-md-component="top" hidden>
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8v12Z"/></svg>
|
||
Back to top
|
||
</button>
|
||
|
||
</main>
|
||
|
||
<footer class="md-footer">
|
||
|
||
|
||
|
||
<nav class="md-footer__inner md-grid" aria-label="Footer" >
|
||
|
||
|
||
<a href="../iteration_and_recursion/" class="md-footer__link md-footer__link--prev" aria-label="Previous: 2.2 Iteration and Recursion">
|
||
<div class="md-footer__button md-icon">
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
|
||
</div>
|
||
<div class="md-footer__title">
|
||
<span class="md-footer__direction">
|
||
Previous
|
||
</span>
|
||
<div class="md-ellipsis">
|
||
2.2 Iteration and Recursion
|
||
</div>
|
||
</div>
|
||
</a>
|
||
|
||
|
||
|
||
<a href="../space_complexity/" class="md-footer__link md-footer__link--next" aria-label="Next: 2.4 Space Complexity">
|
||
<div class="md-footer__title">
|
||
<span class="md-footer__direction">
|
||
Next
|
||
</span>
|
||
<div class="md-ellipsis">
|
||
2.4 Space Complexity
|
||
</div>
|
||
</div>
|
||
<div class="md-footer__button md-icon">
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
|
||
</div>
|
||
</a>
|
||
|
||
</nav>
|
||
|
||
|
||
<div class="md-footer-meta md-typeset">
|
||
<div class="md-footer-meta__inner md-grid">
|
||
<div class="md-copyright">
|
||
|
||
<div class="md-copyright__highlight">
|
||
Copyright © 2022-2024 krahets</br>The website content is licensed under <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">CC BY-NC-SA 4.0</a>
|
||
</div>
|
||
|
||
|
||
</div>
|
||
|
||
<div class="md-social">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<a href="https://github.com/krahets" target="_blank" rel="noopener" title="github.com" class="md-social__link">
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
|
||
</a>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<a href="https://twitter.com/krahets" target="_blank" rel="noopener" title="twitter.com" class="md-social__link">
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"/></svg>
|
||
</a>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<a href="https://leetcode.cn/u/jyd/" target="_blank" rel="noopener" title="leetcode.cn" class="md-social__link">
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 640 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M392.8 1.2c-17-4.9-34.7 5-39.6 22l-128 448c-4.9 17 5 34.7 22 39.6s34.7-5 39.6-22l128-448c4.9-17-5-34.7-22-39.6zm80.6 120.1c-12.5 12.5-12.5 32.8 0 45.3l89.3 89.4-89.4 89.4c-12.5 12.5-12.5 32.8 0 45.3s32.8 12.5 45.3 0l112-112c12.5-12.5 12.5-32.8 0-45.3l-112-112c-12.5-12.5-32.8-12.5-45.3 0zm-306.7 0c-12.5-12.5-32.8-12.5-45.3 0l-112 112c-12.5 12.5-12.5 32.8 0 45.3l112 112c12.5 12.5 32.8 12.5 45.3 0s12.5-32.8 0-45.3L77.3 256l89.4-89.4c12.5-12.5 12.5-32.8 0-45.3z"/></svg>
|
||
</a>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
</div>
|
||
</footer>
|
||
|
||
</div>
|
||
<div class="md-dialog" data-md-component="dialog">
|
||
<div class="md-dialog__inner md-typeset"></div>
|
||
</div>
|
||
|
||
|
||
<script id="__config" type="application/json">{"base": "../..", "features": ["announce.dismiss", "content.action.edit", "content.code.annotate", "content.code.copy", "content.tabs.link", "content.tooltips", "navigation.indexes", "navigation.top", "navigation.footer", "navigation.tracking", "search.highlight", "search.share", "search.suggest", "toc.follow"], "search": "../../assets/javascripts/workers/search.b8dbb3d2.min.js", "translations": {"clipboard.copied": "Copied to clipboard", "clipboard.copy": "Copy to clipboard", "search.result.more.one": "1 more on this page", "search.result.more.other": "# more on this page", "search.result.none": "No matching documents", "search.result.one": "1 matching document", "search.result.other": "# matching documents", "search.result.placeholder": "Type to start searching", "search.result.term.missing": "Missing", "select.version": "Select version"}}</script>
|
||
|
||
|
||
<script src="../../assets/javascripts/bundle.c18c5fb9.min.js"></script>
|
||
|
||
<script src="../../javascripts/mathjax.js"></script>
|
||
|
||
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
|
||
|
||
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
||
|
||
|
||
<script>document$.subscribe(() => {const lightbox = GLightbox({"touchNavigation": true, "loop": false, "zoomable": true, "draggable": false, "openEffect": "zoom", "closeEffect": "zoom", "slideEffect": "none"});})</script></body>
|
||
</html> |