hello-algo/zh-hant/chapter_backtracking/n_queens_problem/index.html
2024-09-28 09:26:59 +08:00

4585 lines
No EOL
319 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="zh-Hant" class="no-js">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<meta name="description" content="動畫圖解、一鍵執行的資料結構與演算法教程">
<meta name="author" content="krahets">
<link rel="canonical" href="https://www.hello-algo.com/zh-hant/chapter_backtracking/n_queens_problem/">
<link rel="prev" href="../subset_sum_problem/">
<link rel="next" href="../summary/">
<link rel="icon" href="../../assets/images/favicon.png">
<meta name="generator" content="mkdocs-1.5.3, mkdocs-material-9.5.5">
<title>13.4   N 皇后問題 - Hello 演算法</title>
<link rel="stylesheet" href="../../assets/stylesheets/main.50c56a3b.min.css">
<link rel="stylesheet" href="../../assets/stylesheets/palette.06af60db.min.css">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Noto+Sans+SC:300,300i,400,400i,700,700i%7CFira+Code:400,400i,700,700i&display=fallback">
<style>:root{--md-text-font:"Noto Sans SC";--md-code-font:"Fira Code"}</style>
<link rel="stylesheet" href="../../stylesheets/extra.css">
<script>__md_scope=new URL("../..",location),__md_hash=e=>[...e].reduce((e,_)=>(e<<5)-e+_.charCodeAt(0),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script>
<link href="../../assets/stylesheets/glightbox.min.css" rel="stylesheet"/><style>
html.glightbox-open { overflow: initial; height: 100%; }
.gslide-title { margin-top: 0px; user-select: text; }
.gslide-desc { color: #666; user-select: text; }
.gslide-image img { background: white; }
.gscrollbar-fixer { padding-right: 15px; }
.gdesc-inner { font-size: 0.75rem; }
body[data-md-color-scheme="slate"] .gdesc-inner { background: var(--md-default-bg-color);}
body[data-md-color-scheme="slate"] .gslide-title { color: var(--md-default-fg-color);}
body[data-md-color-scheme="slate"] .gslide-desc { color: var(--md-default-fg-color);}
</style> <script src="../../assets/javascripts/glightbox.min.js"></script></head>
<body dir="ltr" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="teal">
<input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
<input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
<label class="md-overlay" for="__drawer"></label>
<div data-md-component="skip">
<a href="#134-n" class="md-skip">
跳轉至
</a>
</div>
<div data-md-component="announce">
<aside class="md-banner">
<div class="md-banner__inner md-grid md-typeset">
<button class="md-banner__button md-icon" aria-label="不再顯示此訊息">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
</button>
<div class="banner-svg">
<svg xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 512 512"><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.-->
<path
d="M480 32c0-12.9-7.8-24.6-19.8-29.6s-25.7-2.2-34.9 6.9L381.7 53c-48 48-113.1 75-181 75H192 160 64c-35.3 0-64 28.7-64 64v96c0 35.3 28.7 64 64 64l0 128c0 17.7 14.3 32 32 32h64c17.7 0 32-14.3 32-32V352l8.7 0c67.9 0 133 27 181 75l43.6 43.6c9.2 9.2 22.9 11.9 34.9 6.9s19.8-16.6 19.8-29.6V300.4c18.6-8.8 32-32.5 32-60.4s-13.4-51.6-32-60.4V32zm-64 76.7V240 371.3C357.2 317.8 280.5 288 200.7 288H192V192h8.7c79.8 0 156.5-29.8 215.3-83.3z" />
</svg>
<span>紙質書(簡體中文版)已發行,詳情請見<a href="/chapter_paperbook/">這裡</a></span>
</div>
</div>
<script>var content,el=document.querySelector("[data-md-component=announce]");el&&(content=el.querySelector(".md-typeset"),__md_hash(content.innerHTML)===__md_get("__announce")&&(el.hidden=!0))</script>
</aside>
</div>
<header class="md-header md-header--shadow" data-md-component="header">
<nav class="md-header__inner md-grid" aria-label="頁首">
<a href="../.." title="Hello 演算法" class="md-header__button md-logo" aria-label="Hello 演算法" data-md-component="logo">
<img src="../../assets/images/logo.svg" alt="logo">
</a>
<label class="md-header__button md-icon" for="__drawer">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z"/></svg>
</label>
<div class="md-header__title" data-md-component="header-title">
<div class="md-header__ellipsis">
<div class="md-header__topic">
<span class="md-ellipsis">
Hello 演算法
</span>
</div>
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
13.4 &nbsp; N 皇后問題
</span>
</div>
</div>
</div>
<form class="md-header__option" data-md-component="palette">
<input class="md-option" data-md-color-media="" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="teal" aria-label="深色模式" type="radio" name="__palette" id="__palette_0">
<label class="md-header__button md-icon" title="深色模式" for="__palette_1" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M7.5 2c-1.79 1.15-3 3.18-3 5.5s1.21 4.35 3.03 5.5C4.46 13 2 10.54 2 7.5A5.5 5.5 0 0 1 7.5 2m11.57 1.5 1.43 1.43L4.93 20.5 3.5 19.07 19.07 3.5m-6.18 2.43L11.41 5 9.97 6l.42-1.7L9 3.24l1.75-.12.58-1.65L12 3.1l1.73.03-1.35 1.13.51 1.67m-3.3 3.61-1.16-.73-1.12.78.34-1.32-1.09-.83 1.36-.09.45-1.29.51 1.27 1.36.03-1.05.87.4 1.31M19 13.5a5.5 5.5 0 0 1-5.5 5.5c-1.22 0-2.35-.4-3.26-1.07l7.69-7.69c.67.91 1.07 2.04 1.07 3.26m-4.4 6.58 2.77-1.15-.24 3.35-2.53-2.2m4.33-2.7 1.15-2.77 2.2 2.54-3.35.23m1.15-4.96-1.14-2.78 3.34.24-2.2 2.54M9.63 18.93l2.77 1.15-2.53 2.19-.24-3.34Z"/></svg>
</label>
<input class="md-option" data-md-color-media="" data-md-color-scheme="slate" data-md-color-primary="black" data-md-color-accent="teal" aria-label="淺色模式" type="radio" name="__palette" id="__palette_1">
<label class="md-header__button md-icon" title="淺色模式" for="__palette_0" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M7.5 2c-1.79 1.15-3 3.18-3 5.5s1.21 4.35 3.03 5.5C4.46 13 2 10.54 2 7.5A5.5 5.5 0 0 1 7.5 2m11.57 1.5 1.43 1.43L4.93 20.5 3.5 19.07 19.07 3.5m-6.18 2.43L11.41 5 9.97 6l.42-1.7L9 3.24l1.75-.12.58-1.65L12 3.1l1.73.03-1.35 1.13.51 1.67m-3.3 3.61-1.16-.73-1.12.78.34-1.32-1.09-.83 1.36-.09.45-1.29.51 1.27 1.36.03-1.05.87.4 1.31M19 13.5a5.5 5.5 0 0 1-5.5 5.5c-1.22 0-2.35-.4-3.26-1.07l7.69-7.69c.67.91 1.07 2.04 1.07 3.26m-4.4 6.58 2.77-1.15-.24 3.35-2.53-2.2m4.33-2.7 1.15-2.77 2.2 2.54-3.35.23m1.15-4.96-1.14-2.78 3.34.24-2.2 2.54M9.63 18.93l2.77 1.15-2.53 2.19-.24-3.34Z"/></svg>
</label>
</form>
<script>var media,input,key,value,palette=__md_get("__palette");if(palette&&palette.color){"(prefers-color-scheme)"===palette.color.media&&(media=matchMedia("(prefers-color-scheme: light)"),input=document.querySelector(media.matches?"[data-md-color-media='(prefers-color-scheme: light)']":"[data-md-color-media='(prefers-color-scheme: dark)']"),palette.color.media=input.getAttribute("data-md-color-media"),palette.color.scheme=input.getAttribute("data-md-color-scheme"),palette.color.primary=input.getAttribute("data-md-color-primary"),palette.color.accent=input.getAttribute("data-md-color-accent"));for([key,value]of Object.entries(palette.color))document.body.setAttribute("data-md-color-"+key,value)}</script>
<div class="md-header__option">
<div class="md-select">
<button class="md-header__button md-icon" aria-label="選擇語言">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m12.87 15.07-2.54-2.51.03-.03A17.52 17.52 0 0 0 14.07 6H17V4h-7V2H8v2H1v2h11.17C11.5 7.92 10.44 9.75 9 11.35 8.07 10.32 7.3 9.19 6.69 8h-2c.73 1.63 1.73 3.17 2.98 4.56l-5.09 5.02L4 19l5-5 3.11 3.11.76-2.04M18.5 10h-2L12 22h2l1.12-3h4.75L21 22h2l-4.5-12m-2.62 7 1.62-4.33L19.12 17h-3.24Z"/></svg>
</button>
<div class="md-select__inner">
<ul class="md-select__list">
<li class="md-select__item">
<a href="/chapter_backtracking/n_queens_problem/" hreflang="zh" class="md-select__link">
简体中文
</a>
</li>
<li class="md-select__item">
<a href="/zh-hant/chapter_backtracking/n_queens_problem/" hreflang="zh-Hant" class="md-select__link">
繁體中文
</a>
</li>
<li class="md-select__item">
<a href="/en/chapter_backtracking/n_queens_problem/" hreflang="en" class="md-select__link">
English
</a>
</li>
</ul>
</div>
</div>
</div>
<label class="md-header__button md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
</label>
<div class="md-search" data-md-component="search" role="dialog">
<label class="md-search__overlay" for="__search"></label>
<div class="md-search__inner" role="search">
<form class="md-search__form" name="search">
<input type="text" class="md-search__input" name="query" aria-label="搜尋" placeholder="搜尋" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required>
<label class="md-search__icon md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</label>
<nav class="md-search__options" aria-label="搜尋">
<a href="javascript:void(0)" class="md-search__icon md-icon" title="分享" aria-label="分享" data-clipboard data-clipboard-text="" data-md-component="search-share" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 16.08c-.76 0-1.44.3-1.96.77L8.91 12.7c.05-.23.09-.46.09-.7 0-.24-.04-.47-.09-.7l7.05-4.11c.54.5 1.25.81 2.04.81a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3c0 .24.04.47.09.7L8.04 9.81C7.5 9.31 6.79 9 6 9a3 3 0 0 0-3 3 3 3 0 0 0 3 3c.79 0 1.5-.31 2.04-.81l7.12 4.15c-.05.21-.08.43-.08.66 0 1.61 1.31 2.91 2.92 2.91 1.61 0 2.92-1.3 2.92-2.91A2.92 2.92 0 0 0 18 16.08Z"/></svg>
</a>
<button type="reset" class="md-search__icon md-icon" title="清空" aria-label="清空" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
</button>
</nav>
<div class="md-search__suggest" data-md-component="search-suggest"></div>
</form>
<div class="md-search__output">
<div class="md-search__scrollwrap" data-md-scrollfix>
<div class="md-search-result" data-md-component="search-result">
<div class="md-search-result__meta">
正在初始化搜尋引擎
</div>
<ol class="md-search-result__list" role="presentation"></ol>
</div>
</div>
</div>
</div>
</div>
<div class="md-header__source">
<a href="https://github.com/krahets/hello-algo" title="前往倉庫" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
</nav>
</header>
<div class="md-container" data-md-component="container">
<main class="md-main" data-md-component="main">
<div class="md-main__inner md-grid">
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--primary" aria-label="導航" data-md-level="0">
<label class="md-nav__title" for="__drawer">
<a href="../.." title="Hello 演算法" class="md-nav__button md-logo" aria-label="Hello 演算法" data-md-component="logo">
<img src="../../assets/images/logo.svg" alt="logo">
</a>
Hello 演算法
</label>
<div class="md-nav__source">
<a href="https://github.com/krahets/hello-algo" title="前往倉庫" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_1" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_hello_algo/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m13.13 22.19-1.63-3.83c1.57-.58 3.04-1.36 4.4-2.27l-2.77 6.1M5.64 12.5l-3.83-1.63 6.1-2.77C7 9.46 6.22 10.93 5.64 12.5M19.22 4c.28 0 .53 0 .74.05.17 1.39-.02 4.25-3.3 7.53-1.7 1.71-3.73 3.02-6.01 3.89l-2.15-2.1c.92-2.31 2.23-4.34 3.92-6.03C15.18 4.58 17.64 4 19.22 4m0-2c-1.98 0-4.98.69-8.22 3.93-2.19 2.19-3.5 4.6-4.35 6.71-.28.75-.09 1.57.46 2.13l2.13 2.12c.38.38.89.61 1.42.61.23 0 .47-.06.7-.15A19.1 19.1 0 0 0 18.07 13c5.66-5.66 3.54-10.61 3.54-10.61S20.7 2 19.22 2m-4.68 7.46c-.78-.78-.78-2.05 0-2.83s2.05-.78 2.83 0c.77.78.78 2.05 0 2.83-.78.78-2.05.78-2.83 0m-5.66 7.07-1.41-1.41 1.41 1.41M6.24 22l3.64-3.64c-.34-.09-.67-.24-.97-.45L4.83 22h1.41M2 22h1.41l4.77-4.76-1.42-1.41L2 20.59V22m0-2.83 4.09-4.08c-.21-.3-.36-.62-.45-.97L2 17.76v1.41Z"/></svg>
<span class="md-ellipsis">
</span>
</a>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_1_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_1">
<span class="md-nav__icon md-icon"></span>
</label>
<ul class="md-nav__list" data-md-scrollfix>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_2" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_preface/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M21 4H3a2 2 0 0 0-2 2v13a2 2 0 0 0 2 2h18a2 2 0 0 0 2-2V6a2 2 0 0 0-2-2M3 19V6h8v13H3m18 0h-8V6h8v13m-7-9.5h6V11h-6V9.5m0 2.5h6v1.5h-6V12m0 2.5h6V16h-6v-1.5Z"/></svg>
<span class="md-ellipsis">
第 0 章 &nbsp; 前言
</span>
</a>
<label class="md-nav__link " for="__nav_2" id="__nav_2_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_2_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_2">
<span class="md-nav__icon md-icon"></span>
第 0 章 &nbsp; 前言
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_preface/about_the_book/" class="md-nav__link">
<span class="md-ellipsis">
0.1 &nbsp; 關於本書
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/suggestions/" class="md-nav__link">
<span class="md-ellipsis">
0.2 &nbsp; 如何使用本書
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/summary/" class="md-nav__link">
<span class="md-ellipsis">
0.3 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_3" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_introduction/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2m0 16H5V5h14v14M6.2 7.7h5v1.5h-5V7.7m6.8 8.1h5v1.5h-5v-1.5m0-2.6h5v1.5h-5v-1.5M8 18h1.5v-2h2v-1.5h-2v-2H8v2H6V16h2v2m6.1-7.1 1.4-1.4 1.4 1.4 1.1-1-1.4-1.4L18 7.1 16.9 6l-1.4 1.4L14.1 6 13 7.1l1.4 1.4L13 9.9l1.1 1Z"/></svg>
<span class="md-ellipsis">
第 1 章 &nbsp; 初識演算法
</span>
</a>
<label class="md-nav__link " for="__nav_3" id="__nav_3_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 1 章 &nbsp; 初識演算法
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_introduction/algorithms_are_everywhere/" class="md-nav__link">
<span class="md-ellipsis">
1.1 &nbsp; 演算法無處不在
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/what_is_dsa/" class="md-nav__link">
<span class="md-ellipsis">
1.2 &nbsp; 演算法是什麼
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/summary/" class="md-nav__link">
<span class="md-ellipsis">
1.3 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_4" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_computational_complexity/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 複雜度分析
</span>
</a>
<label class="md-nav__link " for="__nav_4" id="__nav_4_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_4_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_4">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 複雜度分析
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/performance_evaluation/" class="md-nav__link">
<span class="md-ellipsis">
2.1 &nbsp; 演算法效率評估
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/iteration_and_recursion/" class="md-nav__link">
<span class="md-ellipsis">
2.2 &nbsp; 迭代與遞迴
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/time_complexity/" class="md-nav__link">
<span class="md-ellipsis">
2.3 &nbsp; 時間複雜度
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/space_complexity/" class="md-nav__link">
<span class="md-ellipsis">
2.4 &nbsp; 空間複雜度
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/summary/" class="md-nav__link">
<span class="md-ellipsis">
2.5 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_5" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_data_structure/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M11 13.5v8H3v-8h8m-2 2H5v4h4v-4M12 2l5.5 9h-11L12 2m0 3.86L10.08 9h3.84L12 5.86M17.5 13c2.5 0 4.5 2 4.5 4.5S20 22 17.5 22 13 20 13 17.5s2-4.5 4.5-4.5m0 2a2.5 2.5 0 0 0-2.5 2.5 2.5 2.5 0 0 0 2.5 2.5 2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-2.5-2.5Z"/></svg>
<span class="md-ellipsis">
第 3 章 &nbsp; 資料結構
</span>
</a>
<label class="md-nav__link " for="__nav_5" id="__nav_5_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_5_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_5">
<span class="md-nav__icon md-icon"></span>
第 3 章 &nbsp; 資料結構
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_data_structure/classification_of_data_structure/" class="md-nav__link">
<span class="md-ellipsis">
3.1 &nbsp; 資料結構分類
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/basic_data_types/" class="md-nav__link">
<span class="md-ellipsis">
3.2 &nbsp; 基本資料型別
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/number_encoding/" class="md-nav__link">
<span class="md-ellipsis">
3.3 &nbsp; 數字編碼 *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/character_encoding/" class="md-nav__link">
<span class="md-ellipsis">
3.4 &nbsp; 字元編碼 *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/summary/" class="md-nav__link">
<span class="md-ellipsis">
3.5 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_6" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_array_and_linkedlist/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 5v14h17V5H3m4 2v2H5V7h2m-2 6v-2h2v2H5m0 2h2v2H5v-2m13 2H9v-2h9v2m0-4H9v-2h9v2m0-4H9V7h9v2Z"/></svg>
<span class="md-ellipsis">
第 4 章 &nbsp; 陣列與鏈結串列
</span>
</a>
<label class="md-nav__link " for="__nav_6" id="__nav_6_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_6_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_6">
<span class="md-nav__icon md-icon"></span>
第 4 章 &nbsp; 陣列與鏈結串列
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/array/" class="md-nav__link">
<span class="md-ellipsis">
4.1 &nbsp; 陣列
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/linked_list/" class="md-nav__link">
<span class="md-ellipsis">
4.2 &nbsp; 鏈結串列
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/list/" class="md-nav__link">
<span class="md-ellipsis">
4.3 &nbsp; 串列
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/ram_and_cache/" class="md-nav__link">
<span class="md-ellipsis">
4.4 &nbsp; 記憶體與快取 *
</span>
<span class="md-status md-status--new" title="最近新增">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/summary/" class="md-nav__link">
<span class="md-ellipsis">
4.5 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_7" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_stack_and_queue/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17.36 20.2v-5.38h1.79V22H3v-7.18h1.8v5.38h12.56M6.77 14.32l.37-1.76 8.79 1.85-.37 1.76-8.79-1.85m1.16-4.21.76-1.61 8.14 3.78-.76 1.62-8.14-3.79m2.26-3.99 1.15-1.38 6.9 5.76-1.15 1.37-6.9-5.75m4.45-4.25L20 9.08l-1.44 1.07-5.36-7.21 1.44-1.07M6.59 18.41v-1.8h8.98v1.8H6.59Z"/></svg>
<span class="md-ellipsis">
第 5 章 &nbsp; 堆疊與佇列
</span>
</a>
<label class="md-nav__link " for="__nav_7" id="__nav_7_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 5 章 &nbsp; 堆疊與佇列
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/stack/" class="md-nav__link">
<span class="md-ellipsis">
5.1 &nbsp; 堆疊
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/queue/" class="md-nav__link">
<span class="md-ellipsis">
5.2 &nbsp; 佇列
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/deque/" class="md-nav__link">
<span class="md-ellipsis">
5.3 &nbsp; 雙向佇列
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/summary/" class="md-nav__link">
<span class="md-ellipsis">
5.4 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_8" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_hashing/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 雜湊表
</span>
</a>
<label class="md-nav__link " for="__nav_8" id="__nav_8_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_8_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_8">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 雜湊表
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_map/" class="md-nav__link">
<span class="md-ellipsis">
6.1 &nbsp; 雜湊表
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_collision/" class="md-nav__link">
<span class="md-ellipsis">
6.2 &nbsp; 雜湊衝突
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
6.3 &nbsp; 雜湊演算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/summary/" class="md-nav__link">
<span class="md-ellipsis">
6.4 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_9" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_tree/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.5 17c-.14 0-.26 0-.39.04L17.5 13.8c.45-.45.75-1.09.75-1.8a2.5 2.5 0 0 0-2.5-2.5c-.14 0-.25 0-.4.04L13.74 6.3c.47-.46.76-1.09.76-1.8a2.5 2.5 0 0 0-5 0c0 .7.29 1.34.76 1.79L8.65 9.54c-.15-.04-.26-.04-.4-.04a2.5 2.5 0 0 0-2.5 2.5c0 .71.29 1.34.75 1.79l-1.61 3.25C4.76 17 4.64 17 4.5 17a2.5 2.5 0 0 0 0 5A2.5 2.5 0 0 0 7 19.5c0-.7-.29-1.34-.76-1.79l1.62-3.25c.14.04.26.04.39.04s.25 0 .38-.04l1.63 3.25c-.47.45-.76 1.09-.76 1.79a2.5 2.5 0 0 0 5 0A2.5 2.5 0 0 0 12 17c-.13 0-.26 0-.39.04L10 13.8c.45-.45.75-1.09.75-1.8 0-.7-.29-1.33-.75-1.79l1.61-3.25c.13.04.26.04.39.04s.26 0 .39-.04L14 10.21a2.5 2.5 0 0 0 1.75 4.29c.13 0 .25 0 .38-.04l1.63 3.25c-.47.45-.76 1.09-.76 1.79a2.5 2.5 0 0 0 5 0 2.5 2.5 0 0 0-2.5-2.5m-15 3.5c-.55 0-1-.45-1-1s.45-1 1-1 1 .45 1 1-.45 1-1 1m8.5-1c0 .55-.45 1-1 1s-1-.45-1-1 .45-1 1-1 1 .45 1 1M7.25 12c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1M11 4.5c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1m3.75 7.5c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1m4.75 8.5c-.55 0-1-.45-1-1s.45-1 1-1 1 .45 1 1-.45 1-1 1Z"/></svg>
<span class="md-ellipsis">
第 7 章 &nbsp;
</span>
</a>
<label class="md-nav__link " for="__nav_9" id="__nav_9_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_9_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_9">
<span class="md-nav__icon md-icon"></span>
第 7 章 &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.1 &nbsp; 二元樹
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree_traversal/" class="md-nav__link">
<span class="md-ellipsis">
7.2 &nbsp; 二元樹走訪
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/array_representation_of_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.3 &nbsp; 二元樹陣列表示
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_search_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.4 &nbsp; 二元搜尋樹
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/avl_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.5 &nbsp; AVL *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/summary/" class="md-nav__link">
<span class="md-ellipsis">
