hello-algo/codes/java/chapter_tree/binary_search_tree.java
2023-08-31 02:31:31 +08:00

158 lines
4.7 KiB
Java

/**
* File: binary_search_tree.java
* Created Time: 2022-11-25
* Author: Krahets (krahets@163.com)
*/
package chapter_tree;
import utils.*;
/* 二叉搜索树 */
class BinarySearchTree {
private TreeNode root;
/* 构造方法 */
public BinarySearchTree() {
// 初始化空树
root = null;
}
/* 获取二叉树根节点 */
public TreeNode getRoot() {
return root;
}
/* 查找节点 */
public TreeNode search(int num) {
TreeNode cur = root;
// 循环查找,越过叶节点后跳出
while (cur != null) {
// 目标节点在 cur 的右子树中
if (cur.val < num)
cur = cur.right;
// 目标节点在 cur 的左子树中
else if (cur.val > num)
cur = cur.left;
// 找到目标节点,跳出循环
else
break;
}
// 返回目标节点
return cur;
}
/* 插入节点 */
public void insert(int num) {
// 若树为空,则初始化根节点
if (root == null) {
root = new TreeNode(num);
return;
}
TreeNode cur = root, pre = null;
// 循环查找,越过叶节点后跳出
while (cur != null) {
// 找到重复节点,直接返回
if (cur.val == num)
return;
pre = cur;
// 插入位置在 cur 的右子树中
if (cur.val < num)
cur = cur.right;
// 插入位置在 cur 的左子树中
else
cur = cur.left;
}
// 插入节点
TreeNode node = new TreeNode(num);
if (pre.val < num)
pre.right = node;
else
pre.left = node;
}
/* 删除节点 */
public void remove(int num) {
// 若树为空,直接提前返回
if (root == null)
return;
TreeNode cur = root, pre = null;
// 循环查找,越过叶节点后跳出
while (cur != null) {
// 找到待删除节点,跳出循环
if (cur.val == num)
break;
pre = cur;
// 待删除节点在 cur 的右子树中
if (cur.val < num)
cur = cur.right;
// 待删除节点在 cur 的左子树中
else
cur = cur.left;
}
// 若无待删除节点,则直接返回
if (cur == null)
return;
// 子节点数量 = 0 or 1
if (cur.left == null || cur.right == null) {
// 当子节点数量 = 0 / 1 时, child = null / 该子节点
TreeNode child = cur.left != null ? cur.left : cur.right;
// 删除节点 cur
if (cur != root) {
if (pre.left == cur)
pre.left = child;
else
pre.right = child;
} else {
// 若删除节点为根节点,则重新指定根节点
root = child;
}
}
// 子节点数量 = 2
else {
// 获取中序遍历中 cur 的下一个节点
TreeNode tmp = cur.right;
while (tmp.left != null) {
tmp = tmp.left;
}
// 递归删除节点 tmp
remove(tmp.val);
// 用 tmp 覆盖 cur
cur.val = tmp.val;
}
}
}
public class binary_search_tree {
public static void main(String[] args) {
/* 初始化二叉搜索树 */
BinarySearchTree bst = new BinarySearchTree();
// 请注意,不同的插入顺序会生成不同的二叉树,该序列可以生成一个完美二叉树
int[] nums = { 8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15 };
for (int num : nums) {
bst.insert(num);
}
System.out.println("\n初始化的二叉树为\n");
PrintUtil.printTree(bst.getRoot());
/* 查找节点 */
TreeNode node = bst.search(7);
System.out.println("\n查找到的节点对象为 " + node + ",节点值 = " + node.val);
/* 插入节点 */
bst.insert(16);
System.out.println("\n插入节点 16 后,二叉树为\n");
PrintUtil.printTree(bst.getRoot());
/* 删除节点 */
bst.remove(1);
System.out.println("\n删除节点 1 后,二叉树为\n");
PrintUtil.printTree(bst.getRoot());
bst.remove(2);
System.out.println("\n删除节点 2 后,二叉树为\n");
PrintUtil.printTree(bst.getRoot());
bst.remove(4);
System.out.println("\n删除节点 4 后,二叉树为\n");
PrintUtil.printTree(bst.getRoot());
}
}