7.6 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_10" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_heap/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 1a2.5 2.5 0 0 0-2.5 2.5A2.5 2.5 0 0 0 11 5.79V7H7a2 2 0 0 0-2 2v.71A2.5 2.5 0 0 0 3.5 12 2.5 2.5 0 0 0 5 14.29V15H4a2 2 0 0 0-2 2v1.21A2.5 2.5 0 0 0 .5 20.5 2.5 2.5 0 0 0 3 23a2.5 2.5 0 0 0 2.5-2.5A2.5 2.5 0 0 0 4 18.21V17h4v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 9 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17a2 2 0 0 0-2-2H7v-.71A2.5 2.5 0 0 0 8.5 12 2.5 2.5 0 0 0 7 9.71V9h10v.71A2.5 2.5 0 0 0 15.5 12a2.5 2.5 0 0 0 1.5 2.29V15h-1a2 2 0 0 0-2 2v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 15 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17h4v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 21 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17a2 2 0 0 0-2-2h-1v-.71A2.5 2.5 0 0 0 20.5 12 2.5 2.5 0 0 0 19 9.71V9a2 2 0 0 0-2-2h-4V5.79a2.5 2.5 0 0 0 1.5-2.29A2.5 2.5 0 0 0 12 1m0 1.5a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1M6 11a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m12 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1M3 19.5a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1Z"/></svg>
<span class="md-ellipsis">
第 8 章 &nbsp; 堆積
</span>
</a>
<label class="md-nav__link " for="__nav_10" id="__nav_10_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_10_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_10">
<span class="md-nav__icon md-icon"></span>
第 8 章 &nbsp; 堆積
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_heap/heap/" class="md-nav__link">
<span class="md-ellipsis">
8.1 &nbsp; 堆積
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/build_heap/" class="md-nav__link">
<span class="md-ellipsis">
8.2 &nbsp; 建堆積操作
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/top_k/" class="md-nav__link">
<span class="md-ellipsis">
8.3 &nbsp; Top-k 問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/summary/" class="md-nav__link">
<span class="md-ellipsis">
8.4 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_11" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_graph/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m12 5.37-.44-.06L6 14.9c.24.21.4.48.47.78h11.06c.07-.3.23-.57.47-.78l-5.56-9.59-.44.06M6.6 16.53l4.28 2.53c.29-.27.69-.43 1.12-.43.43 0 .83.16 1.12.43l4.28-2.53H6.6M12 22a1.68 1.68 0 0 1-1.68-1.68l.09-.56-4.3-2.55c-.31.36-.76.58-1.27.58a1.68 1.68 0 0 1-1.68-1.68c0-.79.53-1.45 1.26-1.64V9.36c-.83-.11-1.47-.82-1.47-1.68A1.68 1.68 0 0 1 4.63 6c.55 0 1.03.26 1.34.66l4.41-2.53-.06-.45c0-.93.75-1.68 1.68-1.68.93 0 1.68.75 1.68 1.68l-.06.45 4.41 2.53c.31-.4.79-.66 1.34-.66a1.68 1.68 0 0 1 1.68 1.68c0 .86-.64 1.57-1.47 1.68v5.11c.73.19 1.26.85 1.26 1.64a1.68 1.68 0 0 1-1.68 1.68c-.51 0-.96-.22-1.27-.58l-4.3 2.55.09.56A1.68 1.68 0 0 1 12 22M10.8 4.86 6.3 7.44l.02.24c0 .71-.44 1.32-1.06 1.57l.03 5.25 5.51-9.64m2.4 0 5.51 9.64.03-5.25c-.62-.25-1.06-.86-1.06-1.57l.02-.24-4.5-2.58Z"/></svg>
<span class="md-ellipsis">
第 9 章 &nbsp;
</span>
</a>
<label class="md-nav__link " for="__nav_11" id="__nav_11_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_11_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_11">
<span class="md-nav__icon md-icon"></span>
第 9 章 &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_graph/graph/" class="md-nav__link">
<span class="md-ellipsis">
9.1 &nbsp;
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_operations/" class="md-nav__link">
<span class="md-ellipsis">
9.2 &nbsp; 圖基礎操作
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_traversal/" class="md-nav__link">
<span class="md-ellipsis">
9.3 &nbsp; 圖的走訪
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/summary/" class="md-nav__link">
<span class="md-ellipsis">
9.4 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_12" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_searching/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m19.31 18.9 3.08 3.1L21 23.39l-3.12-3.07c-.69.43-1.51.68-2.38.68-2.5 0-4.5-2-4.5-4.5s2-4.5 4.5-4.5 4.5 2 4.5 4.5c0 .88-.25 1.71-.69 2.4m-3.81.1a2.5 2.5 0 0 0 0-5 2.5 2.5 0 0 0 0 5M21 4v2H3V4h18M3 16v-2h6v2H3m0-5V9h18v2h-2.03c-1.01-.63-2.2-1-3.47-1s-2.46.37-3.47 1H3Z"/></svg>
<span class="md-ellipsis">
第 10 章 &nbsp; 搜尋
</span>
</a>
<label class="md-nav__link " for="__nav_12" id="__nav_12_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_12_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_12">
<span class="md-nav__icon md-icon"></span>
第 10 章 &nbsp; 搜尋
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search/" class="md-nav__link">
<span class="md-ellipsis">
10.1 &nbsp; 二分搜尋
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search_insertion/" class="md-nav__link">
<span class="md-ellipsis">
10.2 &nbsp; 二分搜尋插入點
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search_edge/" class="md-nav__link">
<span class="md-ellipsis">
10.3 &nbsp; 二分搜尋邊界
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/replace_linear_by_hashing/" class="md-nav__link">
<span class="md-ellipsis">
10.4 &nbsp; 雜湊最佳化策略
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/searching_algorithm_revisited/" class="md-nav__link">
<span class="md-ellipsis">
10.5 &nbsp; 重識搜尋演算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/summary/" class="md-nav__link">
<span class="md-ellipsis">
10.6 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_13" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_sorting/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 17h3l-4 4-4-4h3V3h2M2 17h10v2H2M6 5v2H2V5m0 6h7v2H2v-2Z"/></svg>
<span class="md-ellipsis">
第 11 章 &nbsp; 排序
</span>
</a>
<label class="md-nav__link " for="__nav_13" id="__nav_13_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_13_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_13">
<span class="md-nav__icon md-icon"></span>
第 11 章 &nbsp; 排序
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_sorting/sorting_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
11.1 &nbsp; 排序演算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/selection_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.2 &nbsp; 選擇排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bubble_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.3 &nbsp; 泡沫排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/insertion_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.4 &nbsp; 插入排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/quick_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.5 &nbsp; 快速排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/merge_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.6 &nbsp; 合併排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/heap_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.7 &nbsp; 堆積排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bucket_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.8 &nbsp; 桶排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/counting_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.9 &nbsp; 計數排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/radix_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.10 &nbsp; 基數排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/summary/" class="md-nav__link">
<span class="md-ellipsis">
11.11 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_14" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_divide_and_conquer/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17 7v2h5V7h-5M2 9v6h5V9H2m10 0v2H9v2h3v2l3-3-3-3m5 2v2h5v-2h-5m0 4v2h5v-2h-5Z"/></svg>
<span class="md-ellipsis">
第 12 章 &nbsp; 分治
</span>
</a>
<label class="md-nav__link " for="__nav_14" id="__nav_14_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_14_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_14">
<span class="md-nav__icon md-icon"></span>
第 12 章 &nbsp; 分治
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/divide_and_conquer/" class="md-nav__link">
<span class="md-ellipsis">
12.1 &nbsp; 分治演算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/binary_search_recur/" class="md-nav__link">
<span class="md-ellipsis">
12.2 &nbsp; 分治搜尋策略
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/build_binary_tree_problem/" class="md-nav__link">
<span class="md-ellipsis">
12.3 &nbsp; 構建樹問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/hanota_problem/" class="md-nav__link">
<span class="md-ellipsis">
12.4 &nbsp; 河內塔問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/summary/" class="md-nav__link">
<span class="md-ellipsis">
12.5 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--active md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_15" checked>
<div class="md-nav__link md-nav__container">
<a href="../" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 15a3 3 0 0 1 3 3 3 3 0 0 1-3 3 2.99 2.99 0 0 1-2.83-2H14v-2h1.17c.41-1.17 1.52-2 2.83-2m0 2a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1m0-9a1.43 1.43 0 0 0 1.43-1.43 1.43 1.43 0 1 0-2.86 0A1.43 1.43 0 0 0 18 8m0-5.43a4 4 0 0 1 4 4C22 9.56 18 14 18 14s-4-4.44-4-7.43a4 4 0 0 1 4-4M8.83 17H10v2H8.83A2.99 2.99 0 0 1 6 21a3 3 0 0 1-3-3c0-1.31.83-2.42 2-2.83V14h2v1.17c.85.3 1.53.98 1.83 1.83M6 17a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1M6 3a3 3 0 0 1 3 3c0 1.31-.83 2.42-2 2.83V10H5V8.83A2.99 2.99 0 0 1 3 6a3 3 0 0 1 3-3m0 2a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1m5 14v-2h2v2h-2m-4-6H5v-2h2v2Z"/></svg>
<span class="md-ellipsis">
第 13 章 &nbsp; 回溯
</span>
</a>
<label class="md-nav__link " for="__nav_15" id="__nav_15_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_15_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_15">
<span class="md-nav__icon md-icon"></span>
第 13 章 &nbsp; 回溯
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../backtracking_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
13.1 &nbsp; 回溯演算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../permutations_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.2 &nbsp; 全排列問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../subset_sum_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.3 &nbsp; 子集和問題
</span>
</a>
</li>
<li class="md-nav__item md-nav__item--active">
<input class="md-nav__toggle md-toggle" type="checkbox" id="__toc">
<label class="md-nav__link md-nav__link--active" for="__toc">
<span class="md-ellipsis">
13.4 &nbsp; N 皇后問題
</span>
<span class="md-nav__icon md-icon"></span>
</label>
<a href="./" class="md-nav__link md-nav__link--active">
<span class="md-ellipsis">
13.4 &nbsp; N 皇后問題
</span>
</a>
<nav class="md-nav md-nav--secondary" aria-label="目錄">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
目錄
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#1" class="md-nav__link">
<span class="md-ellipsis">
1. &nbsp; 逐行放置策略
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#2" class="md-nav__link">
<span class="md-ellipsis">
2. &nbsp; 列與對角線剪枝
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#3" class="md-nav__link">
<span class="md-ellipsis">
3. &nbsp; 程式碼實現
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="../summary/" class="md-nav__link">
<span class="md-ellipsis">
13.5 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_16" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_dynamic_programming/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M22 15h-2v3c0 1.11-.89 2-2 2h-3v2l-3-3 3-3v2h3v-3h-2l3-3 3 3m0-11v4c0 1.1-.9 2-2 2H10v10c0 1.1-.9 2-2 2H4c-1.1 0-2-.9-2-2V4c0-1.1.9-2 2-2h16c1.1 0 2 .9 2 2M4 8h4V4H4v4m0 2v4h4v-4H4m4 10v-4H4v4h4m6-12V4h-4v4h4m6-4h-4v4h4V4Z"/></svg>
<span class="md-ellipsis">
第 14 章 &nbsp; 動態規劃
</span>
</a>
<label class="md-nav__link " for="__nav_16" id="__nav_16_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_16_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_16">
<span class="md-nav__icon md-icon"></span>
第 14 章 &nbsp; 動態規劃
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/intro_to_dynamic_programming/" class="md-nav__link">
<span class="md-ellipsis">
14.1 &nbsp; 初探動態規劃
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/dp_problem_features/" class="md-nav__link">
<span class="md-ellipsis">
14.2 &nbsp; DP 問題特性
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/dp_solution_pipeline/" class="md-nav__link">
<span class="md-ellipsis">
14.3 &nbsp; DP 解題思路
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.4 &nbsp; 0-1 背包問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/unbounded_knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.5 &nbsp; 完全背包問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/edit_distance_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.6 &nbsp; 編輯距離問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/summary/" class="md-nav__link">
<span class="md-ellipsis">
14.7 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_17" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_greedy/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 3c3.88 0 7 3.14 7 7 0 2.8-1.63 5.19-4 6.31V21H9v-3H8c-1.11 0-2-.89-2-2v-3H4.5c-.42 0-.66-.5-.42-.81L6 9.66A7.003 7.003 0 0 1 13 3m0-2C8.41 1 4.61 4.42 4.06 8.9L2.5 11h-.03l-.02.03c-.55.76-.62 1.76-.19 2.59.36.69 1 1.17 1.74 1.32V16c0 1.85 1.28 3.42 3 3.87V23h11v-5.5c2.5-1.67 4-4.44 4-7.5 0-4.97-4.04-9-9-9m4 7.83c0 1.54-1.36 2.77-3.42 4.64L13 14l-.58-.53C10.36 11.6 9 10.37 9 8.83c0-1.2.96-2.19 2.16-2.2h.04c.69 0 1.35.31 1.8.83.45-.52 1.11-.83 1.8-.83 1.2-.01 2.2.96 2.2 2.16v.04Z"/></svg>
<span class="md-ellipsis">
第 15 章 &nbsp; 貪婪
</span>
</a>
<label class="md-nav__link " for="__nav_17" id="__nav_17_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_17_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_17">
<span class="md-nav__icon md-icon"></span>
第 15 章 &nbsp; 貪婪
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_greedy/greedy_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
15.1 &nbsp; 貪婪演算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/fractional_knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.2 &nbsp; 分數背包問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/max_capacity_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.3 &nbsp; 最大容量問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/max_product_cutting_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.4 &nbsp; 最大切分乘積問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/summary/" class="md-nav__link">
<span class="md-ellipsis">
15.5 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_18" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_appendix/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M11 18h2v-2h-2v2m1-16A10 10 0 0 0 2 12a10 10 0 0 0 10 10 10 10 0 0 0 10-10A10 10 0 0 0 12 2m0 18c-4.41 0-8-3.59-8-8s3.59-8 8-8 8 3.59 8 8-3.59 8-8 8m0-14a4 4 0 0 0-4 4h2a2 2 0 0 1 2-2 2 2 0 0 1 2 2c0 2-3 1.75-3 5h2c0-2.25 3-2.5 3-5a4 4 0 0 0-4-4Z"/></svg>
<span class="md-ellipsis">
第 16 章 &nbsp; 附錄
</span>
</a>
<label class="md-nav__link " for="__nav_18" id="__nav_18_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_18_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_18">
<span class="md-nav__icon md-icon"></span>
第 16 章 &nbsp; 附錄
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_appendix/installation/" class="md-nav__link">
<span class="md-ellipsis">
16.1 &nbsp; 程式設計環境安裝
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_appendix/contribution/" class="md-nav__link">
<span class="md-ellipsis">
16.2 &nbsp; 一起參與創作
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_appendix/terminology/" class="md-nav__link">
<span class="md-ellipsis">
16.3 &nbsp; 術語表
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_19" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_reference/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9 3v15h3V3H9m3 2 4 13 3-1-4-13-3 1M5 5v13h3V5H5M3 19v2h18v-2H3Z"/></svg>
<span class="md-ellipsis">
參考文獻
</span>
</a>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_19_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_19">
<span class="md-nav__icon md-icon"></span>
參考文獻
</label>
<ul class="md-nav__list" data-md-scrollfix>
</ul>
</nav>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--secondary" aria-label="目錄">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
目錄
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#1" class="md-nav__link">
<span class="md-ellipsis">
1. &nbsp; 逐行放置策略
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#2" class="md-nav__link">
<span class="md-ellipsis">
2. &nbsp; 列與對角線剪枝
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#3" class="md-nav__link">
<span class="md-ellipsis">
3. &nbsp; 程式碼實現
</span>
</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-content" data-md-component="content">
<article class="md-content__inner md-typeset">
<!-- Tags -->
<!-- Actions -->
<!-- Actions -->
<!-- Edit button -->
<a
href="https://github.com/krahets/hello-algo/tree/main/zh-hant/docs/chapter_backtracking/n_queens_problem.md"
title="編輯此頁"
class="md-content__button md-icon"
>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M441 58.9 453.1 71c9.4 9.4 9.4 24.6 0 33.9L424 134.1 377.9 88 407 58.9c9.4-9.4 24.6-9.4 33.9 0zM209.8 256.2 344 121.9l46.1 46.1-134.3 134.2c-2.9 2.9-6.5 5-10.4 6.1L186.9 325l16.7-58.5c1.1-3.9 3.2-7.5 6.1-10.4zM373.1 25 175.8 222.2c-8.7 8.7-15 19.4-18.3 31.1l-28.6 100c-2.4 8.4-.1 17.4 6.1 23.6s15.2 8.5 23.6 6.1l100-28.6c11.8-3.4 22.5-9.7 31.1-18.3L487 138.9c28.1-28.1 28.1-73.7 0-101.8L474.9 25c-28.1-28.1-73.7-28.1-101.8 0zM88 64c-48.6 0-88 39.4-88 88v272c0 48.6 39.4 88 88 88h272c48.6 0 88-39.4 88-88V312c0-13.3-10.7-24-24-24s-24 10.7-24 24v112c0 22.1-17.9 40-40 40H88c-22.1 0-40-17.9-40-40V152c0-22.1 17.9-40 40-40h112c13.3 0 24-10.7 24-24s-10.7-24-24-24H88z"/></svg>
</a>
<!-- View button -->
<!-- Page content -->
<h1 id="134-n">13.4 &nbsp; n 皇后問題<a class="headerlink" href="#134-n" title="Permanent link">&para;</a></h1>
<div class="admonition question">
<p class="admonition-title">Question</p>
<p>根據國際象棋的規則,皇后可以攻擊與同處一行、一列或一條斜線上的棋子。給定 <span class="arithmatex">\(n\)</span> 個皇后和一個 <span class="arithmatex">\(n \times n\)</span> 大小的棋盤,尋找使得所有皇后之間無法相互攻擊的擺放方案。</p>
</div>
<p>如圖 13-15 所示,當 <span class="arithmatex">\(n = 4\)</span> 時,共可以找到兩個解。從回溯演算法的角度看,<span class="arithmatex">\(n \times n\)</span> 大小的棋盤共有 <span class="arithmatex">\(n^2\)</span> 個格子,給出了所有的選擇 <code>choices</code> 。在逐個放置皇后的過程中,棋盤狀態在不斷地變化,每個時刻的棋盤就是狀態 <code>state</code></p>
<p><a class="glightbox" href="../n_queens_problem.assets/solution_4_queens.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="4 皇后問題的解" class="animation-figure" src="../n_queens_problem.assets/solution_4_queens.png" /></a></p>
<p align="center"> 圖 13-15 &nbsp; 4 皇后問題的解 </p>
<p>圖 13-16 展示了本題的三個約束條件:<strong>多個皇后不能在同一行、同一列、同一條對角線上</strong>。值得注意的是,對角線分為主對角線 <code>\</code> 和次對角線 <code>/</code> 兩種。</p>
<p><a class="glightbox" href="../n_queens_problem.assets/n_queens_constraints.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="n 皇后問題的約束條件" class="animation-figure" src="../n_queens_problem.assets/n_queens_constraints.png" /></a></p>
<p align="center"> 圖 13-16 &nbsp; n 皇后問題的約束條件 </p>
<h3 id="1">1. &nbsp; 逐行放置策略<a class="headerlink" href="#1" title="Permanent link">&para;</a></h3>
<p>皇后的數量和棋盤的行數都為 <span class="arithmatex">\(n\)</span> ,因此我們容易得到一個推論:<strong>棋盤每行都允許且只允許放置一個皇后</strong></p>
<p>也就是說,我們可以採取逐行放置策略:從第一行開始,在每行放置一個皇后,直至最後一行結束。</p>
<p>圖 13-17 所示為 4 皇后問題的逐行放置過程。受畫幅限制,圖 13-17 僅展開了第一行的其中一個搜尋分支,並且將不滿足列約束和對角線約束的方案都進行了剪枝。</p>
<p><a class="glightbox" href="../n_queens_problem.assets/n_queens_placing.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="逐行放置策略" class="animation-figure" src="../n_queens_problem.assets/n_queens_placing.png" /></a></p>
<p align="center"> 圖 13-17 &nbsp; 逐行放置策略 </p>
<p>從本質上看,<strong>逐行放置策略起到了剪枝的作用</strong>,它避免了同一行出現多個皇后的所有搜尋分支。</p>
<h3 id="2">2. &nbsp; 列與對角線剪枝<a class="headerlink" href="#2" title="Permanent link">&para;</a></h3>
<p>為了滿足列約束,我們可以利用一個長度為 <span class="arithmatex">\(n\)</span> 的布林型陣列 <code>cols</code> 記錄每一列是否有皇后。在每次決定放置前,我們透過 <code>cols</code> 將已有皇后的列進行剪枝,並在回溯中動態更新 <code>cols</code> 的狀態。</p>
<div class="admonition tip">
<p class="admonition-title">Tip</p>
<p>請注意,矩陣的起點位於左上角,其中行索引從上到下增加,列索引從左到右增加。</p>
</div>
<p>那麼,如何處理對角線約束呢?設棋盤中某個格子的行列索引為 <span class="arithmatex">\((row, col)\)</span> ,選定矩陣中的某條主對角線,我們發現該對角線上所有格子的行索引減列索引都相等,<strong>即主對角線上所有格子的 <span class="arithmatex">\(row - col\)</span> 為恆定值</strong></p>
<p>也就是說,如果兩個格子滿足 <span class="arithmatex">\(row_1 - col_1 = row_2 - col_2\)</span> ,則它們一定處在同一條主對角線上。利用該規律,我們可以藉助圖 13-18 所示的陣列 <code>diags1</code> 記錄每條主對角線上是否有皇后。</p>
<p>同理,<strong>次對角線上的所有格子的 <span class="arithmatex">\(row + col\)</span> 是恆定值</strong>。我們同樣也可以藉助陣列 <code>diags2</code> 來處理次對角線約束。</p>
<p><a class="glightbox" href="../n_queens_problem.assets/n_queens_cols_diagonals.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="處理列約束和對角線約束" class="animation-figure" src="../n_queens_problem.assets/n_queens_cols_diagonals.png" /></a></p>
<p align="center"> 圖 13-18 &nbsp; 處理列約束和對角線約束 </p>
<h3 id="3">3. &nbsp; 程式碼實現<a class="headerlink" href="#3" title="Permanent link">&para;</a></h3>
<p>請注意,<span class="arithmatex">\(n\)</span> 維方陣中 <span class="arithmatex">\(row - col\)</span> 的範圍是 <span class="arithmatex">\([-n + 1, n - 1]\)</span> <span class="arithmatex">\(row + col\)</span> 的範圍是 <span class="arithmatex">\([0, 2n - 2]\)</span> ,所以主對角線和次對角線的數量都為 <span class="arithmatex">\(2n - 1\)</span> ,即陣列 <code>diags1</code><code>diags2</code> 的長度都為 <span class="arithmatex">\(2n - 1\)</span></p>
<div class="tabbed-set tabbed-alternate" data-tabs="1:14"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><input id="__tabbed_1_5" name="__tabbed_1" type="radio" /><input id="__tabbed_1_6" name="__tabbed_1" type="radio" /><input id="__tabbed_1_7" name="__tabbed_1" type="radio" /><input id="__tabbed_1_8" name="__tabbed_1" type="radio" /><input id="__tabbed_1_9" name="__tabbed_1" type="radio" /><input id="__tabbed_1_10" name="__tabbed_1" type="radio" /><input id="__tabbed_1_11" name="__tabbed_1" type="radio" /><input id="__tabbed_1_12" name="__tabbed_1" type="radio" /><input id="__tabbed_1_13" name="__tabbed_1" type="radio" /><input id="__tabbed_1_14" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">Python</label><label for="__tabbed_1_2">C++</label><label for="__tabbed_1_3">Java</label><label for="__tabbed_1_4">C#</label><label for="__tabbed_1_5">Go</label><label for="__tabbed_1_6">Swift</label><label for="__tabbed_1_7">JS</label><label for="__tabbed_1_8">TS</label><label for="__tabbed_1_9">Dart</label><label for="__tabbed_1_10">Rust</label><label for="__tabbed_1_11">C</label><label for="__tabbed_1_12">Kotlin</label><label for="__tabbed_1_13">Ruby</label><label for="__tabbed_1_14">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.py</span><pre><span></span><code><a id="__codelineno-0-1" name="__codelineno-0-1" href="#__codelineno-0-1"></a><span class="k">def</span> <span class="nf">backtrack</span><span class="p">(</span>
<a id="__codelineno-0-2" name="__codelineno-0-2" href="#__codelineno-0-2"></a> <span class="n">row</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<a id="__codelineno-0-3" name="__codelineno-0-3" href="#__codelineno-0-3"></a> <span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<a id="__codelineno-0-4" name="__codelineno-0-4" href="#__codelineno-0-4"></a> <span class="n">state</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">str</span><span class="p">]],</span>
<a id="__codelineno-0-5" name="__codelineno-0-5" href="#__codelineno-0-5"></a> <span class="n">res</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">str</span><span class="p">]]],</span>
<a id="__codelineno-0-6" name="__codelineno-0-6" href="#__codelineno-0-6"></a> <span class="n">cols</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">bool</span><span class="p">],</span>
<a id="__codelineno-0-7" name="__codelineno-0-7" href="#__codelineno-0-7"></a> <span class="n">diags1</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">bool</span><span class="p">],</span>
<a id="__codelineno-0-8" name="__codelineno-0-8" href="#__codelineno-0-8"></a> <span class="n">diags2</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">bool</span><span class="p">],</span>
<a id="__codelineno-0-9" name="__codelineno-0-9" href="#__codelineno-0-9"></a><span class="p">):</span>
<a id="__codelineno-0-10" name="__codelineno-0-10" href="#__codelineno-0-10"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;回溯演算法n 皇后&quot;&quot;&quot;</span>
<a id="__codelineno-0-11" name="__codelineno-0-11" href="#__codelineno-0-11"></a> <span class="c1"># 當放置完所有行時,記錄解</span>
<a id="__codelineno-0-12" name="__codelineno-0-12" href="#__codelineno-0-12"></a> <span class="k">if</span> <span class="n">row</span> <span class="o">==</span> <span class="n">n</span><span class="p">:</span>
<a id="__codelineno-0-13" name="__codelineno-0-13" href="#__codelineno-0-13"></a> <span class="n">res</span><span class="o">.</span><span class="n">append</span><span class="p">([</span><span class="nb">list</span><span class="p">(</span><span class="n">row</span><span class="p">)</span> <span class="k">for</span> <span class="n">row</span> <span class="ow">in</span> <span class="n">state</span><span class="p">])</span>
<a id="__codelineno-0-14" name="__codelineno-0-14" href="#__codelineno-0-14"></a> <span class="k">return</span>
<a id="__codelineno-0-15" name="__codelineno-0-15" href="#__codelineno-0-15"></a> <span class="c1"># 走訪所有列</span>
<a id="__codelineno-0-16" name="__codelineno-0-16" href="#__codelineno-0-16"></a> <span class="k">for</span> <span class="n">col</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-0-17" name="__codelineno-0-17" href="#__codelineno-0-17"></a> <span class="c1"># 計算該格子對應的主對角線和次對角線</span>
<a id="__codelineno-0-18" name="__codelineno-0-18" href="#__codelineno-0-18"></a> <span class="n">diag1</span> <span class="o">=</span> <span class="n">row</span> <span class="o">-</span> <span class="n">col</span> <span class="o">+</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span>
<a id="__codelineno-0-19" name="__codelineno-0-19" href="#__codelineno-0-19"></a> <span class="n">diag2</span> <span class="o">=</span> <span class="n">row</span> <span class="o">+</span> <span class="n">col</span>
<a id="__codelineno-0-20" name="__codelineno-0-20" href="#__codelineno-0-20"></a> <span class="c1"># 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后</span>
<a id="__codelineno-0-21" name="__codelineno-0-21" href="#__codelineno-0-21"></a> <span class="k">if</span> <span class="ow">not</span> <span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]:</span>
<a id="__codelineno-0-22" name="__codelineno-0-22" href="#__codelineno-0-22"></a> <span class="c1"># 嘗試:將皇后放置在該格子</span>
<a id="__codelineno-0-23" name="__codelineno-0-23" href="#__codelineno-0-23"></a> <span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span> <span class="o">=</span> <span class="s2">&quot;Q&quot;</span>
<a id="__codelineno-0-24" name="__codelineno-0-24" href="#__codelineno-0-24"></a> <span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="o">=</span> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="o">=</span> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span> <span class="o">=</span> <span class="kc">True</span>
<a id="__codelineno-0-25" name="__codelineno-0-25" href="#__codelineno-0-25"></a> <span class="c1"># 放置下一行</span>
<a id="__codelineno-0-26" name="__codelineno-0-26" href="#__codelineno-0-26"></a> <span class="n">backtrack</span><span class="p">(</span><span class="n">row</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">state</span><span class="p">,</span> <span class="n">res</span><span class="p">,</span> <span class="n">cols</span><span class="p">,</span> <span class="n">diags1</span><span class="p">,</span> <span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-0-27" name="__codelineno-0-27" href="#__codelineno-0-27"></a> <span class="c1"># 回退:將該格子恢復為空位</span>
<a id="__codelineno-0-28" name="__codelineno-0-28" href="#__codelineno-0-28"></a> <span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span> <span class="o">=</span> <span class="s2">&quot;#&quot;</span>
<a id="__codelineno-0-29" name="__codelineno-0-29" href="#__codelineno-0-29"></a> <span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="o">=</span> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="o">=</span> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span> <span class="o">=</span> <span class="kc">False</span>
<a id="__codelineno-0-30" name="__codelineno-0-30" href="#__codelineno-0-30"></a>
<a id="__codelineno-0-31" name="__codelineno-0-31" href="#__codelineno-0-31"></a><span class="k">def</span> <span class="nf">n_queens</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">str</span><span class="p">]]]:</span>
<a id="__codelineno-0-32" name="__codelineno-0-32" href="#__codelineno-0-32"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;求解 n 皇后&quot;&quot;&quot;</span>
<a id="__codelineno-0-33" name="__codelineno-0-33" href="#__codelineno-0-33"></a> <span class="c1"># 初始化 n*n 大小的棋盤,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-0-34" name="__codelineno-0-34" href="#__codelineno-0-34"></a> <span class="n">state</span> <span class="o">=</span> <span class="p">[[</span><span class="s2">&quot;#&quot;</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">)]</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">)]</span>
<a id="__codelineno-0-35" name="__codelineno-0-35" href="#__codelineno-0-35"></a> <span class="n">cols</span> <span class="o">=</span> <span class="p">[</span><span class="kc">False</span><span class="p">]</span> <span class="o">*</span> <span class="n">n</span> <span class="c1"># 記錄列是否有皇后</span>
<a id="__codelineno-0-36" name="__codelineno-0-36" href="#__codelineno-0-36"></a> <span class="n">diags1</span> <span class="o">=</span> <span class="p">[</span><span class="kc">False</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="c1"># 記錄主對角線上是否有皇后</span>
<a id="__codelineno-0-37" name="__codelineno-0-37" href="#__codelineno-0-37"></a> <span class="n">diags2</span> <span class="o">=</span> <span class="p">[</span><span class="kc">False</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="c1"># 記錄次對角線上是否有皇后</span>
<a id="__codelineno-0-38" name="__codelineno-0-38" href="#__codelineno-0-38"></a> <span class="n">res</span> <span class="o">=</span> <span class="p">[]</span>
<a id="__codelineno-0-39" name="__codelineno-0-39" href="#__codelineno-0-39"></a> <span class="n">backtrack</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">state</span><span class="p">,</span> <span class="n">res</span><span class="p">,</span> <span class="n">cols</span><span class="p">,</span> <span class="n">diags1</span><span class="p">,</span> <span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-0-40" name="__codelineno-0-40" href="#__codelineno-0-40"></a>
<a id="__codelineno-0-41" name="__codelineno-0-41" href="#__codelineno-0-41"></a> <span class="k">return</span> <span class="n">res</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.cpp</span><pre><span></span><code><a id="__codelineno-1-1" name="__codelineno-1-1" href="#__codelineno-1-1"></a><span class="cm">/* 回溯演算法n 皇后 */</span>
<a id="__codelineno-1-2" name="__codelineno-1-2" href="#__codelineno-1-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">backtrack</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">row</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">cols</span><span class="p">,</span>
<a id="__codelineno-1-3" name="__codelineno-1-3" href="#__codelineno-1-3"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">diags2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-4" name="__codelineno-1-4" href="#__codelineno-1-4"></a><span class="w"> </span><span class="c1">// 當放置完所有行時,記錄解</span>
<a id="__codelineno-1-5" name="__codelineno-1-5" href="#__codelineno-1-5"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-6" name="__codelineno-1-6" href="#__codelineno-1-6"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">push_back</span><span class="p">(</span><span class="n">state</span><span class="p">);</span>
<a id="__codelineno-1-7" name="__codelineno-1-7" href="#__codelineno-1-7"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-1-8" name="__codelineno-1-8" href="#__codelineno-1-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-9" name="__codelineno-1-9" href="#__codelineno-1-9"></a><span class="w"> </span><span class="c1">// 走訪所有列</span>
<a id="__codelineno-1-10" name="__codelineno-1-10" href="#__codelineno-1-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-11" name="__codelineno-1-11" href="#__codelineno-1-11"></a><span class="w"> </span><span class="c1">// 計算該格子對應的主對角線和次對角線</span>
<a id="__codelineno-1-12" name="__codelineno-1-12" href="#__codelineno-1-12"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-1-13" name="__codelineno-1-13" href="#__codelineno-1-13"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">col</span><span class="p">;</span>
<a id="__codelineno-1-14" name="__codelineno-1-14" href="#__codelineno-1-14"></a><span class="w"> </span><span class="c1">// 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后</span>
<a id="__codelineno-1-15" name="__codelineno-1-15" href="#__codelineno-1-15"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-16" name="__codelineno-1-16" href="#__codelineno-1-16"></a><span class="w"> </span><span class="c1">// 嘗試:將皇后放置在該格子</span>
<a id="__codelineno-1-17" name="__codelineno-1-17" href="#__codelineno-1-17"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;Q&quot;</span><span class="p">;</span>
<a id="__codelineno-1-18" name="__codelineno-1-18" href="#__codelineno-1-18"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">true</span><span class="p">;</span>
<a id="__codelineno-1-19" name="__codelineno-1-19" href="#__codelineno-1-19"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-1-20" name="__codelineno-1-20" href="#__codelineno-1-20"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-1-21" name="__codelineno-1-21" href="#__codelineno-1-21"></a><span class="w"> </span><span class="c1">// 回退:將該格子恢復為空位</span>
<a id="__codelineno-1-22" name="__codelineno-1-22" href="#__codelineno-1-22"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span><span class="p">;</span>
<a id="__codelineno-1-23" name="__codelineno-1-23" href="#__codelineno-1-23"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">false</span><span class="p">;</span>
<a id="__codelineno-1-24" name="__codelineno-1-24" href="#__codelineno-1-24"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-25" name="__codelineno-1-25" href="#__codelineno-1-25"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-26" name="__codelineno-1-26" href="#__codelineno-1-26"></a><span class="p">}</span>
<a id="__codelineno-1-27" name="__codelineno-1-27" href="#__codelineno-1-27"></a>
<a id="__codelineno-1-28" name="__codelineno-1-28" href="#__codelineno-1-28"></a><span class="cm">/* 求解 n 皇后 */</span>
<a id="__codelineno-1-29" name="__codelineno-1-29" href="#__codelineno-1-29"></a><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">nQueens</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-30" name="__codelineno-1-30" href="#__codelineno-1-30"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盤,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-1-31" name="__codelineno-1-31" href="#__codelineno-1-31"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;#&quot;</span><span class="p">));</span>
<a id="__codelineno-1-32" name="__codelineno-1-32" href="#__codelineno-1-32"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">cols</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="nb">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 記錄列是否有皇后</span>
<a id="__codelineno-1-33" name="__codelineno-1-33" href="#__codelineno-1-33"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">diags1</span><span class="p">(</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="nb">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 記錄主對角線上是否有皇后</span>
<a id="__codelineno-1-34" name="__codelineno-1-34" href="#__codelineno-1-34"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">diags2</span><span class="p">(</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="nb">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 記錄次對角線上是否有皇后</span>
<a id="__codelineno-1-35" name="__codelineno-1-35" href="#__codelineno-1-35"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-1-36" name="__codelineno-1-36" href="#__codelineno-1-36"></a>
<a id="__codelineno-1-37" name="__codelineno-1-37" href="#__codelineno-1-37"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-1-38" name="__codelineno-1-38" href="#__codelineno-1-38"></a>
<a id="__codelineno-1-39" name="__codelineno-1-39" href="#__codelineno-1-39"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-1-40" name="__codelineno-1-40" href="#__codelineno-1-40"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.java</span><pre><span></span><code><a id="__codelineno-2-1" name="__codelineno-2-1" href="#__codelineno-2-1"></a><span class="cm">/* 回溯演算法n 皇后 */</span>
<a id="__codelineno-2-2" name="__codelineno-2-2" href="#__codelineno-2-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">backtrack</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">row</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="p">,</span>
<a id="__codelineno-2-3" name="__codelineno-2-3" href="#__codelineno-2-3"></a><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">diags2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-4" name="__codelineno-2-4" href="#__codelineno-2-4"></a><span class="w"> </span><span class="c1">// 當放置完所有行時,記錄解</span>
<a id="__codelineno-2-5" name="__codelineno-2-5" href="#__codelineno-2-5"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-6" name="__codelineno-2-6" href="#__codelineno-2-6"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">copyState</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">();</span>
<a id="__codelineno-2-7" name="__codelineno-2-7" href="#__codelineno-2-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;</span><span class="w"> </span><span class="n">sRow</span><span class="w"> </span><span class="p">:</span><span class="w"> </span><span class="n">state</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-8" name="__codelineno-2-8" href="#__codelineno-2-8"></a><span class="w"> </span><span class="n">copyState</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">(</span><span class="n">sRow</span><span class="p">));</span>
<a id="__codelineno-2-9" name="__codelineno-2-9" href="#__codelineno-2-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-2-10" name="__codelineno-2-10" href="#__codelineno-2-10"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="n">copyState</span><span class="p">);</span>
<a id="__codelineno-2-11" name="__codelineno-2-11" href="#__codelineno-2-11"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-2-12" name="__codelineno-2-12" href="#__codelineno-2-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-2-13" name="__codelineno-2-13" href="#__codelineno-2-13"></a><span class="w"> </span><span class="c1">// 走訪所有列</span>
<a id="__codelineno-2-14" name="__codelineno-2-14" href="#__codelineno-2-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-15" name="__codelineno-2-15" href="#__codelineno-2-15"></a><span class="w"> </span><span class="c1">// 計算該格子對應的主對角線和次對角線</span>
<a id="__codelineno-2-16" name="__codelineno-2-16" href="#__codelineno-2-16"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-2-17" name="__codelineno-2-17" href="#__codelineno-2-17"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">col</span><span class="p">;</span>
<a id="__codelineno-2-18" name="__codelineno-2-18" href="#__codelineno-2-18"></a><span class="w"> </span><span class="c1">// 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后</span>
<a id="__codelineno-2-19" name="__codelineno-2-19" href="#__codelineno-2-19"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="n">cols</span><span class="o">[</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-20" name="__codelineno-2-20" href="#__codelineno-2-20"></a><span class="w"> </span><span class="c1">// 嘗試:將皇后放置在該格子</span>
<a id="__codelineno-2-21" name="__codelineno-2-21" href="#__codelineno-2-21"></a><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="na">get</span><span class="p">(</span><span class="n">row</span><span class="p">).</span><span class="na">set</span><span class="p">(</span><span class="n">col</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;Q&quot;</span><span class="p">);</span>
<a id="__codelineno-2-22" name="__codelineno-2-22" href="#__codelineno-2-22"></a><span class="w"> </span><span class="n">cols</span><span class="o">[</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">true</span><span class="p">;</span>
<a id="__codelineno-2-23" name="__codelineno-2-23" href="#__codelineno-2-23"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-2-24" name="__codelineno-2-24" href="#__codelineno-2-24"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-2-25" name="__codelineno-2-25" href="#__codelineno-2-25"></a><span class="w"> </span><span class="c1">// 回退:將該格子恢復為空位</span>
<a id="__codelineno-2-26" name="__codelineno-2-26" href="#__codelineno-2-26"></a><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="na">get</span><span class="p">(</span><span class="n">row</span><span class="p">).</span><span class="na">set</span><span class="p">(</span><span class="n">col</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;#&quot;</span><span class="p">);</span>
<a id="__codelineno-2-27" name="__codelineno-2-27" href="#__codelineno-2-27"></a><span class="w"> </span><span class="n">cols</span><span class="o">[</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">false</span><span class="p">;</span>
<a id="__codelineno-2-28" name="__codelineno-2-28" href="#__codelineno-2-28"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-2-29" name="__codelineno-2-29" href="#__codelineno-2-29"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-2-30" name="__codelineno-2-30" href="#__codelineno-2-30"></a><span class="p">}</span>
<a id="__codelineno-2-31" name="__codelineno-2-31" href="#__codelineno-2-31"></a>
<a id="__codelineno-2-32" name="__codelineno-2-32" href="#__codelineno-2-32"></a><span class="cm">/* 求解 n 皇后 */</span>
<a id="__codelineno-2-33" name="__codelineno-2-33" href="#__codelineno-2-33"></a><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="nf">nQueens</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-34" name="__codelineno-2-34" href="#__codelineno-2-34"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盤,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-2-35" name="__codelineno-2-35" href="#__codelineno-2-35"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">();</span>
<a id="__codelineno-2-36" name="__codelineno-2-36" href="#__codelineno-2-36"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-37" name="__codelineno-2-37" href="#__codelineno-2-37"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">();</span>
<a id="__codelineno-2-38" name="__codelineno-2-38" href="#__codelineno-2-38"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-39" name="__codelineno-2-39" href="#__codelineno-2-39"></a><span class="w"> </span><span class="n">row</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="s">&quot;#&quot;</span><span class="p">);</span>
<a id="__codelineno-2-40" name="__codelineno-2-40" href="#__codelineno-2-40"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-2-41" name="__codelineno-2-41" href="#__codelineno-2-41"></a><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="n">row</span><span class="p">);</span>
<a id="__codelineno-2-42" name="__codelineno-2-42" href="#__codelineno-2-42"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-2-43" name="__codelineno-2-43" href="#__codelineno-2-43"></a><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">boolean</span><span class="o">[</span><span class="n">n</span><span class="o">]</span><span class="p">;</span><span class="w"> </span><span class="c1">// 記錄列是否有皇后</span>
<a id="__codelineno-2-44" name="__codelineno-2-44" href="#__codelineno-2-44"></a><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">boolean</span><span class="o">[</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span><span class="w"> </span><span class="c1">// 記錄主對角線上是否有皇后</span>
<a id="__codelineno-2-45" name="__codelineno-2-45" href="#__codelineno-2-45"></a><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">boolean</span><span class="o">[</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span><span class="w"> </span><span class="c1">// 記錄次對角線上是否有皇后</span>
<a id="__codelineno-2-46" name="__codelineno-2-46" href="#__codelineno-2-46"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">();</span>
<a id="__codelineno-2-47" name="__codelineno-2-47" href="#__codelineno-2-47"></a>
<a id="__codelineno-2-48" name="__codelineno-2-48" href="#__codelineno-2-48"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-2-49" name="__codelineno-2-49" href="#__codelineno-2-49"></a>
<a id="__codelineno-2-50" name="__codelineno-2-50" href="#__codelineno-2-50"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-2-51" name="__codelineno-2-51" href="#__codelineno-2-51"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.cs</span><pre><span></span><code><a id="__codelineno-3-1" name="__codelineno-3-1" href="#__codelineno-3-1"></a><span class="cm">/* 回溯演算法n 皇后 */</span>
<a id="__codelineno-3-2" name="__codelineno-3-2" href="#__codelineno-3-2"></a><span class="k">void</span><span class="w"> </span><span class="nf">Backtrack</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">row</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="p">,</span>
<a id="__codelineno-3-3" name="__codelineno-3-3" href="#__codelineno-3-3"></a><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">diags2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-4" name="__codelineno-3-4" href="#__codelineno-3-4"></a><span class="w"> </span><span class="c1">// 當放置完所有行時,記錄解</span>
<a id="__codelineno-3-5" name="__codelineno-3-5" href="#__codelineno-3-5"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-6" name="__codelineno-3-6" href="#__codelineno-3-6"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">copyState</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-3-7" name="__codelineno-3-7" href="#__codelineno-3-7"></a><span class="w"> </span><span class="k">foreach</span><span class="w"> </span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;</span><span class="w"> </span><span class="n">sRow</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">state</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-8" name="__codelineno-3-8" href="#__codelineno-3-8"></a><span class="w"> </span><span class="n">copyState</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="k">new</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;</span><span class="p">(</span><span class="n">sRow</span><span class="p">));</span>
<a id="__codelineno-3-9" name="__codelineno-3-9" href="#__codelineno-3-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-10" name="__codelineno-3-10" href="#__codelineno-3-10"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="n">copyState</span><span class="p">);</span>
<a id="__codelineno-3-11" name="__codelineno-3-11" href="#__codelineno-3-11"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-3-12" name="__codelineno-3-12" href="#__codelineno-3-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-13" name="__codelineno-3-13" href="#__codelineno-3-13"></a><span class="w"> </span><span class="c1">// 走訪所有列</span>
<a id="__codelineno-3-14" name="__codelineno-3-14" href="#__codelineno-3-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-15" name="__codelineno-3-15" href="#__codelineno-3-15"></a><span class="w"> </span><span class="c1">// 計算該格子對應的主對角線和次對角線</span>
<a id="__codelineno-3-16" name="__codelineno-3-16" href="#__codelineno-3-16"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-3-17" name="__codelineno-3-17" href="#__codelineno-3-17"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">col</span><span class="p">;</span>
<a id="__codelineno-3-18" name="__codelineno-3-18" href="#__codelineno-3-18"></a><span class="w"> </span><span class="c1">// 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后</span>
<a id="__codelineno-3-19" name="__codelineno-3-19" href="#__codelineno-3-19"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-20" name="__codelineno-3-20" href="#__codelineno-3-20"></a><span class="w"> </span><span class="c1">// 嘗試:將皇后放置在該格子</span>
<a id="__codelineno-3-21" name="__codelineno-3-21" href="#__codelineno-3-21"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;Q&quot;</span><span class="p">;</span>
<a id="__codelineno-3-22" name="__codelineno-3-22" href="#__codelineno-3-22"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">true</span><span class="p">;</span>
<a id="__codelineno-3-23" name="__codelineno-3-23" href="#__codelineno-3-23"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-3-24" name="__codelineno-3-24" href="#__codelineno-3-24"></a><span class="w"> </span><span class="n">Backtrack</span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-3-25" name="__codelineno-3-25" href="#__codelineno-3-25"></a><span class="w"> </span><span class="c1">// 回退:將該格子恢復為空位</span>
<a id="__codelineno-3-26" name="__codelineno-3-26" href="#__codelineno-3-26"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span><span class="p">;</span>
<a id="__codelineno-3-27" name="__codelineno-3-27" href="#__codelineno-3-27"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">false</span><span class="p">;</span>
<a id="__codelineno-3-28" name="__codelineno-3-28" href="#__codelineno-3-28"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-29" name="__codelineno-3-29" href="#__codelineno-3-29"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-30" name="__codelineno-3-30" href="#__codelineno-3-30"></a><span class="p">}</span>
<a id="__codelineno-3-31" name="__codelineno-3-31" href="#__codelineno-3-31"></a>
<a id="__codelineno-3-32" name="__codelineno-3-32" href="#__codelineno-3-32"></a><span class="cm">/* 求解 n 皇后 */</span>
<a id="__codelineno-3-33" name="__codelineno-3-33" href="#__codelineno-3-33"></a><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">NQueens</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-34" name="__codelineno-3-34" href="#__codelineno-3-34"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盤,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-3-35" name="__codelineno-3-35" href="#__codelineno-3-35"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-3-36" name="__codelineno-3-36" href="#__codelineno-3-36"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-37" name="__codelineno-3-37" href="#__codelineno-3-37"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-3-38" name="__codelineno-3-38" href="#__codelineno-3-38"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-39" name="__codelineno-3-39" href="#__codelineno-3-39"></a><span class="w"> </span><span class="n">row</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="s">&quot;#&quot;</span><span class="p">);</span>
<a id="__codelineno-3-40" name="__codelineno-3-40" href="#__codelineno-3-40"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-41" name="__codelineno-3-41" href="#__codelineno-3-41"></a><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="n">row</span><span class="p">);</span>
<a id="__codelineno-3-42" name="__codelineno-3-42" href="#__codelineno-3-42"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-43" name="__codelineno-3-43" href="#__codelineno-3-43"></a><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">bool</span><span class="p">[</span><span class="n">n</span><span class="p">];</span><span class="w"> </span><span class="c1">// 記錄列是否有皇后</span>
<a id="__codelineno-3-44" name="__codelineno-3-44" href="#__codelineno-3-44"></a><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">bool</span><span class="p">[</span><span class="m">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">];</span><span class="w"> </span><span class="c1">// 記錄主對角線上是否有皇后</span>
<a id="__codelineno-3-45" name="__codelineno-3-45" href="#__codelineno-3-45"></a><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">bool</span><span class="p">[</span><span class="m">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">];</span><span class="w"> </span><span class="c1">// 記錄次對角線上是否有皇后</span>
<a id="__codelineno-3-46" name="__codelineno-3-46" href="#__codelineno-3-46"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-3-47" name="__codelineno-3-47" href="#__codelineno-3-47"></a>
<a id="__codelineno-3-48" name="__codelineno-3-48" href="#__codelineno-3-48"></a><span class="w"> </span><span class="n">Backtrack</span><span class="p">(</span><span class="m">0</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-3-49" name="__codelineno-3-49" href="#__codelineno-3-49"></a>
<a id="__codelineno-3-50" name="__codelineno-3-50" href="#__codelineno-3-50"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-3-51" name="__codelineno-3-51" href="#__codelineno-3-51"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.go</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="cm">/* 回溯演算法n 皇后 */</span>
<a id="__codelineno-4-2" name="__codelineno-4-2" href="#__codelineno-4-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="w"> </span><span class="o">*</span><span class="p">[][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="o">*</span><span class="p">[][][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="w"> </span><span class="o">*</span><span class="p">[]</span><span class="kt">bool</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-3" name="__codelineno-4-3" href="#__codelineno-4-3"></a><span class="w"> </span><span class="c1">// 當放置完所有行時,記錄解</span>
<a id="__codelineno-4-4" name="__codelineno-4-4" href="#__codelineno-4-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-5" name="__codelineno-4-5" href="#__codelineno-4-5"></a><span class="w"> </span><span class="nx">newState</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nb">len</span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">))</span>
<a id="__codelineno-4-6" name="__codelineno-4-6" href="#__codelineno-4-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">_</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="k">range</span><span class="w"> </span><span class="nx">newState</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-7" name="__codelineno-4-7" href="#__codelineno-4-7"></a><span class="w"> </span><span class="nx">newState</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nb">len</span><span class="p">((</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="mi">0</span><span class="p">]))</span>
<a id="__codelineno-4-8" name="__codelineno-4-8" href="#__codelineno-4-8"></a><span class="w"> </span><span class="nb">copy</span><span class="p">(</span><span class="nx">newState</span><span class="p">[</span><span class="nx">i</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">i</span><span class="p">])</span>
<a id="__codelineno-4-9" name="__codelineno-4-9" href="#__codelineno-4-9"></a>
<a id="__codelineno-4-10" name="__codelineno-4-10" href="#__codelineno-4-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-11" name="__codelineno-4-11" href="#__codelineno-4-11"></a><span class="w"> </span><span class="o">*</span><span class="nx">res</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">append</span><span class="p">(</span><span class="o">*</span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">newState</span><span class="p">)</span>
<a id="__codelineno-4-12" name="__codelineno-4-12" href="#__codelineno-4-12"></a><span class="w"> </span><span class="k">return</span>
<a id="__codelineno-4-13" name="__codelineno-4-13" href="#__codelineno-4-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-14" name="__codelineno-4-14" href="#__codelineno-4-14"></a><span class="w"> </span><span class="c1">// 走訪所有列</span>
<a id="__codelineno-4-15" name="__codelineno-4-15" href="#__codelineno-4-15"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-16" name="__codelineno-4-16" href="#__codelineno-4-16"></a><span class="w"> </span><span class="c1">// 計算該格子對應的主對角線和次對角線</span>
<a id="__codelineno-4-17" name="__codelineno-4-17" href="#__codelineno-4-17"></a><span class="w"> </span><span class="nx">diag1</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-4-18" name="__codelineno-4-18" href="#__codelineno-4-18"></a><span class="w"> </span><span class="nx">diag2</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">col</span>
<a id="__codelineno-4-19" name="__codelineno-4-19" href="#__codelineno-4-19"></a><span class="w"> </span><span class="c1">// 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后</span>
<a id="__codelineno-4-20" name="__codelineno-4-20" href="#__codelineno-4-20"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">!(</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="p">!(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="p">!(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-21" name="__codelineno-4-21" href="#__codelineno-4-21"></a><span class="w"> </span><span class="c1">// 嘗試:將皇后放置在該格子</span>
<a id="__codelineno-4-22" name="__codelineno-4-22" href="#__codelineno-4-22"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">&quot;Q&quot;</span>
<a id="__codelineno-4-23" name="__codelineno-4-23" href="#__codelineno-4-23"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="kc">true</span><span class="p">,</span><span class="w"> </span><span class="kc">true</span><span class="p">,</span><span class="w"> </span><span class="kc">true</span>
<a id="__codelineno-4-24" name="__codelineno-4-24" href="#__codelineno-4-24"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-4-25" name="__codelineno-4-25" href="#__codelineno-4-25"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">)</span>
<a id="__codelineno-4-26" name="__codelineno-4-26" href="#__codelineno-4-26"></a><span class="w"> </span><span class="c1">// 回退:將該格子恢復為空位</span>
<a id="__codelineno-4-27" name="__codelineno-4-27" href="#__codelineno-4-27"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span>
<a id="__codelineno-4-28" name="__codelineno-4-28" href="#__codelineno-4-28"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="kc">false</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span>
<a id="__codelineno-4-29" name="__codelineno-4-29" href="#__codelineno-4-29"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-30" name="__codelineno-4-30" href="#__codelineno-4-30"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-31" name="__codelineno-4-31" href="#__codelineno-4-31"></a><span class="p">}</span>
<a id="__codelineno-4-32" name="__codelineno-4-32" href="#__codelineno-4-32"></a>
<a id="__codelineno-4-33" name="__codelineno-4-33" href="#__codelineno-4-33"></a><span class="cm">/* 求解 n 皇后 */</span>
<a id="__codelineno-4-34" name="__codelineno-4-34" href="#__codelineno-4-34"></a><span class="kd">func</span><span class="w"> </span><span class="nx">nQueens</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">[][][]</span><span class="kt">string</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-35" name="__codelineno-4-35" href="#__codelineno-4-35"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盤,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-4-36" name="__codelineno-4-36" href="#__codelineno-4-36"></a><span class="w"> </span><span class="nx">state</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span>
<a id="__codelineno-4-37" name="__codelineno-4-37" href="#__codelineno-4-37"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-38" name="__codelineno-4-38" href="#__codelineno-4-38"></a><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span>
<a id="__codelineno-4-39" name="__codelineno-4-39" href="#__codelineno-4-39"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-40" name="__codelineno-4-40" href="#__codelineno-4-40"></a><span class="w"> </span><span class="nx">row</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span>
<a id="__codelineno-4-41" name="__codelineno-4-41" href="#__codelineno-4-41"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-42" name="__codelineno-4-42" href="#__codelineno-4-42"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">row</span>
<a id="__codelineno-4-43" name="__codelineno-4-43" href="#__codelineno-4-43"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-44" name="__codelineno-4-44" href="#__codelineno-4-44"></a><span class="w"> </span><span class="c1">// 記錄列是否有皇后</span>
<a id="__codelineno-4-45" name="__codelineno-4-45" href="#__codelineno-4-45"></a><span class="w"> </span><span class="nx">cols</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">bool</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span>
<a id="__codelineno-4-46" name="__codelineno-4-46" href="#__codelineno-4-46"></a><span class="w"> </span><span class="nx">diags1</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">bool</span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="o">*</span><span class="nx">n</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-4-47" name="__codelineno-4-47" href="#__codelineno-4-47"></a><span class="w"> </span><span class="nx">diags2</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">bool</span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="o">*</span><span class="nx">n</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-4-48" name="__codelineno-4-48" href="#__codelineno-4-48"></a><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([][][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-4-49" name="__codelineno-4-49" href="#__codelineno-4-49"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">diags2</span><span class="p">)</span>
<a id="__codelineno-4-50" name="__codelineno-4-50" href="#__codelineno-4-50"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">res</span>
<a id="__codelineno-4-51" name="__codelineno-4-51" href="#__codelineno-4-51"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.swift</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="cm">/* 回溯演算法n 皇后 */</span>
<a id="__codelineno-5-2" name="__codelineno-5-2" href="#__codelineno-5-2"></a><span class="kd">func</span> <span class="nf">backtrack</span><span class="p">(</span><span class="n">row</span><span class="p">:</span> <span class="nb">Int</span><span class="p">,</span> <span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[[</span><span class="nb">String</span><span class="p">]],</span> <span class="n">res</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[[[</span><span class="nb">String</span><span class="p">]]],</span> <span class="n">cols</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[</span><span class="nb">Bool</span><span class="p">],</span> <span class="n">diags1</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[</span><span class="nb">Bool</span><span class="p">],</span> <span class="n">diags2</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[</span><span class="nb">Bool</span><span class="p">])</span> <span class="p">{</span>
<a id="__codelineno-5-3" name="__codelineno-5-3" href="#__codelineno-5-3"></a> <span class="c1">// 當放置完所有行時,記錄解</span>
<a id="__codelineno-5-4" name="__codelineno-5-4" href="#__codelineno-5-4"></a> <span class="k">if</span> <span class="n">row</span> <span class="p">==</span> <span class="n">n</span> <span class="p">{</span>
<a id="__codelineno-5-5" name="__codelineno-5-5" href="#__codelineno-5-5"></a> <span class="n">res</span><span class="p">.</span><span class="n">append</span><span class="p">(</span><span class="n">state</span><span class="p">)</span>
<a id="__codelineno-5-6" name="__codelineno-5-6" href="#__codelineno-5-6"></a> <span class="k">return</span>
<a id="__codelineno-5-7" name="__codelineno-5-7" href="#__codelineno-5-7"></a> <span class="p">}</span>
<a id="__codelineno-5-8" name="__codelineno-5-8" href="#__codelineno-5-8"></a> <span class="c1">// 走訪所有列</span>
<a id="__codelineno-5-9" name="__codelineno-5-9" href="#__codelineno-5-9"></a> <span class="k">for</span> <span class="n">col</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">n</span> <span class="p">{</span>
<a id="__codelineno-5-10" name="__codelineno-5-10" href="#__codelineno-5-10"></a> <span class="c1">// 計算該格子對應的主對角線和次對角線</span>
<a id="__codelineno-5-11" name="__codelineno-5-11" href="#__codelineno-5-11"></a> <span class="kd">let</span> <span class="nv">diag1</span> <span class="p">=</span> <span class="n">row</span> <span class="o">-</span> <span class="n">col</span> <span class="o">+</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span>
<a id="__codelineno-5-12" name="__codelineno-5-12" href="#__codelineno-5-12"></a> <span class="kd">let</span> <span class="nv">diag2</span> <span class="p">=</span> <span class="n">row</span> <span class="o">+</span> <span class="n">col</span>
<a id="__codelineno-5-13" name="__codelineno-5-13" href="#__codelineno-5-13"></a> <span class="c1">// 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后</span>
<a id="__codelineno-5-14" name="__codelineno-5-14" href="#__codelineno-5-14"></a> <span class="k">if</span> <span class="o">!</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="o">&amp;&amp;</span> <span class="o">!</span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="o">&amp;&amp;</span> <span class="o">!</span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span> <span class="p">{</span>
<a id="__codelineno-5-15" name="__codelineno-5-15" href="#__codelineno-5-15"></a> <span class="c1">// 嘗試:將皇后放置在該格子</span>
<a id="__codelineno-5-16" name="__codelineno-5-16" href="#__codelineno-5-16"></a> <span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span> <span class="p">=</span> <span class="s">&quot;Q&quot;</span>
<a id="__codelineno-5-17" name="__codelineno-5-17" href="#__codelineno-5-17"></a> <span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="p">=</span> <span class="kc">true</span>
<a id="__codelineno-5-18" name="__codelineno-5-18" href="#__codelineno-5-18"></a> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="p">=</span> <span class="kc">true</span>
<a id="__codelineno-5-19" name="__codelineno-5-19" href="#__codelineno-5-19"></a> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span> <span class="p">=</span> <span class="kc">true</span>
<a id="__codelineno-5-20" name="__codelineno-5-20" href="#__codelineno-5-20"></a> <span class="c1">// 放置下一行</span>
<a id="__codelineno-5-21" name="__codelineno-5-21" href="#__codelineno-5-21"></a> <span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="p">:</span> <span class="n">row</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">n</span><span class="p">:</span> <span class="n">n</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">state</span><span class="p">,</span> <span class="n">res</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">res</span><span class="p">,</span> <span class="n">cols</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">cols</span><span class="p">,</span> <span class="n">diags1</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">diags1</span><span class="p">,</span> <span class="n">diags2</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-5-22" name="__codelineno-5-22" href="#__codelineno-5-22"></a> <span class="c1">// 回退:將該格子恢復為空位</span>
<a id="__codelineno-5-23" name="__codelineno-5-23" href="#__codelineno-5-23"></a> <span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span> <span class="p">=</span> <span class="s">&quot;#&quot;</span>
<a id="__codelineno-5-24" name="__codelineno-5-24" href="#__codelineno-5-24"></a> <span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="p">=</span> <span class="kc">false</span>
<a id="__codelineno-5-25" name="__codelineno-5-25" href="#__codelineno-5-25"></a> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="p">=</span> <span class="kc">false</span>
<a id="__codelineno-5-26" name="__codelineno-5-26" href="#__codelineno-5-26"></a> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span> <span class="p">=</span> <span class="kc">false</span>
<a id="__codelineno-5-27" name="__codelineno-5-27" href="#__codelineno-5-27"></a> <span class="p">}</span>
<a id="__codelineno-5-28" name="__codelineno-5-28" href="#__codelineno-5-28"></a> <span class="p">}</span>
<a id="__codelineno-5-29" name="__codelineno-5-29" href="#__codelineno-5-29"></a><span class="p">}</span>
<a id="__codelineno-5-30" name="__codelineno-5-30" href="#__codelineno-5-30"></a>
<a id="__codelineno-5-31" name="__codelineno-5-31" href="#__codelineno-5-31"></a><span class="cm">/* 求解 n 皇后 */</span>
<a id="__codelineno-5-32" name="__codelineno-5-32" href="#__codelineno-5-32"></a><span class="kd">func</span> <span class="nf">nQueens</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="p">[[[</span><span class="nb">String</span><span class="p">]]]</span> <span class="p">{</span>
<a id="__codelineno-5-33" name="__codelineno-5-33" href="#__codelineno-5-33"></a> <span class="c1">// 初始化 n*n 大小的棋盤,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-5-34" name="__codelineno-5-34" href="#__codelineno-5-34"></a> <span class="kd">var</span> <span class="nv">state</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="s">&quot;#&quot;</span><span class="p">,</span> <span class="bp">count</span><span class="p">:</span> <span class="n">n</span><span class="p">),</span> <span class="bp">count</span><span class="p">:</span> <span class="n">n</span><span class="p">)</span>
<a id="__codelineno-5-35" name="__codelineno-5-35" href="#__codelineno-5-35"></a> <span class="kd">var</span> <span class="nv">cols</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="kc">false</span><span class="p">,</span> <span class="bp">count</span><span class="p">:</span> <span class="n">n</span><span class="p">)</span> <span class="c1">// 記錄列是否有皇后</span>
<a id="__codelineno-5-36" name="__codelineno-5-36" href="#__codelineno-5-36"></a> <span class="kd">var</span> <span class="nv">diags1</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="kc">false</span><span class="p">,</span> <span class="bp">count</span><span class="p">:</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="c1">// 記錄主對角線上是否有皇后</span>
<a id="__codelineno-5-37" name="__codelineno-5-37" href="#__codelineno-5-37"></a> <span class="kd">var</span> <span class="nv">diags2</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="kc">false</span><span class="p">,</span> <span class="bp">count</span><span class="p">:</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="c1">// 記錄次對角線上是否有皇后</span>
<a id="__codelineno-5-38" name="__codelineno-5-38" href="#__codelineno-5-38"></a> <span class="kd">var</span> <span class="nv">res</span><span class="p">:</span> <span class="p">[[[</span><span class="nb">String</span><span class="p">]]]</span> <span class="p">=</span> <span class="p">[]</span>
<a id="__codelineno-5-39" name="__codelineno-5-39" href="#__codelineno-5-39"></a>
<a id="__codelineno-5-40" name="__codelineno-5-40" href="#__codelineno-5-40"></a> <span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span> <span class="n">n</span><span class="p">:</span> <span class="n">n</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">state</span><span class="p">,</span> <span class="n">res</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">res</span><span class="p">,</span> <span class="n">cols</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">cols</span><span class="p">,</span> <span class="n">diags1</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">diags1</span><span class="p">,</span> <span class="n">diags2</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-5-41" name="__codelineno-5-41" href="#__codelineno-5-41"></a>
<a id="__codelineno-5-42" name="__codelineno-5-42" href="#__codelineno-5-42"></a> <span class="k">return</span> <span class="n">res</span>
<a id="__codelineno-5-43" name="__codelineno-5-43" href="#__codelineno-5-43"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.js</span><pre><span></span><code><a id="__codelineno-6-1" name="__codelineno-6-1" href="#__codelineno-6-1"></a><span class="cm">/* 回溯演算法n 皇后 */</span>
<a id="__codelineno-6-2" name="__codelineno-6-2" href="#__codelineno-6-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-3" name="__codelineno-6-3" href="#__codelineno-6-3"></a><span class="w"> </span><span class="c1">// 當放置完所有行時,記錄解</span>
<a id="__codelineno-6-4" name="__codelineno-6-4" href="#__codelineno-6-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">row</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-5" name="__codelineno-6-5" href="#__codelineno-6-5"></a><span class="w"> </span><span class="nx">res</span><span class="p">.</span><span class="nx">push</span><span class="p">(</span><span class="nx">state</span><span class="p">.</span><span class="nx">map</span><span class="p">((</span><span class="nx">row</span><span class="p">)</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="nx">row</span><span class="p">.</span><span class="nx">slice</span><span class="p">()));</span>
<a id="__codelineno-6-6" name="__codelineno-6-6" href="#__codelineno-6-6"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-6-7" name="__codelineno-6-7" href="#__codelineno-6-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-6-8" name="__codelineno-6-8" href="#__codelineno-6-8"></a><span class="w"> </span><span class="c1">// 走訪所有列</span>
<a id="__codelineno-6-9" name="__codelineno-6-9" href="#__codelineno-6-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-10" name="__codelineno-6-10" href="#__codelineno-6-10"></a><span class="w"> </span><span class="c1">// 計算該格子對應的主對角線和次對角線</span>
<a id="__codelineno-6-11" name="__codelineno-6-11" href="#__codelineno-6-11"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-6-12" name="__codelineno-6-12" href="#__codelineno-6-12"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">col</span><span class="p">;</span>
<a id="__codelineno-6-13" name="__codelineno-6-13" href="#__codelineno-6-13"></a><span class="w"> </span><span class="c1">// 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后</span>
<a id="__codelineno-6-14" name="__codelineno-6-14" href="#__codelineno-6-14"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-15" name="__codelineno-6-15" href="#__codelineno-6-15"></a><span class="w"> </span><span class="c1">// 嘗試:將皇后放置在該格子</span>
<a id="__codelineno-6-16" name="__codelineno-6-16" href="#__codelineno-6-16"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s1">&#39;Q&#39;</span><span class="p">;</span>
<a id="__codelineno-6-17" name="__codelineno-6-17" href="#__codelineno-6-17"></a><span class="w"> </span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">true</span><span class="p">;</span>
<a id="__codelineno-6-18" name="__codelineno-6-18" href="#__codelineno-6-18"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-6-19" name="__codelineno-6-19" href="#__codelineno-6-19"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">);</span>
<a id="__codelineno-6-20" name="__codelineno-6-20" href="#__codelineno-6-20"></a><span class="w"> </span><span class="c1">// 回退:將該格子恢復為空位</span>
<a id="__codelineno-6-21" name="__codelineno-6-21" href="#__codelineno-6-21"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s1">&#39;#&#39;</span><span class="p">;</span>
<a id="__codelineno-6-22" name="__codelineno-6-22" href="#__codelineno-6-22"></a><span class="w"> </span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">false</span><span class="p">;</span>
<a id="__codelineno-6-23" name="__codelineno-6-23" href="#__codelineno-6-23"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-6-24" name="__codelineno-6-24" href="#__codelineno-6-24"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-6-25" name="__codelineno-6-25" href="#__codelineno-6-25"></a><span class="p">}</span>
<a id="__codelineno-6-26" name="__codelineno-6-26" href="#__codelineno-6-26"></a>
<a id="__codelineno-6-27" name="__codelineno-6-27" href="#__codelineno-6-27"></a><span class="cm">/* 求解 n 皇后 */</span>
<a id="__codelineno-6-28" name="__codelineno-6-28" href="#__codelineno-6-28"></a><span class="kd">function</span><span class="w"> </span><span class="nx">nQueens</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-29" name="__codelineno-6-29" href="#__codelineno-6-29"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盤,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-6-30" name="__codelineno-6-30" href="#__codelineno-6-30"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="s1">&#39;#&#39;</span><span class="p">));</span>
<a id="__codelineno-6-31" name="__codelineno-6-31" href="#__codelineno-6-31"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 記錄列是否有皇后</span>
<a id="__codelineno-6-32" name="__codelineno-6-32" href="#__codelineno-6-32"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 記錄主對角線上是否有皇后</span>
<a id="__codelineno-6-33" name="__codelineno-6-33" href="#__codelineno-6-33"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 記錄次對角線上是否有皇后</span>
<a id="__codelineno-6-34" name="__codelineno-6-34" href="#__codelineno-6-34"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-6-35" name="__codelineno-6-35" href="#__codelineno-6-35"></a>
<a id="__codelineno-6-36" name="__codelineno-6-36" href="#__codelineno-6-36"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="mf">0</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">);</span>
<a id="__codelineno-6-37" name="__codelineno-6-37" href="#__codelineno-6-37"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">res</span><span class="p">;</span>
<a id="__codelineno-6-38" name="__codelineno-6-38" href="#__codelineno-6-38"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.ts</span><pre><span></span><code><a id="__codelineno-7-1" name="__codelineno-7-1" href="#__codelineno-7-1"></a><span class="cm">/* 回溯演算法n 皇后 */</span>
<a id="__codelineno-7-2" name="__codelineno-7-2" href="#__codelineno-7-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span>
<a id="__codelineno-7-3" name="__codelineno-7-3" href="#__codelineno-7-3"></a><span class="w"> </span><span class="nx">row</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">,</span>
<a id="__codelineno-7-4" name="__codelineno-7-4" href="#__codelineno-7-4"></a><span class="w"> </span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">,</span>
<a id="__codelineno-7-5" name="__codelineno-7-5" href="#__codelineno-7-5"></a><span class="w"> </span><span class="nx">state</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">[][],</span>
<a id="__codelineno-7-6" name="__codelineno-7-6" href="#__codelineno-7-6"></a><span class="w"> </span><span class="nx">res</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">[][][],</span>
<a id="__codelineno-7-7" name="__codelineno-7-7" href="#__codelineno-7-7"></a><span class="w"> </span><span class="nx">cols</span><span class="o">:</span><span class="w"> </span><span class="kt">boolean</span><span class="p">[],</span>
<a id="__codelineno-7-8" name="__codelineno-7-8" href="#__codelineno-7-8"></a><span class="w"> </span><span class="nx">diags1</span><span class="o">:</span><span class="w"> </span><span class="kt">boolean</span><span class="p">[],</span>
<a id="__codelineno-7-9" name="__codelineno-7-9" href="#__codelineno-7-9"></a><span class="w"> </span><span class="nx">diags2</span><span class="o">:</span><span class="w"> </span><span class="kt">boolean</span><span class="p">[]</span>
<a id="__codelineno-7-10" name="__codelineno-7-10" href="#__codelineno-7-10"></a><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-11" name="__codelineno-7-11" href="#__codelineno-7-11"></a><span class="w"> </span><span class="c1">// 當放置完所有行時,記錄解</span>
<a id="__codelineno-7-12" name="__codelineno-7-12" href="#__codelineno-7-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">row</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-13" name="__codelineno-7-13" href="#__codelineno-7-13"></a><span class="w"> </span><span class="nx">res</span><span class="p">.</span><span class="nx">push</span><span class="p">(</span><span class="nx">state</span><span class="p">.</span><span class="nx">map</span><span class="p">((</span><span class="nx">row</span><span class="p">)</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="nx">row</span><span class="p">.</span><span class="nx">slice</span><span class="p">()));</span>
<a id="__codelineno-7-14" name="__codelineno-7-14" href="#__codelineno-7-14"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-7-15" name="__codelineno-7-15" href="#__codelineno-7-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-16" name="__codelineno-7-16" href="#__codelineno-7-16"></a><span class="w"> </span><span class="c1">// 走訪所有列</span>
<a id="__codelineno-7-17" name="__codelineno-7-17" href="#__codelineno-7-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-18" name="__codelineno-7-18" href="#__codelineno-7-18"></a><span class="w"> </span><span class="c1">// 計算該格子對應的主對角線和次對角線</span>
<a id="__codelineno-7-19" name="__codelineno-7-19" href="#__codelineno-7-19"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-7-20" name="__codelineno-7-20" href="#__codelineno-7-20"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">col</span><span class="p">;</span>
<a id="__codelineno-7-21" name="__codelineno-7-21" href="#__codelineno-7-21"></a><span class="w"> </span><span class="c1">// 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后</span>
<a id="__codelineno-7-22" name="__codelineno-7-22" href="#__codelineno-7-22"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-23" name="__codelineno-7-23" href="#__codelineno-7-23"></a><span class="w"> </span><span class="c1">// 嘗試:將皇后放置在該格子</span>
<a id="__codelineno-7-24" name="__codelineno-7-24" href="#__codelineno-7-24"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s1">&#39;Q&#39;</span><span class="p">;</span>
<a id="__codelineno-7-25" name="__codelineno-7-25" href="#__codelineno-7-25"></a><span class="w"> </span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">true</span><span class="p">;</span>
<a id="__codelineno-7-26" name="__codelineno-7-26" href="#__codelineno-7-26"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-7-27" name="__codelineno-7-27" href="#__codelineno-7-27"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">);</span>
<a id="__codelineno-7-28" name="__codelineno-7-28" href="#__codelineno-7-28"></a><span class="w"> </span><span class="c1">// 回退:將該格子恢復為空位</span>
<a id="__codelineno-7-29" name="__codelineno-7-29" href="#__codelineno-7-29"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s1">&#39;#&#39;</span><span class="p">;</span>
<a id="__codelineno-7-30" name="__codelineno-7-30" href="#__codelineno-7-30"></a><span class="w"> </span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">false</span><span class="p">;</span>
<a id="__codelineno-7-31" name="__codelineno-7-31" href="#__codelineno-7-31"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-32" name="__codelineno-7-32" href="#__codelineno-7-32"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-33" name="__codelineno-7-33" href="#__codelineno-7-33"></a><span class="p">}</span>
<a id="__codelineno-7-34" name="__codelineno-7-34" href="#__codelineno-7-34"></a>
<a id="__codelineno-7-35" name="__codelineno-7-35" href="#__codelineno-7-35"></a><span class="cm">/* 求解 n 皇后 */</span>
<a id="__codelineno-7-36" name="__codelineno-7-36" href="#__codelineno-7-36"></a><span class="kd">function</span><span class="w"> </span><span class="nx">nQueens</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">[][][]</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-37" name="__codelineno-7-37" href="#__codelineno-7-37"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盤,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-7-38" name="__codelineno-7-38" href="#__codelineno-7-38"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">n</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="s1">&#39;#&#39;</span><span class="p">));</span>
<a id="__codelineno-7-39" name="__codelineno-7-39" href="#__codelineno-7-39"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 記錄列是否有皇后</span>
<a id="__codelineno-7-40" name="__codelineno-7-40" href="#__codelineno-7-40"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 記錄主對角線上是否有皇后</span>
<a id="__codelineno-7-41" name="__codelineno-7-41" href="#__codelineno-7-41"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 記錄次對角線上是否有皇后</span>
<a id="__codelineno-7-42" name="__codelineno-7-42" href="#__codelineno-7-42"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">res</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">[][][]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-7-43" name="__codelineno-7-43" href="#__codelineno-7-43"></a>
<a id="__codelineno-7-44" name="__codelineno-7-44" href="#__codelineno-7-44"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="mf">0</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">);</span>
<a id="__codelineno-7-45" name="__codelineno-7-45" href="#__codelineno-7-45"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">res</span><span class="p">;</span>
<a id="__codelineno-7-46" name="__codelineno-7-46" href="#__codelineno-7-46"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.dart</span><pre><span></span><code><a id="__codelineno-8-1" name="__codelineno-8-1" href="#__codelineno-8-1"></a><span class="cm">/* 回溯演算法n 皇后 */</span>
<a id="__codelineno-8-2" name="__codelineno-8-2" href="#__codelineno-8-2"></a><span class="kt">void</span><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span>
<a id="__codelineno-8-3" name="__codelineno-8-3" href="#__codelineno-8-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">row</span><span class="p">,</span>
<a id="__codelineno-8-4" name="__codelineno-8-4" href="#__codelineno-8-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">,</span>
<a id="__codelineno-8-5" name="__codelineno-8-5" href="#__codelineno-8-5"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="p">,</span>
<a id="__codelineno-8-6" name="__codelineno-8-6" href="#__codelineno-8-6"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="p">,</span>
<a id="__codelineno-8-7" name="__codelineno-8-7" href="#__codelineno-8-7"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span>
<a id="__codelineno-8-8" name="__codelineno-8-8" href="#__codelineno-8-8"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span>
<a id="__codelineno-8-9" name="__codelineno-8-9" href="#__codelineno-8-9"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">diags2</span><span class="p">,</span>
<a id="__codelineno-8-10" name="__codelineno-8-10" href="#__codelineno-8-10"></a><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-8-11" name="__codelineno-8-11" href="#__codelineno-8-11"></a><span class="w"> </span><span class="c1">// 當放置完所有行時,記錄解</span>
<a id="__codelineno-8-12" name="__codelineno-8-12" href="#__codelineno-8-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-8-13" name="__codelineno-8-13" href="#__codelineno-8-13"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">copyState</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-8-14" name="__codelineno-8-14" href="#__codelineno-8-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;</span><span class="w"> </span><span class="n">sRow</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">state</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-8-15" name="__codelineno-8-15" href="#__codelineno-8-15"></a><span class="w"> </span><span class="n">copyState</span><span class="p">.</span><span class="n">add</span><span class="p">(</span><span class="n">List</span><span class="p">.</span><span class="n">from</span><span class="p">(</span><span class="n">sRow</span><span class="p">));</span>
<a id="__codelineno-8-16" name="__codelineno-8-16" href="#__codelineno-8-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-8-17" name="__codelineno-8-17" href="#__codelineno-8-17"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">add</span><span class="p">(</span><span class="n">copyState</span><span class="p">);</span>
<a id="__codelineno-8-18" name="__codelineno-8-18" href="#__codelineno-8-18"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-8-19" name="__codelineno-8-19" href="#__codelineno-8-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-8-20" name="__codelineno-8-20" href="#__codelineno-8-20"></a><span class="w"> </span><span class="c1">// 走訪所有列</span>
<a id="__codelineno-8-21" name="__codelineno-8-21" href="#__codelineno-8-21"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-8-22" name="__codelineno-8-22" href="#__codelineno-8-22"></a><span class="w"> </span><span class="c1">// 計算該格子對應的主對角線和次對角線</span>
<a id="__codelineno-8-23" name="__codelineno-8-23" href="#__codelineno-8-23"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-8-24" name="__codelineno-8-24" href="#__codelineno-8-24"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">col</span><span class="p">;</span>
<a id="__codelineno-8-25" name="__codelineno-8-25" href="#__codelineno-8-25"></a><span class="w"> </span><span class="c1">// 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后</span>
<a id="__codelineno-8-26" name="__codelineno-8-26" href="#__codelineno-8-26"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-8-27" name="__codelineno-8-27" href="#__codelineno-8-27"></a><span class="w"> </span><span class="c1">// 嘗試:將皇后放置在該格子</span>
<a id="__codelineno-8-28" name="__codelineno-8-28" href="#__codelineno-8-28"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">&quot;Q&quot;</span><span class="p">;</span>
<a id="__codelineno-8-29" name="__codelineno-8-29" href="#__codelineno-8-29"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">true</span><span class="p">;</span>
<a id="__codelineno-8-30" name="__codelineno-8-30" href="#__codelineno-8-30"></a><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">true</span><span class="p">;</span>
<a id="__codelineno-8-31" name="__codelineno-8-31" href="#__codelineno-8-31"></a><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">true</span><span class="p">;</span>
<a id="__codelineno-8-32" name="__codelineno-8-32" href="#__codelineno-8-32"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-8-33" name="__codelineno-8-33" href="#__codelineno-8-33"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-8-34" name="__codelineno-8-34" href="#__codelineno-8-34"></a><span class="w"> </span><span class="c1">// 回退:將該格子恢復為空位</span>
<a id="__codelineno-8-35" name="__codelineno-8-35" href="#__codelineno-8-35"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">&quot;#&quot;</span><span class="p">;</span>
<a id="__codelineno-8-36" name="__codelineno-8-36" href="#__codelineno-8-36"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">false</span><span class="p">;</span>
<a id="__codelineno-8-37" name="__codelineno-8-37" href="#__codelineno-8-37"></a><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">false</span><span class="p">;</span>
<a id="__codelineno-8-38" name="__codelineno-8-38" href="#__codelineno-8-38"></a><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">false</span><span class="p">;</span>
<a id="__codelineno-8-39" name="__codelineno-8-39" href="#__codelineno-8-39"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-8-40" name="__codelineno-8-40" href="#__codelineno-8-40"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-8-41" name="__codelineno-8-41" href="#__codelineno-8-41"></a><span class="p">}</span>
<a id="__codelineno-8-42" name="__codelineno-8-42" href="#__codelineno-8-42"></a>
<a id="__codelineno-8-43" name="__codelineno-8-43" href="#__codelineno-8-43"></a><span class="cm">/* 求解 n 皇后 */</span>
<a id="__codelineno-8-44" name="__codelineno-8-44" href="#__codelineno-8-44"></a><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">nQueens</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-8-45" name="__codelineno-8-45" href="#__codelineno-8-45"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盤,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-8-46" name="__codelineno-8-46" href="#__codelineno-8-46"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">List</span><span class="p">.</span><span class="n">generate</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="p">(</span><span class="n">index</span><span class="p">)</span><span class="w"> </span><span class="o">=&gt;</span><span class="w"> </span><span class="n">List</span><span class="p">.</span><span class="n">filled</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="s2">&quot;#&quot;</span><span class="p">));</span>
<a id="__codelineno-8-47" name="__codelineno-8-47" href="#__codelineno-8-47"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">List</span><span class="p">.</span><span class="n">filled</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 記錄列是否有皇后</span>
<a id="__codelineno-8-48" name="__codelineno-8-48" href="#__codelineno-8-48"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">List</span><span class="p">.</span><span class="n">filled</span><span class="p">(</span><span class="m">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 記錄主對角線上是否有皇后</span>
<a id="__codelineno-8-49" name="__codelineno-8-49" href="#__codelineno-8-49"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">List</span><span class="p">.</span><span class="n">filled</span><span class="p">(</span><span class="m">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 記錄次對角線上是否有皇后</span>
<a id="__codelineno-8-50" name="__codelineno-8-50" href="#__codelineno-8-50"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-8-51" name="__codelineno-8-51" href="#__codelineno-8-51"></a>
<a id="__codelineno-8-52" name="__codelineno-8-52" href="#__codelineno-8-52"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="m">0</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-8-53" name="__codelineno-8-53" href="#__codelineno-8-53"></a>
<a id="__codelineno-8-54" name="__codelineno-8-54" href="#__codelineno-8-54"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-8-55" name="__codelineno-8-55" href="#__codelineno-8-55"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.rs</span><pre><span></span><code><a id="__codelineno-9-1" name="__codelineno-9-1" href="#__codelineno-9-1"></a><span class="cm">/* 回溯演算法n 皇后 */</span>
<a id="__codelineno-9-2" name="__codelineno-9-2" href="#__codelineno-9-2"></a><span class="k">fn</span> <span class="nf">backtrack</span><span class="p">(</span>
<a id="__codelineno-9-3" name="__codelineno-9-3" href="#__codelineno-9-3"></a><span class="w"> </span><span class="n">row</span>: <span class="kt">usize</span><span class="p">,</span>
<a id="__codelineno-9-4" name="__codelineno-9-4" href="#__codelineno-9-4"></a><span class="w"> </span><span class="n">n</span>: <span class="kt">usize</span><span class="p">,</span>
<a id="__codelineno-9-5" name="__codelineno-9-5" href="#__codelineno-9-5"></a><span class="w"> </span><span class="n">state</span>: <span class="kp">&amp;</span><span class="nc">mut</span><span class="w"> </span><span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">String</span><span class="o">&gt;&gt;</span><span class="p">,</span>
<a id="__codelineno-9-6" name="__codelineno-9-6" href="#__codelineno-9-6"></a><span class="w"> </span><span class="n">res</span>: <span class="kp">&amp;</span><span class="nc">mut</span><span class="w"> </span><span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">String</span><span class="o">&gt;&gt;&gt;</span><span class="p">,</span>
<a id="__codelineno-9-7" name="__codelineno-9-7" href="#__codelineno-9-7"></a><span class="w"> </span><span class="n">cols</span>: <span class="kp">&amp;</span><span class="nc">mut</span><span class="w"> </span><span class="p">[</span><span class="kt">bool</span><span class="p">],</span>
<a id="__codelineno-9-8" name="__codelineno-9-8" href="#__codelineno-9-8"></a><span class="w"> </span><span class="n">diags1</span>: <span class="kp">&amp;</span><span class="nc">mut</span><span class="w"> </span><span class="p">[</span><span class="kt">bool</span><span class="p">],</span>
<a id="__codelineno-9-9" name="__codelineno-9-9" href="#__codelineno-9-9"></a><span class="w"> </span><span class="n">diags2</span>: <span class="kp">&amp;</span><span class="nc">mut</span><span class="w"> </span><span class="p">[</span><span class="kt">bool</span><span class="p">],</span>
<a id="__codelineno-9-10" name="__codelineno-9-10" href="#__codelineno-9-10"></a><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-11" name="__codelineno-9-11" href="#__codelineno-9-11"></a><span class="w"> </span><span class="c1">// 當放置完所有行時,記錄解</span>
<a id="__codelineno-9-12" name="__codelineno-9-12" href="#__codelineno-9-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-13" name="__codelineno-9-13" href="#__codelineno-9-13"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">push</span><span class="p">(</span><span class="n">state</span><span class="p">.</span><span class="n">clone</span><span class="p">());</span>
<a id="__codelineno-9-14" name="__codelineno-9-14" href="#__codelineno-9-14"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-9-15" name="__codelineno-9-15" href="#__codelineno-9-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-9-16" name="__codelineno-9-16" href="#__codelineno-9-16"></a><span class="w"> </span><span class="c1">// 走訪所有列</span>
<a id="__codelineno-9-17" name="__codelineno-9-17" href="#__codelineno-9-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-18" name="__codelineno-9-18" href="#__codelineno-9-18"></a><span class="w"> </span><span class="c1">// 計算該格子對應的主對角線和次對角線</span>
<a id="__codelineno-9-19" name="__codelineno-9-19" href="#__codelineno-9-19"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">col</span><span class="p">;</span>
<a id="__codelineno-9-20" name="__codelineno-9-20" href="#__codelineno-9-20"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">col</span><span class="p">;</span>
<a id="__codelineno-9-21" name="__codelineno-9-21" href="#__codelineno-9-21"></a><span class="w"> </span><span class="c1">// 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后</span>
<a id="__codelineno-9-22" name="__codelineno-9-22" href="#__codelineno-9-22"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="o">!</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-23" name="__codelineno-9-23" href="#__codelineno-9-23"></a><span class="w"> </span><span class="c1">// 嘗試:將皇后放置在該格子</span>
<a id="__codelineno-9-24" name="__codelineno-9-24" href="#__codelineno-9-24"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;Q&quot;</span><span class="p">.</span><span class="n">into</span><span class="p">();</span>
<a id="__codelineno-9-25" name="__codelineno-9-25" href="#__codelineno-9-25"></a><span class="w"> </span><span class="p">(</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">],</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">],</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">])</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="kc">true</span><span class="p">,</span><span class="w"> </span><span class="kc">true</span><span class="p">,</span><span class="w"> </span><span class="kc">true</span><span class="p">);</span>
<a id="__codelineno-9-26" name="__codelineno-9-26" href="#__codelineno-9-26"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-9-27" name="__codelineno-9-27" href="#__codelineno-9-27"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-9-28" name="__codelineno-9-28" href="#__codelineno-9-28"></a><span class="w"> </span><span class="c1">// 回退:將該格子恢復為空位</span>
<a id="__codelineno-9-29" name="__codelineno-9-29" href="#__codelineno-9-29"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span><span class="p">.</span><span class="n">into</span><span class="p">();</span>
<a id="__codelineno-9-30" name="__codelineno-9-30" href="#__codelineno-9-30"></a><span class="w"> </span><span class="p">(</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">],</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">],</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">])</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="kc">false</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span><span class="p">);</span>
<a id="__codelineno-9-31" name="__codelineno-9-31" href="#__codelineno-9-31"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-9-32" name="__codelineno-9-32" href="#__codelineno-9-32"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-9-33" name="__codelineno-9-33" href="#__codelineno-9-33"></a><span class="p">}</span>
<a id="__codelineno-9-34" name="__codelineno-9-34" href="#__codelineno-9-34"></a>
<a id="__codelineno-9-35" name="__codelineno-9-35" href="#__codelineno-9-35"></a><span class="cm">/* 求解 n 皇后 */</span>
<a id="__codelineno-9-36" name="__codelineno-9-36" href="#__codelineno-9-36"></a><span class="k">fn</span> <span class="nf">n_queens</span><span class="p">(</span><span class="n">n</span>: <span class="kt">usize</span><span class="p">)</span><span class="w"> </span>-&gt; <span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">String</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-37" name="__codelineno-9-37" href="#__codelineno-9-37"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盤,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-9-38" name="__codelineno-9-38" href="#__codelineno-9-38"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">state</span>: <span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">String</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="fm">vec!</span><span class="p">[</span><span class="fm">vec!</span><span class="p">[</span><span class="s">&quot;#&quot;</span><span class="p">.</span><span class="n">to_string</span><span class="p">();</span><span class="w"> </span><span class="n">n</span><span class="p">];</span><span class="w"> </span><span class="n">n</span><span class="p">];</span>
<a id="__codelineno-9-39" name="__codelineno-9-39" href="#__codelineno-9-39"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="fm">vec!</span><span class="p">[</span><span class="kc">false</span><span class="p">;</span><span class="w"> </span><span class="n">n</span><span class="p">];</span><span class="w"> </span><span class="c1">// 記錄列是否有皇后</span>
<a id="__codelineno-9-40" name="__codelineno-9-40" href="#__codelineno-9-40"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="fm">vec!</span><span class="p">[</span><span class="kc">false</span><span class="p">;</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span><span class="w"> </span><span class="c1">// 記錄主對角線上是否有皇后</span>
<a id="__codelineno-9-41" name="__codelineno-9-41" href="#__codelineno-9-41"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="fm">vec!</span><span class="p">[</span><span class="kc">false</span><span class="p">;</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span><span class="w"> </span><span class="c1">// 記錄次對角線上是否有皇后</span>
<a id="__codelineno-9-42" name="__codelineno-9-42" href="#__codelineno-9-42"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">res</span>: <span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">String</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Vec</span>::<span class="n">new</span><span class="p">();</span>
<a id="__codelineno-9-43" name="__codelineno-9-43" href="#__codelineno-9-43"></a>
<a id="__codelineno-9-44" name="__codelineno-9-44" href="#__codelineno-9-44"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span>
<a id="__codelineno-9-45" name="__codelineno-9-45" href="#__codelineno-9-45"></a><span class="w"> </span><span class="mi">0</span><span class="p">,</span>
<a id="__codelineno-9-46" name="__codelineno-9-46" href="#__codelineno-9-46"></a><span class="w"> </span><span class="n">n</span><span class="p">,</span>
<a id="__codelineno-9-47" name="__codelineno-9-47" href="#__codelineno-9-47"></a><span class="w"> </span><span class="o">&amp;</span><span class="k">mut</span><span class="w"> </span><span class="n">state</span><span class="p">,</span>
<a id="__codelineno-9-48" name="__codelineno-9-48" href="#__codelineno-9-48"></a><span class="w"> </span><span class="o">&amp;</span><span class="k">mut</span><span class="w"> </span><span class="n">res</span><span class="p">,</span>
<a id="__codelineno-9-49" name="__codelineno-9-49" href="#__codelineno-9-49"></a><span class="w"> </span><span class="o">&amp;</span><span class="k">mut</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span>
<a id="__codelineno-9-50" name="__codelineno-9-50" href="#__codelineno-9-50"></a><span class="w"> </span><span class="o">&amp;</span><span class="k">mut</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span>
<a id="__codelineno-9-51" name="__codelineno-9-51" href="#__codelineno-9-51"></a><span class="w"> </span><span class="o">&amp;</span><span class="k">mut</span><span class="w"> </span><span class="n">diags2</span><span class="p">,</span>
<a id="__codelineno-9-52" name="__codelineno-9-52" href="#__codelineno-9-52"></a><span class="w"> </span><span class="p">);</span>
<a id="__codelineno-9-53" name="__codelineno-9-53" href="#__codelineno-9-53"></a>
<a id="__codelineno-9-54" name="__codelineno-9-54" href="#__codelineno-9-54"></a><span class="w"> </span><span class="n">res</span>
<a id="__codelineno-9-55" name="__codelineno-9-55" href="#__codelineno-9-55"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.c</span><pre><span></span><code><a id="__codelineno-10-1" name="__codelineno-10-1" href="#__codelineno-10-1"></a><span class="cm">/* 回溯演算法n 皇后 */</span>
<a id="__codelineno-10-2" name="__codelineno-10-2" href="#__codelineno-10-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">backtrack</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">row</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="kt">char</span><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">MAX_SIZE</span><span class="p">][</span><span class="n">MAX_SIZE</span><span class="p">],</span><span class="w"> </span><span class="kt">char</span><span class="w"> </span><span class="o">***</span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="n">resSize</span><span class="p">,</span><span class="w"> </span><span class="kt">bool</span><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">MAX_SIZE</span><span class="p">],</span>
<a id="__codelineno-10-3" name="__codelineno-10-3" href="#__codelineno-10-3"></a><span class="w"> </span><span class="kt">bool</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">MAX_SIZE</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">],</span><span class="w"> </span><span class="kt">bool</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">MAX_SIZE</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-4" name="__codelineno-10-4" href="#__codelineno-10-4"></a><span class="w"> </span><span class="c1">// 當放置完所有行時,記錄解</span>
<a id="__codelineno-10-5" name="__codelineno-10-5" href="#__codelineno-10-5"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-6" name="__codelineno-10-6" href="#__codelineno-10-6"></a><span class="w"> </span><span class="n">res</span><span class="p">[</span><span class="o">*</span><span class="n">resSize</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="kt">char</span><span class="w"> </span><span class="o">**</span><span class="p">)</span><span class="n">malloc</span><span class="p">(</span><span class="k">sizeof</span><span class="p">(</span><span class="kt">char</span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="p">);</span>
<a id="__codelineno-10-7" name="__codelineno-10-7" href="#__codelineno-10-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="o">++</span><span class="n">i</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-8" name="__codelineno-10-8" href="#__codelineno-10-8"></a><span class="w"> </span><span class="n">res</span><span class="p">[</span><span class="o">*</span><span class="n">resSize</span><span class="p">][</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="kt">char</span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="n">malloc</span><span class="p">(</span><span class="k">sizeof</span><span class="p">(</span><span class="kt">char</span><span class="p">)</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">));</span>
<a id="__codelineno-10-9" name="__codelineno-10-9" href="#__codelineno-10-9"></a><span class="w"> </span><span class="n">strcpy</span><span class="p">(</span><span class="n">res</span><span class="p">[</span><span class="o">*</span><span class="n">resSize</span><span class="p">][</span><span class="n">i</span><span class="p">],</span><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">i</span><span class="p">]);</span>
<a id="__codelineno-10-10" name="__codelineno-10-10" href="#__codelineno-10-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-11" name="__codelineno-10-11" href="#__codelineno-10-11"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="n">resSize</span><span class="p">)</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-10-12" name="__codelineno-10-12" href="#__codelineno-10-12"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-10-13" name="__codelineno-10-13" href="#__codelineno-10-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-14" name="__codelineno-10-14" href="#__codelineno-10-14"></a><span class="w"> </span><span class="c1">// 走訪所有列</span>
<a id="__codelineno-10-15" name="__codelineno-10-15" href="#__codelineno-10-15"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-16" name="__codelineno-10-16" href="#__codelineno-10-16"></a><span class="w"> </span><span class="c1">// 計算該格子對應的主對角線和次對角線</span>
<a id="__codelineno-10-17" name="__codelineno-10-17" href="#__codelineno-10-17"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-10-18" name="__codelineno-10-18" href="#__codelineno-10-18"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">col</span><span class="p">;</span>
<a id="__codelineno-10-19" name="__codelineno-10-19" href="#__codelineno-10-19"></a><span class="w"> </span><span class="c1">// 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后</span>
<a id="__codelineno-10-20" name="__codelineno-10-20" href="#__codelineno-10-20"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-21" name="__codelineno-10-21" href="#__codelineno-10-21"></a><span class="w"> </span><span class="c1">// 嘗試:將皇后放置在該格子</span>
<a id="__codelineno-10-22" name="__codelineno-10-22" href="#__codelineno-10-22"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="sc">&#39;Q&#39;</span><span class="p">;</span>
<a id="__codelineno-10-23" name="__codelineno-10-23" href="#__codelineno-10-23"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">true</span><span class="p">;</span>
<a id="__codelineno-10-24" name="__codelineno-10-24" href="#__codelineno-10-24"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-10-25" name="__codelineno-10-25" href="#__codelineno-10-25"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">resSize</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-10-26" name="__codelineno-10-26" href="#__codelineno-10-26"></a><span class="w"> </span><span class="c1">// 回退:將該格子恢復為空位</span>
<a id="__codelineno-10-27" name="__codelineno-10-27" href="#__codelineno-10-27"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="sc">&#39;#&#39;</span><span class="p">;</span>
<a id="__codelineno-10-28" name="__codelineno-10-28" href="#__codelineno-10-28"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">false</span><span class="p">;</span>
<a id="__codelineno-10-29" name="__codelineno-10-29" href="#__codelineno-10-29"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-30" name="__codelineno-10-30" href="#__codelineno-10-30"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-31" name="__codelineno-10-31" href="#__codelineno-10-31"></a><span class="p">}</span>
<a id="__codelineno-10-32" name="__codelineno-10-32" href="#__codelineno-10-32"></a>
<a id="__codelineno-10-33" name="__codelineno-10-33" href="#__codelineno-10-33"></a><span class="cm">/* 求解 n 皇后 */</span>
<a id="__codelineno-10-34" name="__codelineno-10-34" href="#__codelineno-10-34"></a><span class="kt">char</span><span class="w"> </span><span class="o">***</span><span class="nf">nQueens</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="n">returnSize</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-35" name="__codelineno-10-35" href="#__codelineno-10-35"></a><span class="w"> </span><span class="kt">char</span><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">MAX_SIZE</span><span class="p">][</span><span class="n">MAX_SIZE</span><span class="p">];</span>
<a id="__codelineno-10-36" name="__codelineno-10-36" href="#__codelineno-10-36"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盤,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-10-37" name="__codelineno-10-37" href="#__codelineno-10-37"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="o">++</span><span class="n">i</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-38" name="__codelineno-10-38" href="#__codelineno-10-38"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="o">++</span><span class="n">j</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-39" name="__codelineno-10-39" href="#__codelineno-10-39"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="sc">&#39;#&#39;</span><span class="p">;</span>
<a id="__codelineno-10-40" name="__codelineno-10-40" href="#__codelineno-10-40"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-41" name="__codelineno-10-41" href="#__codelineno-10-41"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">n</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="sc">&#39;\0&#39;</span><span class="p">;</span>
<a id="__codelineno-10-42" name="__codelineno-10-42" href="#__codelineno-10-42"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-43" name="__codelineno-10-43" href="#__codelineno-10-43"></a><span class="w"> </span><span class="kt">bool</span><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">MAX_SIZE</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">{</span><span class="nb">false</span><span class="p">};</span><span class="w"> </span><span class="c1">// 記錄列是否有皇后</span>
<a id="__codelineno-10-44" name="__codelineno-10-44" href="#__codelineno-10-44"></a><span class="w"> </span><span class="kt">bool</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">MAX_SIZE</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">{</span><span class="nb">false</span><span class="p">};</span><span class="w"> </span><span class="c1">// 記錄主對角線上是否有皇后</span>
<a id="__codelineno-10-45" name="__codelineno-10-45" href="#__codelineno-10-45"></a><span class="w"> </span><span class="kt">bool</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">MAX_SIZE</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">{</span><span class="nb">false</span><span class="p">};</span><span class="w"> </span><span class="c1">// 記錄次對角線上是否有皇后</span>
<a id="__codelineno-10-46" name="__codelineno-10-46" href="#__codelineno-10-46"></a>
<a id="__codelineno-10-47" name="__codelineno-10-47" href="#__codelineno-10-47"></a><span class="w"> </span><span class="kt">char</span><span class="w"> </span><span class="o">***</span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="kt">char</span><span class="w"> </span><span class="o">***</span><span class="p">)</span><span class="n">malloc</span><span class="p">(</span><span class="k">sizeof</span><span class="p">(</span><span class="kt">char</span><span class="w"> </span><span class="o">**</span><span class="p">)</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">MAX_SIZE</span><span class="p">);</span>
<a id="__codelineno-10-48" name="__codelineno-10-48" href="#__codelineno-10-48"></a><span class="w"> </span><span class="o">*</span><span class="n">returnSize</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-10-49" name="__codelineno-10-49" href="#__codelineno-10-49"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">returnSize</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-10-50" name="__codelineno-10-50" href="#__codelineno-10-50"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-10-51" name="__codelineno-10-51" href="#__codelineno-10-51"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.kt</span><pre><span></span><code><a id="__codelineno-11-1" name="__codelineno-11-1" href="#__codelineno-11-1"></a><span class="cm">/* 回溯演算法n 皇后 */</span>
<a id="__codelineno-11-2" name="__codelineno-11-2" href="#__codelineno-11-2"></a><span class="kd">fun</span><span class="w"> </span><span class="nf">backtrack</span><span class="p">(</span>
<a id="__codelineno-11-3" name="__codelineno-11-3" href="#__codelineno-11-3"></a><span class="w"> </span><span class="n">row</span><span class="p">:</span><span class="w"> </span><span class="kt">Int</span><span class="p">,</span>
<a id="__codelineno-11-4" name="__codelineno-11-4" href="#__codelineno-11-4"></a><span class="w"> </span><span class="n">n</span><span class="p">:</span><span class="w"> </span><span class="kt">Int</span><span class="p">,</span>
<a id="__codelineno-11-5" name="__codelineno-11-5" href="#__codelineno-11-5"></a><span class="w"> </span><span class="n">state</span><span class="p">:</span><span class="w"> </span><span class="n">MutableList</span><span class="o">&lt;</span><span class="n">MutableList</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;</span><span class="p">,</span>
<a id="__codelineno-11-6" name="__codelineno-11-6" href="#__codelineno-11-6"></a><span class="w"> </span><span class="n">res</span><span class="p">:</span><span class="w"> </span><span class="n">MutableList</span><span class="o">&lt;</span><span class="n">MutableList</span><span class="o">&lt;</span><span class="n">MutableList</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;?&gt;</span><span class="p">,</span>
<a id="__codelineno-11-7" name="__codelineno-11-7" href="#__codelineno-11-7"></a><span class="w"> </span><span class="n">cols</span><span class="p">:</span><span class="w"> </span><span class="n">BooleanArray</span><span class="p">,</span>
<a id="__codelineno-11-8" name="__codelineno-11-8" href="#__codelineno-11-8"></a><span class="w"> </span><span class="n">diags1</span><span class="p">:</span><span class="w"> </span><span class="n">BooleanArray</span><span class="p">,</span>
<a id="__codelineno-11-9" name="__codelineno-11-9" href="#__codelineno-11-9"></a><span class="w"> </span><span class="n">diags2</span><span class="p">:</span><span class="w"> </span><span class="n">BooleanArray</span>
<a id="__codelineno-11-10" name="__codelineno-11-10" href="#__codelineno-11-10"></a><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-11" name="__codelineno-11-11" href="#__codelineno-11-11"></a><span class="w"> </span><span class="c1">// 當放置完所有行時,記錄解</span>
<a id="__codelineno-11-12" name="__codelineno-11-12" href="#__codelineno-11-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-13" name="__codelineno-11-13" href="#__codelineno-11-13"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">copyState</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">mutableListOf</span><span class="o">&lt;</span><span class="n">MutableList</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;</span><span class="p">()</span>
<a id="__codelineno-11-14" name="__codelineno-11-14" href="#__codelineno-11-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">sRow</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">state</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-15" name="__codelineno-11-15" href="#__codelineno-11-15"></a><span class="w"> </span><span class="n">copyState</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="n">sRow</span><span class="p">.</span><span class="na">toMutableList</span><span class="p">())</span>
<a id="__codelineno-11-16" name="__codelineno-11-16" href="#__codelineno-11-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-17" name="__codelineno-11-17" href="#__codelineno-11-17"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="n">copyState</span><span class="p">)</span>
<a id="__codelineno-11-18" name="__codelineno-11-18" href="#__codelineno-11-18"></a><span class="w"> </span><span class="k">return</span>
<a id="__codelineno-11-19" name="__codelineno-11-19" href="#__codelineno-11-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-20" name="__codelineno-11-20" href="#__codelineno-11-20"></a><span class="w"> </span><span class="c1">// 走訪所有列</span>
<a id="__codelineno-11-21" name="__codelineno-11-21" href="#__codelineno-11-21"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">col</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="m">0.</span><span class="p">.</span><span class="o">&lt;</span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-22" name="__codelineno-11-22" href="#__codelineno-11-22"></a><span class="w"> </span><span class="c1">// 計算該格子對應的主對角線和次對角線</span>
<a id="__codelineno-11-23" name="__codelineno-11-23" href="#__codelineno-11-23"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span>
<a id="__codelineno-11-24" name="__codelineno-11-24" href="#__codelineno-11-24"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">col</span>
<a id="__codelineno-11-25" name="__codelineno-11-25" href="#__codelineno-11-25"></a><span class="w"> </span><span class="c1">// 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后</span>
<a id="__codelineno-11-26" name="__codelineno-11-26" href="#__codelineno-11-26"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="n">cols</span><span class="o">[</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-27" name="__codelineno-11-27" href="#__codelineno-11-27"></a><span class="w"> </span><span class="c1">// 嘗試:將皇后放置在該格子</span>
<a id="__codelineno-11-28" name="__codelineno-11-28" href="#__codelineno-11-28"></a><span class="w"> </span><span class="n">state</span><span class="o">[</span><span class="n">row</span><span class="o">][</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;Q&quot;</span>
<a id="__codelineno-11-29" name="__codelineno-11-29" href="#__codelineno-11-29"></a><span class="w"> </span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">true</span>
<a id="__codelineno-11-30" name="__codelineno-11-30" href="#__codelineno-11-30"></a><span class="w"> </span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span>
<a id="__codelineno-11-31" name="__codelineno-11-31" href="#__codelineno-11-31"></a><span class="w"> </span><span class="n">cols</span><span class="o">[</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span>
<a id="__codelineno-11-32" name="__codelineno-11-32" href="#__codelineno-11-32"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-11-33" name="__codelineno-11-33" href="#__codelineno-11-33"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-11-34" name="__codelineno-11-34" href="#__codelineno-11-34"></a><span class="w"> </span><span class="c1">// 回退:將該格子恢復為空位</span>
<a id="__codelineno-11-35" name="__codelineno-11-35" href="#__codelineno-11-35"></a><span class="w"> </span><span class="n">state</span><span class="o">[</span><span class="n">row</span><span class="o">][</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span>
<a id="__codelineno-11-36" name="__codelineno-11-36" href="#__codelineno-11-36"></a><span class="w"> </span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">false</span>
<a id="__codelineno-11-37" name="__codelineno-11-37" href="#__codelineno-11-37"></a><span class="w"> </span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span>
<a id="__codelineno-11-38" name="__codelineno-11-38" href="#__codelineno-11-38"></a><span class="w"> </span><span class="n">cols</span><span class="o">[</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span>
<a id="__codelineno-11-39" name="__codelineno-11-39" href="#__codelineno-11-39"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-40" name="__codelineno-11-40" href="#__codelineno-11-40"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-41" name="__codelineno-11-41" href="#__codelineno-11-41"></a><span class="p">}</span>
<a id="__codelineno-11-42" name="__codelineno-11-42" href="#__codelineno-11-42"></a>
<a id="__codelineno-11-43" name="__codelineno-11-43" href="#__codelineno-11-43"></a><span class="cm">/* 求解 n 皇后 */</span>
<a id="__codelineno-11-44" name="__codelineno-11-44" href="#__codelineno-11-44"></a><span class="kd">fun</span><span class="w"> </span><span class="nf">nQueens</span><span class="p">(</span><span class="n">n</span><span class="p">:</span><span class="w"> </span><span class="kt">Int</span><span class="p">):</span><span class="w"> </span><span class="n">MutableList</span><span class="o">&lt;</span><span class="n">MutableList</span><span class="o">&lt;</span><span class="n">MutableList</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;?&gt;</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-45" name="__codelineno-11-45" href="#__codelineno-11-45"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盤,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-11-46" name="__codelineno-11-46" href="#__codelineno-11-46"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">mutableListOf</span><span class="o">&lt;</span><span class="n">MutableList</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;</span><span class="p">()</span>
<a id="__codelineno-11-47" name="__codelineno-11-47" href="#__codelineno-11-47"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="m">0.</span><span class="p">.</span><span class="o">&lt;</span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-48" name="__codelineno-11-48" href="#__codelineno-11-48"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">row</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">mutableListOf</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;</span><span class="p">()</span>
<a id="__codelineno-11-49" name="__codelineno-11-49" href="#__codelineno-11-49"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">j</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="m">0.</span><span class="p">.</span><span class="o">&lt;</span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-50" name="__codelineno-11-50" href="#__codelineno-11-50"></a><span class="w"> </span><span class="n">row</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="s">&quot;#&quot;</span><span class="p">)</span>
<a id="__codelineno-11-51" name="__codelineno-11-51" href="#__codelineno-11-51"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-52" name="__codelineno-11-52" href="#__codelineno-11-52"></a><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="n">row</span><span class="p">)</span>
<a id="__codelineno-11-53" name="__codelineno-11-53" href="#__codelineno-11-53"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-54" name="__codelineno-11-54" href="#__codelineno-11-54"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">BooleanArray</span><span class="p">(</span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="c1">// 記錄列是否有皇后</span>
<a id="__codelineno-11-55" name="__codelineno-11-55" href="#__codelineno-11-55"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">BooleanArray</span><span class="p">(</span><span class="m">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="c1">// 記錄主對角線上是否有皇后</span>
<a id="__codelineno-11-56" name="__codelineno-11-56" href="#__codelineno-11-56"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">BooleanArray</span><span class="p">(</span><span class="m">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="c1">// 記錄次對角線上是否有皇后</span>
<a id="__codelineno-11-57" name="__codelineno-11-57" href="#__codelineno-11-57"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">mutableListOf</span><span class="o">&lt;</span><span class="n">MutableList</span><span class="o">&lt;</span><span class="n">MutableList</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;?&gt;</span><span class="p">()</span>
<a id="__codelineno-11-58" name="__codelineno-11-58" href="#__codelineno-11-58"></a>
<a id="__codelineno-11-59" name="__codelineno-11-59" href="#__codelineno-11-59"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="m">0</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-11-60" name="__codelineno-11-60" href="#__codelineno-11-60"></a>
<a id="__codelineno-11-61" name="__codelineno-11-61" href="#__codelineno-11-61"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span>
<a id="__codelineno-11-62" name="__codelineno-11-62" href="#__codelineno-11-62"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.rb</span><pre><span></span><code><a id="__codelineno-12-1" name="__codelineno-12-1" href="#__codelineno-12-1"></a><span class="c1">### 回溯演算法n 皇后 ###</span>
<a id="__codelineno-12-2" name="__codelineno-12-2" href="#__codelineno-12-2"></a><span class="k">def</span><span class="w"> </span><span class="nf">backtrack</span><span class="p">(</span><span class="n">row</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-12-3" name="__codelineno-12-3" href="#__codelineno-12-3"></a><span class="w"> </span><span class="c1"># 當放置完所有行時,記錄解</span>
<a id="__codelineno-12-4" name="__codelineno-12-4" href="#__codelineno-12-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span>
<a id="__codelineno-12-5" name="__codelineno-12-5" href="#__codelineno-12-5"></a><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">state</span><span class="o">.</span><span class="n">map</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="o">|</span><span class="n">row</span><span class="o">|</span><span class="w"> </span><span class="n">row</span><span class="o">.</span><span class="n">dup</span><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-12-6" name="__codelineno-12-6" href="#__codelineno-12-6"></a><span class="w"> </span><span class="k">return</span>
<a id="__codelineno-12-7" name="__codelineno-12-7" href="#__codelineno-12-7"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-12-8" name="__codelineno-12-8" href="#__codelineno-12-8"></a>
<a id="__codelineno-12-9" name="__codelineno-12-9" href="#__codelineno-12-9"></a><span class="w"> </span><span class="c1"># 走訪所有列</span>
<a id="__codelineno-12-10" name="__codelineno-12-10" href="#__codelineno-12-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">...</span><span class="n">n</span>
<a id="__codelineno-12-11" name="__codelineno-12-11" href="#__codelineno-12-11"></a><span class="w"> </span><span class="c1"># 計算該格子對應的主對角線和次對角線</span>
<a id="__codelineno-12-12" name="__codelineno-12-12" href="#__codelineno-12-12"></a><span class="w"> </span><span class="n">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-12-13" name="__codelineno-12-13" href="#__codelineno-12-13"></a><span class="w"> </span><span class="n">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">col</span>
<a id="__codelineno-12-14" name="__codelineno-12-14" href="#__codelineno-12-14"></a><span class="w"> </span><span class="c1"># 剪枝:不允許該格子所在列、主對角線、次對角線上存在皇后</span>
<a id="__codelineno-12-15" name="__codelineno-12-15" href="#__codelineno-12-15"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="o">!</span><span class="n">cols</span><span class="o">[</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span>
<a id="__codelineno-12-16" name="__codelineno-12-16" href="#__codelineno-12-16"></a><span class="w"> </span><span class="c1"># 嘗試:將皇后放置在該格子</span>
<a id="__codelineno-12-17" name="__codelineno-12-17" href="#__codelineno-12-17"></a><span class="w"> </span><span class="n">state</span><span class="o">[</span><span class="n">row</span><span class="o">][</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">&quot;Q&quot;</span>
<a id="__codelineno-12-18" name="__codelineno-12-18" href="#__codelineno-12-18"></a><span class="w"> </span><span class="n">cols</span><span class="o">[</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kp">true</span>
<a id="__codelineno-12-19" name="__codelineno-12-19" href="#__codelineno-12-19"></a><span class="w"> </span><span class="c1"># 放置下一行</span>
<a id="__codelineno-12-20" name="__codelineno-12-20" href="#__codelineno-12-20"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-12-21" name="__codelineno-12-21" href="#__codelineno-12-21"></a><span class="w"> </span><span class="c1"># 回退:將該格子恢復為空位</span>
<a id="__codelineno-12-22" name="__codelineno-12-22" href="#__codelineno-12-22"></a><span class="w"> </span><span class="n">state</span><span class="o">[</span><span class="n">row</span><span class="o">][</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">&quot;#&quot;</span>
<a id="__codelineno-12-23" name="__codelineno-12-23" href="#__codelineno-12-23"></a><span class="w"> </span><span class="n">cols</span><span class="o">[</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kp">false</span>
<a id="__codelineno-12-24" name="__codelineno-12-24" href="#__codelineno-12-24"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-12-25" name="__codelineno-12-25" href="#__codelineno-12-25"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-12-26" name="__codelineno-12-26" href="#__codelineno-12-26"></a><span class="k">end</span>
<a id="__codelineno-12-27" name="__codelineno-12-27" href="#__codelineno-12-27"></a>
<a id="__codelineno-12-28" name="__codelineno-12-28" href="#__codelineno-12-28"></a><span class="c1">### 求解 n 皇后 ###</span>
<a id="__codelineno-12-29" name="__codelineno-12-29" href="#__codelineno-12-29"></a><span class="k">def</span><span class="w"> </span><span class="nf">n_queens</span><span class="p">(</span><span class="n">n</span><span class="p">)</span>
<a id="__codelineno-12-30" name="__codelineno-12-30" href="#__codelineno-12-30"></a><span class="w"> </span><span class="c1"># 初始化 n*n 大小的棋盤,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-12-31" name="__codelineno-12-31" href="#__codelineno-12-31"></a><span class="w"> </span><span class="n">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="o">.</span><span class="n">new</span><span class="p">(</span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="nb">Array</span><span class="o">.</span><span class="n">new</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="s2">&quot;#&quot;</span><span class="p">)</span><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-12-32" name="__codelineno-12-32" href="#__codelineno-12-32"></a><span class="w"> </span><span class="n">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="o">.</span><span class="n">new</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="kp">false</span><span class="p">)</span><span class="w"> </span><span class="c1"># 記錄列是否有皇后</span>
<a id="__codelineno-12-33" name="__codelineno-12-33" href="#__codelineno-12-33"></a><span class="w"> </span><span class="n">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="o">.</span><span class="n">new</span><span class="p">(</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="kp">false</span><span class="p">)</span><span class="w"> </span><span class="c1"># 記錄主對角線上是否有皇后</span>
<a id="__codelineno-12-34" name="__codelineno-12-34" href="#__codelineno-12-34"></a><span class="w"> </span><span class="n">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="o">.</span><span class="n">new</span><span class="p">(</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="kp">false</span><span class="p">)</span><span class="w"> </span><span class="c1"># 記錄次對角線上是否有皇后</span>
<a id="__codelineno-12-35" name="__codelineno-12-35" href="#__codelineno-12-35"></a><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="o">[]</span>
<a id="__codelineno-12-36" name="__codelineno-12-36" href="#__codelineno-12-36"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-12-37" name="__codelineno-12-37" href="#__codelineno-12-37"></a>
<a id="__codelineno-12-38" name="__codelineno-12-38" href="#__codelineno-12-38"></a><span class="w"> </span><span class="n">res</span>
<a id="__codelineno-12-39" name="__codelineno-12-39" href="#__codelineno-12-39"></a><span class="k">end</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.zig</span><pre><span></span><code><a id="__codelineno-13-1" name="__codelineno-13-1" href="#__codelineno-13-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">backtrack</span><span class="p">}</span>
<a id="__codelineno-13-2" name="__codelineno-13-2" href="#__codelineno-13-2"></a>
<a id="__codelineno-13-3" name="__codelineno-13-3" href="#__codelineno-13-3"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">nQueens</span><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<details class="pythontutor">
<summary>視覺化執行</summary>
<p><div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20backtrack%28%0A%20%20%20%20row%3A%20int%2C%0A%20%20%20%20n%3A%20int%2C%0A%20%20%20%20state%3A%20list%5Blist%5Bstr%5D%5D%2C%0A%20%20%20%20res%3A%20list%5Blist%5Blist%5Bstr%5D%5D%5D%2C%0A%20%20%20%20cols%3A%20list%5Bbool%5D%2C%0A%20%20%20%20diags1%3A%20list%5Bbool%5D%2C%0A%20%20%20%20diags2%3A%20list%5Bbool%5D%2C%0A%29%3A%0A%20%20%20%20%22%22%22%E5%9B%9E%E6%BA%AF%E6%BC%94%E7%AE%97%E6%B3%95%EF%BC%9AN%20%E7%9A%87%E5%90%8E%22%22%22%0A%20%20%20%20%23%20%E7%95%B6%E6%94%BE%E7%BD%AE%E5%AE%8C%E6%89%80%E6%9C%89%E8%A1%8C%E6%99%82%EF%BC%8C%E8%A8%98%E9%8C%84%E8%A7%A3%0A%20%20%20%20if%20row%20%3D%3D%20n%3A%0A%20%20%20%20%20%20%20%20res.append%28%5Blist%28row%29%20for%20row%20in%20state%5D%29%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%B5%B0%E8%A8%AA%E6%89%80%E6%9C%89%E5%88%97%0A%20%20%20%20for%20col%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E8%A8%88%E7%AE%97%E8%A9%B2%E6%A0%BC%E5%AD%90%E5%B0%8D%E6%87%89%E7%9A%84%E4%B8%BB%E5%B0%8D%E8%A7%92%E7%B7%9A%E5%92%8C%E6%AC%A1%E5%B0%8D%E8%A7%92%E7%B7%9A%0A%20%20%20%20%20%20%20%20diag1%20%3D%20row%20-%20col%20%2B%20n%20-%201%0A%20%20%20%20%20%20%20%20diag2%20%3D%20row%20%2B%20col%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%EF%BC%9A%E4%B8%8D%E5%85%81%E8%A8%B1%E8%A9%B2%E6%A0%BC%E5%AD%90%E6%89%80%E5%9C%A8%E5%88%97%E3%80%81%E4%B8%BB%E5%B0%8D%E8%A7%92%E7%B7%9A%E3%80%81%E6%AC%A1%E5%B0%8D%E8%A7%92%E7%B7%9A%E4%B8%8A%E5%AD%98%E5%9C%A8%E7%9A%87%E5%90%8E%0A%20%20%20%20%20%20%20%20if%20not%20cols%5Bcol%5D%20and%20not%20diags1%5Bdiag1%5D%20and%20not%20diags2%5Bdiag2%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%98%97%E8%A9%A6%EF%BC%9A%E5%B0%87%E7%9A%87%E5%90%8E%E6%94%BE%E7%BD%AE%E5%9C%A8%E8%A9%B2%E6%A0%BC%E5%AD%90%0A%20%20%20%20%20%20%20%20%20%20%20%20state%5Brow%5D%5Bcol%5D%20%3D%20%22Q%22%0A%20%20%20%20%20%20%20%20%20%20%20%20cols%5Bcol%5D%20%3D%20diags1%5Bdiag1%5D%20%3D%20diags2%5Bdiag2%5D%20%3D%20True%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%94%BE%E7%BD%AE%E4%B8%8B%E4%B8%80%E8%A1%8C%0A%20%20%20%20%20%20%20%20%20%20%20%20backtrack%28row%20%2B%201%2C%20n%2C%20state%2C%20res%2C%20cols%2C%20diags1%2C%20diags2%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%9B%9E%E9%80%80%EF%BC%9A%E5%B0%87%E8%A9%B2%E6%A0%BC%E5%AD%90%E6%81%A2%E5%BE%A9%E7%82%BA%E7%A9%BA%E4%BD%8D%0A%20%20%20%20%20%20%20%20%20%20%20%20state%5Brow%5D%5Bcol%5D%20%3D%20%22%23%22%0A%20%20%20%20%20%20%20%20%20%20%20%20cols%5Bcol%5D%20%3D%20diags1%5Bdiag1%5D%20%3D%20diags2%5Bdiag2%5D%20%3D%20False%0A%0A%0Adef%20n_queens%28n%3A%20int%29%20-%3E%20list%5Blist%5Blist%5Bstr%5D%5D%5D%3A%0A%20%20%20%20%22%22%22%E6%B1%82%E8%A7%A3%20N%20%E7%9A%87%E5%90%8E%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20n%2An%20%E5%A4%A7%E5%B0%8F%E7%9A%84%E6%A3%8B%E7%9B%A4%EF%BC%8C%E5%85%B6%E4%B8%AD%20%27Q%27%20%E4%BB%A3%E8%A1%A8%E7%9A%87%E5%90%8E%EF%BC%8C%27%23%27%20%E4%BB%A3%E8%A1%A8%E7%A9%BA%E4%BD%8D%0A%20%20%20%20state%20%3D%20%5B%5B%22%23%22%20for%20_%20in%20range%28n%29%5D%20for%20_%20in%20range%28n%29%5D%0A%20%20%20%20cols%20%3D%20%5BFalse%5D%20%2A%20n%20%20%23%20%E8%A8%98%E9%8C%84%E5%88%97%E6%98%AF%E5%90%A6%E6%9C%89%E7%9A%87%E5%90%8E%0A%20%20%20%20diags1%20%3D%20%5BFalse%5D%20%2A%20%282%20%2A%20n%20-%201%29%20%20%23%20%E8%A8%98%E9%8C%84%E4%B8%BB%E5%B0%8D%E8%A7%92%E7%B7%9A%E4%B8%8A%E6%98%AF%E5%90%A6%E6%9C%89%E7%9A%87%E5%90%8E%0A%20%20%20%20diags2%20%3D%20%5BFalse%5D%20%2A%20%282%20%2A%20n%20-%201%29%20%20%23%20%E8%A8%98%E9%8C%84%E6%AC%A1%E5%B0%8D%E8%A7%92%E7%B7%9A%E4%B8%8A%E6%98%AF%E5%90%A6%E6%9C%89%E7%9A%87%E5%90%8E%0A%20%20%20%20res%20%3D%20%5B%5D%0A%20%20%20%20backtrack%280%2C%20n%2C%20state%2C%20res%2C%20cols%2C%20diags1%2C%20diags2%29%0A%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%204%0A%20%20%20%20res%20%3D%20n_queens%28n%29%0A%0A%20%20%20%20print%28f%22%E8%BC%B8%E5%85%A5%E6%A3%8B%E7%9B%A4%E9%95%B7%E5%AF%AC%E7%82%BA%20%7Bn%7D%22%29%0A%20%20%20%20print%28f%22%E7%9A%87%E5%90%8E%E6%94%BE%E7%BD%AE%E6%96%B9%E6%A1%88%E5%85%B1%E6%9C%89%20%7Blen%28res%29%7D%20%E7%A8%AE%22%29%0A%20%20%20%20for%20state%20in%20res%3A%0A%20%20%20%20%20%20%20%20print%28%22--------------------%22%29%0A%20%20%20%20%20%20%20%20for%20row%20in%20state%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20print%28row%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=61&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20backtrack%28%0A%20%20%20%20row%3A%20int%2C%0A%20%20%20%20n%3A%20int%2C%0A%20%20%20%20state%3A%20list%5Blist%5Bstr%5D%5D%2C%0A%20%20%20%20res%3A%20list%5Blist%5Blist%5Bstr%5D%5D%5D%2C%0A%20%20%20%20cols%3A%20list%5Bbool%5D%2C%0A%20%20%20%20diags1%3A%20list%5Bbool%5D%2C%0A%20%20%20%20diags2%3A%20list%5Bbool%5D%2C%0A%29%3A%0A%20%20%20%20%22%22%22%E5%9B%9E%E6%BA%AF%E6%BC%94%E7%AE%97%E6%B3%95%EF%BC%9AN%20%E7%9A%87%E5%90%8E%22%22%22%0A%20%20%20%20%23%20%E7%95%B6%E6%94%BE%E7%BD%AE%E5%AE%8C%E6%89%80%E6%9C%89%E8%A1%8C%E6%99%82%EF%BC%8C%E8%A8%98%E9%8C%84%E8%A7%A3%0A%20%20%20%20if%20row%20%3D%3D%20n%3A%0A%20%20%20%20%20%20%20%20res.append%28%5Blist%28row%29%20for%20row%20in%20state%5D%29%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%B5%B0%E8%A8%AA%E6%89%80%E6%9C%89%E5%88%97%0A%20%20%20%20for%20col%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E8%A8%88%E7%AE%97%E8%A9%B2%E6%A0%BC%E5%AD%90%E5%B0%8D%E6%87%89%E7%9A%84%E4%B8%BB%E5%B0%8D%E8%A7%92%E7%B7%9A%E5%92%8C%E6%AC%A1%E5%B0%8D%E8%A7%92%E7%B7%9A%0A%20%20%20%20%20%20%20%20diag1%20%3D%20row%20-%20col%20%2B%20n%20-%201%0A%20%20%20%20%20%20%20%20diag2%20%3D%20row%20%2B%20col%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%EF%BC%9A%E4%B8%8D%E5%85%81%E8%A8%B1%E8%A9%B2%E6%A0%BC%E5%AD%90%E6%89%80%E5%9C%A8%E5%88%97%E3%80%81%E4%B8%BB%E5%B0%8D%E8%A7%92%E7%B7%9A%E3%80%81%E6%AC%A1%E5%B0%8D%E8%A7%92%E7%B7%9A%E4%B8%8A%E5%AD%98%E5%9C%A8%E7%9A%87%E5%90%8E%0A%20%20%20%20%20%20%20%20if%20not%20cols%5Bcol%5D%20and%20not%20diags1%5Bdiag1%5D%20and%20not%20diags2%5Bdiag2%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%98%97%E8%A9%A6%EF%BC%9A%E5%B0%87%E7%9A%87%E5%90%8E%E6%94%BE%E7%BD%AE%E5%9C%A8%E8%A9%B2%E6%A0%BC%E5%AD%90%0A%20%20%20%20%20%20%20%20%20%20%20%20state%5Brow%5D%5Bcol%5D%20%3D%20%22Q%22%0A%20%20%20%20%20%20%20%20%20%20%20%20cols%5Bcol%5D%20%3D%20diags1%5Bdiag1%5D%20%3D%20diags2%5Bdiag2%5D%20%3D%20True%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%94%BE%E7%BD%AE%E4%B8%8B%E4%B8%80%E8%A1%8C%0A%20%20%20%20%20%20%20%20%20%20%20%20backtrack%28row%20%2B%201%2C%20n%2C%20state%2C%20res%2C%20cols%2C%20diags1%2C%20diags2%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%9B%9E%E9%80%80%EF%BC%9A%E5%B0%87%E8%A9%B2%E6%A0%BC%E5%AD%90%E6%81%A2%E5%BE%A9%E7%82%BA%E7%A9%BA%E4%BD%8D%0A%20%20%20%20%20%20%20%20%20%20%20%20state%5Brow%5D%5Bcol%5D%20%3D%20%22%23%22%0A%20%20%20%20%20%20%20%20%20%20%20%20cols%5Bcol%5D%20%3D%20diags1%5Bdiag1%5D%20%3D%20diags2%5Bdiag2%5D%20%3D%20False%0A%0A%0Adef%20n_queens%28n%3A%20int%29%20-%3E%20list%5Blist%5Blist%5Bstr%5D%5D%5D%3A%0A%20%20%20%20%22%22%22%E6%B1%82%E8%A7%A3%20N%20%E7%9A%87%E5%90%8E%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20n%2An%20%E5%A4%A7%E5%B0%8F%E7%9A%84%E6%A3%8B%E7%9B%A4%EF%BC%8C%E5%85%B6%E4%B8%AD%20%27Q%27%20%E4%BB%A3%E8%A1%A8%E7%9A%87%E5%90%8E%EF%BC%8C%27%23%27%20%E4%BB%A3%E8%A1%A8%E7%A9%BA%E4%BD%8D%0A%20%20%20%20state%20%3D%20%5B%5B%22%23%22%20for%20_%20in%20range%28n%29%5D%20for%20_%20in%20range%28n%29%5D%0A%20%20%20%20cols%20%3D%20%5BFalse%5D%20%2A%20n%20%20%23%20%E8%A8%98%E9%8C%84%E5%88%97%E6%98%AF%E5%90%A6%E6%9C%89%E7%9A%87%E5%90%8E%0A%20%20%20%20diags1%20%3D%20%5BFalse%5D%20%2A%20%282%20%2A%20n%20-%201%29%20%20%23%20%E8%A8%98%E9%8C%84%E4%B8%BB%E5%B0%8D%E8%A7%92%E7%B7%9A%E4%B8%8A%E6%98%AF%E5%90%A6%E6%9C%89%E7%9A%87%E5%90%8E%0A%20%20%20%20diags2%20%3D%20%5BFalse%5D%20%2A%20%282%20%2A%20n%20-%201%29%20%20%23%20%E8%A8%98%E9%8C%84%E6%AC%A1%E5%B0%8D%E8%A7%92%E7%B7%9A%E4%B8%8A%E6%98%AF%E5%90%A6%E6%9C%89%E7%9A%87%E5%90%8E%0A%20%20%20%20res%20%3D%20%5B%5D%0A%20%20%20%20backtrack%280%2C%20n%2C%20state%2C%20res%2C%20cols%2C%20diags1%2C%20diags2%29%0A%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%204%0A%20%20%20%20res%20%3D%20n_queens%28n%29%0A%0A%20%20%20%20print%28f%22%E8%BC%B8%E5%85%A5%E6%A3%8B%E7%9B%A4%E9%95%B7%E5%AF%AC%E7%82%BA%20%7Bn%7D%22%29%0A%20%20%20%20print%28f%22%E7%9A%87%E5%90%8E%E6%94%BE%E7%BD%AE%E6%96%B9%E6%A1%88%E5%85%B1%E6%9C%89%20%7Blen%28res%29%7D%20%E7%A8%AE%22%29%0A%20%20%20%20for%20state%20in%20res%3A%0A%20%20%20%20%20%20%20%20print%28%22--------------------%22%29%0A%20%20%20%20%20%20%20%20for%20row%20in%20state%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20print%28row%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=61&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 &gt;</a></div></p>
</details>
<p>逐行放置 <span class="arithmatex">\(n\)</span> 次,考慮列約束,則從第一行到最後一行分別有 <span class="arithmatex">\(n\)</span><span class="arithmatex">\(n-1\)</span><span class="arithmatex">\(\dots\)</span><span class="arithmatex">\(2\)</span><span class="arithmatex">\(1\)</span> 個選擇,使用 <span class="arithmatex">\(O(n!)\)</span> 時間。當記錄解時,需要複製矩陣 <code>state</code> 並新增進 <code>res</code> ,複製操作使用 <span class="arithmatex">\(O(n^2)\)</span> 時間。因此,<strong>總體時間複雜度為 <span class="arithmatex">\(O(n! \cdot n^2)\)</span></strong> 。實際上,根據對角線約束的剪枝也能夠大幅縮小搜尋空間,因而搜尋效率往往優於以上時間複雜度。</p>
<p>陣列 <code>state</code> 使用 <span class="arithmatex">\(O(n^2)\)</span> 空間,陣列 <code>cols</code><code>diags1</code><code>diags2</code> 皆使用 <span class="arithmatex">\(O(n)\)</span> 空間。最大遞迴深度為 <span class="arithmatex">\(n\)</span> ,使用 <span class="arithmatex">\(O(n)\)</span> 堆疊幀空間。因此,<strong>空間複雜度為 <span class="arithmatex">\(O(n^2)\)</span></strong></p>
<!-- Source file information -->
<!-- Was this page helpful? -->
<!-- Previous and next pages link -->
<nav
class="md-footer__inner md-grid"
aria-label="頁脚"
>
<!-- Link to previous page -->
<a
href="../subset_sum_problem/"
class="md-footer__link md-footer__link--prev"
aria-label="上一頁: 13.3 &amp;nbsp; 子集和問題"
rel="prev"
>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</div>
<div class="md-footer__title">
<span class="md-footer__direction">
上一頁
</span>
<div class="md-ellipsis">
13.3 &nbsp; 子集和問題
</div>
</div>
</a>
<!-- Link to next page -->
<a
href="../summary/"
class="md-footer__link md-footer__link--next"
aria-label="下一頁: 13.5 &amp;nbsp; 小結"
rel="next"
>
<div class="md-footer__title">
<span class="md-footer__direction">
下一頁
</span>
<div class="md-ellipsis">
13.5 &nbsp; 小結
</div>
</div>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
</div>
</a>
</nav>
<!-- Comment system -->
<h5 align="center" id="__comments"></h5>
<!-- Insert generated snippet here -->
<script
src="https://giscus.app/client.js"
data-repo="krahets/hello-algo"
data-repo-id="R_kgDOIXtSqw"
data-category="Announcements"
data-category-id="DIC_kwDOIXtSq84CSZk_"
data-mapping="pathname"
data-strict="1"
data-reactions-enabled="1"
data-emit-metadata="0"
data-input-position="top"
data-theme="light"
data-lang="
"
crossorigin="anonymous"
async
>
</script>
<!-- Synchronize Giscus theme with palette -->
<script>
var giscus = document.querySelector("script[src*=giscus]")
/* Set palette on initial load */
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark_dimmed" : "light"
giscus.setAttribute("data-theme", theme)
}
/* Register event handlers after documented loaded */
document.addEventListener("DOMContentLoaded", function() {
var ref = document.querySelector("[data-md-component=palette]")
ref.addEventListener("change", function() {
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark_dimmed" : "light"
/* Instruct Giscus to change theme */
var frame = document.querySelector(".giscus-frame")
frame.contentWindow.postMessage(
{ giscus: { setConfig: { theme } } },
"https://giscus.app"
)
}
})
})
</script>
</article>
</div>
<script>var tabs=__md_get("__tabs");if(Array.isArray(tabs))e:for(var set of document.querySelectorAll(".tabbed-set")){var tab,labels=set.querySelector(".tabbed-labels");for(tab of tabs)for(var label of labels.getElementsByTagName("label"))if(label.innerText.trim()===tab){var input=document.getElementById(label.htmlFor);input.checked=!0;continue e}}</script>
<script>var target=document.getElementById(location.hash.slice(1));target&&target.name&&(target.checked=target.name.startsWith("__tabbed_"))</script>
</div>
<button type="button" class="md-top md-icon" data-md-component="top" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8v12Z"/></svg>
回到頂部
</button>
</main>
<footer class="md-footer">
<nav class="md-footer__inner md-grid" aria-label="頁脚" >
<a href="../subset_sum_problem/" class="md-footer__link md-footer__link--prev" aria-label="上一頁: 13.3 &amp;nbsp; 子集和問題">
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</div>
<div class="md-footer__title">
<span class="md-footer__direction">
上一頁
</span>
<div class="md-ellipsis">
13.3 &nbsp; 子集和問題
</div>
</div>
</a>
<a href="../summary/" class="md-footer__link md-footer__link--next" aria-label="下一頁: 13.5 &amp;nbsp; 小結">
<div class="md-footer__title">
<span class="md-footer__direction">
下一頁
</span>
<div class="md-ellipsis">
13.5 &nbsp; 小結
</div>
</div>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
</div>
</a>
</nav>
<div class="md-footer-meta md-typeset">
<div class="md-footer-meta__inner md-grid">
<div class="md-copyright">
<div class="md-copyright__highlight">
Copyright &copy; 2024 krahets<br>The website content is licensed under <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">CC BY-NC-SA 4.0</a>
</div>
</div>
<div class="md-social">
<a href="https://github.com/krahets" target="_blank" rel="noopener" title="github.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</a>
<a href="https://twitter.com/krahets" target="_blank" rel="noopener" title="twitter.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M389.2 48h70.6L305.6 224.2 487 464H345L233.7 318.6 106.5 464H35.8l164.9-188.5L26.8 48h145.6l100.5 132.9L389.2 48zm-24.8 373.8h39.1L151.1 88h-42l255.3 333.8z"/></svg>
</a>
<a href="https://leetcode.cn/u/jyd/" target="_blank" rel="noopener" title="leetcode.cn" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 640 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M392.8 1.2c-17-4.9-34.7 5-39.6 22l-128 448c-4.9 17 5 34.7 22 39.6s34.7-5 39.6-22l128-448c4.9-17-5-34.7-22-39.6zm80.6 120.1c-12.5 12.5-12.5 32.8 0 45.3l89.3 89.4-89.4 89.4c-12.5 12.5-12.5 32.8 0 45.3s32.8 12.5 45.3 0l112-112c12.5-12.5 12.5-32.8 0-45.3l-112-112c-12.5-12.5-32.8-12.5-45.3 0zm-306.7 0c-12.5-12.5-32.8-12.5-45.3 0l-112 112c-12.5 12.5-12.5 32.8 0 45.3l112 112c12.5 12.5 32.8 12.5 45.3 0s12.5-32.8 0-45.3L77.3 256l89.4-89.4c12.5-12.5 12.5-32.8 0-45.3z"/></svg>
</a>
</div>
</div>
</div>
</footer>
</div>
<div class="md-dialog" data-md-component="dialog">
<div class="md-dialog__inner md-typeset"></div>
</div>
<script id="__config" type="application/json">{"base": "../..", "features": ["announce.dismiss", "content.action.edit", "content.code.annotate", "content.code.copy", "content.tabs.link", "content.tooltips", "navigation.indexes", "navigation.top", "navigation.footer", "navigation.tracking", "search.highlight", "search.share", "search.suggest", "toc.follow"], "search": "../../assets/javascripts/workers/search.b8dbb3d2.min.js", "translations": {"clipboard.copied": "\u5df2\u62f7\u8c9d", "clipboard.copy": "\u62f7\u8c9d", "search.result.more.one": "\u6b64\u9801\u5c1a\u6709 1 \u500b\u7b26\u5408\u7684\u9805\u76ee", "search.result.more.other": "\u6b64\u9801\u5c1a\u6709 # \u500b\u7b26\u5408\u7684\u9805\u76ee", "search.result.none": "\u6c92\u6709\u627e\u5230\u7b26\u5408\u689d\u4ef6\u7684\u7d50\u679c", "search.result.one": "\u627e\u5230 1 \u4e2a\u7b26\u5408\u689d\u4ef6\u7684\u7d50\u679c", "search.result.other": "\u627e\u5230 # \u500b\u7b26\u5408\u689d\u4ef6\u7684\u7d50\u679c", "search.result.placeholder": "\u9375\u5165\u4ee5\u958b\u59cb\u6aa2\u7d22", "search.result.term.missing": "\u7f3a\u5931", "select.version": "\u9078\u64c7\u7248\u672c"}}</script>
<script src="../../assets/javascripts/bundle.c18c5fb9.min.js"></script>
<script src="../../javascripts/mathjax.js"></script>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/3.2.2/es5/tex-mml-chtml.min.js"></script>
<script>document$.subscribe(() => {const lightbox = GLightbox({"touchNavigation": true, "loop": false, "zoomable": true, "draggable": false, "openEffect": "zoom", "closeEffect": "zoom", "slideEffect": "none"});})</script></body>
</html>